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tional data belonging to a Hilbert space, with a Functional Data Analysis
approach. Having defined new global measures of spatial variability for
functional random processes, we derive a Universal Kriging predictor for
functional data. Consistently with the new established theoretical results,
we develop a two-step procedure for predicting georeferenced functional
data: first model selection and estimation of the spatial mean (drift), then
Universal Kriging prediction on the basis of the identified model. The pro-
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1. Introduction

Functional Data Analysis (FDA, Ramsay and Silverman (2005)) has recently
received a great deal of attention in the literature because of the increasing
need to analyze infinite-dimensional data, such as curves, surfaces and images.
Whenever functional data are spatially dependent, FDA methods relying on the
assumption of independence among observations could fail because consistency
problems may arise (Hörmann and Kokoszka, 2011; Horváth and Kokoszka,
2012).
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In the presence of spatial dependence, not only ad hoc estimation and re-
gression techniques need to be developed (e.g., Gromenko et al. (2012) and Ya-
manishi and Tanaka (2003)), but also other topics need to be addressed. Among
them, spatial prediction assumes a key role: the extension of kriging techniques
(Cressie, 1993) to the functional setting meets the need of interpolating complex
data collected in a limited number of spatial locations and thus could find appli-
cation in different areas of industrial and environmental research. Nevertheless,
a relatively small body of literature has been produced on this topic: indeed,
theoretical results in this direction have been recently derived (Giraldo et al.
(2008b, 2011); Delicado et al. (2010); Giraldo et al. (2010a); Monestiez and Ner-
ini (2008); Nerini et al. (2010)) moving from the pioneering work by Goulard and
Voltz (1993), but this theory is still limited to stationary functional stochastic
processes valued in L2.

However, in geophysical and environmental applications, natural phenomena
are typically very complex and they rarely show a uniform behavior over the
spatial domain: in these cases, non-stationary methods are needed. To this end,
two techniques for kriging non-stationary functional data belonging to L2 have
been developed concurrently with the present work, proposing a Residual Krig-
ing approach (Reyes et al., 2012) and a Universal Kriging approach (Caballero
et al., 2013). These methods, however, are worked out specifically for functional
data belonging to L2 and do not allow to threat functional data valued in gen-
eral Hilbert spaces, for which non-stationary kriging techniques are yet to be
developed. In this work, we tackle this problem both from a theoretical point of
view and from a computational one.

The methodological effort is here devoted to establish a general and coherent
theoretical framework for Universal Kriging prediction in any separable Hilbert
space, not just L2. For instance, in our setting both pointwise and differen-
tial properties characterizing the functional data can be explicitly incorporated
in the measures of spatial dependence – namely trace-variogram and trace-
covariogram – if data are assumed to belong to a proper Sobolev space (see
Remark 7 and Section 3).

Together with the theoretical results – presented in Section 2, new algorithms
to perform spatial prediction are developed in Section 4 and their performance
is tested through a simulation study illustrated as supplementary material in
(Menafoglio et al., 2013). Two main goals move this part of the work: first to
select an optimal linear model for the spatial mean – i.e. the drift – in the absence
of a priori information, second to estimate the structure of spatial dependence
of the associated residuals, which is that involved in the kriging prediction.

Finally, the case study that first motivated this work is presented in Section 5.
It originates from a meteorological application and concerns the analysis of daily
mean temperature curves recorded in the Maritimes Provinces of Canada. The
aim of the study is to predict the whole space-time field of temperatures on the
basis of the available data, deriving furthermore estimates for the temperature
spatial trend. The problem of spatial prediction of temperatures is of interest
in microclimate prediction as well as in hydrological and forest ecosystem mod-
eling. It has been already faced in the literature about kriging for functional
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data by means of stationary techniques (e.g., (Giraldo et al., 2010a)); here a
non-Euclidean distance is adopted for the spatial domain and a drift term is
modeled. We will show that the introduction of a drift term has a strong in-
fluence on the analysis in terms of cross-validation performance and prediction
accuracy, besides allowing a climatical interpretation of the results.

2. Universal Kriging for functional random fields

2.1. Preliminaries and definitions

Let (Ω,F,P) a probability space and H a separable Hilbert space endowed with
the inner product 〈·, ·〉 and the induced norm ‖ · ‖, whose points are functions
X : T → R, where T is a compact subset of R. Call functional random variable a
measurable function X : Ω→ H, whose realization X , called functional datum,
is an element of H (Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012).

Consider on H a (functional) random field:

{χs, s ∈ D ⊆ Rd}, (1)

that is a set of functional random variables χs of H, indexed by a continuous
spatial vector s varying in D ⊆ Rd (usually d = 2).

In this framework, a functional dataset χs1 , . . . , χsn is the collection of n
observations of the random field (1) relative to n locations s1, . . . , sn ∈ D; in
nontrivial situations a vector of observations χ~s = (χs1 , . . . , χsn)T is character-
ized by a structure of spatial dependence reflecting the covariance structure of
the generating random process (1). The aim of this work is the prediction of the
realization χs0 in an unsampled site s0 ∈ D, through a geostatistical approach,
based on global definitions of covariogram and variogram.

For 1 ≤ p < ∞ denote with Lp(Ω;H) the vector space of (equivalence
classes of) measurable functions X : Ω → H with ‖X‖ ∈ Lp(Ω) – i.e.∫

Ω
‖X (ω)‖pP(dω) = E[‖X‖p] < ∞ where E indicates the expected value, that

is a Banach space with respect to the norm ‖X‖Lp(Ω;H) = (E[‖X‖p])1/p
.

In this work, we assume that the following condition holds.

Assumption 1 (Square-integrability). Each element χs, s ∈ D, of the random
field (1) belongs to L2(Ω;H).

When Assumption 1 is true, the expected value ms of the random field (1)
can be defined by Bochner integral as:

ms =

∫
Ω

χs(ω)P(dω), s ∈ D. (2)

The expected value (2) coincides, for almost all t ∈ T , with its pointwise defini-
tion ms(t) = E[χs(t)] (Dunford and Schwartz, 1958). Moreover, for any x ∈ H,
〈x,ms〉 = E[〈x,χs〉].

A global measure of spatial dependence is provided by the following:
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Definition 2. The (global) covariance function of the process (1) is the function
C : D ×D → R:

C(si, sj) = Cov(χsi ,χsj ) := E[〈χsi −msi ,χsj −msj 〉], (3)

When Assumption 1 holds true, C is a positive definite function:∑
i

∑
j

λiλjC(si, sj) ≥ 0, ∀ si, sj ,∈ D, ∀ λi, λj ∈ R,

and defines a scalar product on L2(Ω;H). The function C will also be called
trace-covariogram because of its relation – for every fixed couple si, sj ∈ D –
with the cross-covariance operator Csi,sj : H → H defined, for x ∈ H, by:

Csi,sjx = E[〈χsi −msi , x〉(χsj −msj )]. (4)

Indeed, by applying Parsival Identity and following the arguments presented in
(Hörmann and Kokoszka (2011), Section 3), one can easily prove the following:

Proposition 3. For every couple of locations si, sj in D, C(si, sj) is the trace
of the corresponding cross-covariance operator Csi,sj :

C(si, sj) =

∞∑
k=1

〈Csi,sjek, ek〉, (5)

where {ek, k ∈ N} is any orthonormal basis of H. In particular:

|C(si, sj)| ≤
∞∑
k=1

|λ(si,sj)
k |,

being λ
(si,sj)
k , k = 1, 2, . . ., the singular values of the cross-covariance opera-

tor Csi,sj .

Notice that the trace of Csi,sj is well defined by
∑∞
k=1〈Csi,sjek, ek〉, since

Csi,sj is a trace-class Hilbert-Schmidt operator (Bosq, 2000) and thus the series
converges absolutely for any orthonormal basis {ek, k ≥ 1} of H and the sum
does not depend on the choice of the basis (Zhu (2007), Theorem 1.24).

Expression (3) induces a notion of global variance and of variogram, as well
as new global definitions of second-order and intrinsic stationarity.

Definition 4. The (global) variance of the process (1) is the function σ2 : D →
[0,+∞]:

σ2(s) = Var(χs) = E[‖χs −ms‖2], s ∈ D. (6)

The (global) semivariogram of the process (1) is the function γ : D × D →
[0,+∞]:

γ(si, sj) =
1

2
Var(χsi − χsj ), si, sj ∈ D. (7)

The (global) variogram of the process (1) is defined as 2γ.
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Function (7) has the same properties as its finite-dimensional analogue (Chilès
and Delfiner, 1999); in particular it is a conditionally negative definite function:∑

i

∑
j

λiλjγ(si, sj) ≤ 0, ∀ si, sj ,∈ D, ∀ λi, λj ∈ R s.t.
∑
i

λi = 0.

Relations with covariance operators can be established for the global variance
and the global semivariogram. Indeed, let Cs,s : H → H be the covariance
operator of χs and Γsi−sj ,si−sj : H → H half the covariance operator of the
increment χsi − χsj , that is, for x ∈ H:

Cs,sx = E[〈χs −ms, x〉(χs −ms)];

Γsi−si,si−sjx =
1

2
E[〈χsi − χsj − (msi −msj ), x〉(χsi − χsj − (msi −msj ))].

Both operators are trace-class, self-adjoint, positive and Hilbert-Schmidt (e.g.,
Bosq (2000)), therefore, from Proposition 3, it is straightforward to prove that
for any fixed s, si, sj ∈ D the variance σ2(s) and the semivariogram γ(si, sj)
coincide with the trace of Cs,s and Γsi−sj ,si−sj respectively:

σ2(s) =

∞∑
k=1

〈Cs,sek, ek〉 =

∞∑
k=1

λ
(s,s)
k (8)

γ(si, sj) =

∞∑
k=1

〈Γsi−si,si−sjek, ek〉 =

∞∑
k=1

ζ
(si−sj ,si−sj)
k , (9)

being {λ(s,s)
k } and {ζ(si−sj ,si−sj)

k } the (non negative) eigenvalues of Cs,s and
Γsi−sj ,si−sj respectively. For this reason, the global semivariogram will also be
called trace-semivariogram.

Concerning the notion of stationarity, new global definitions of second-order
and intrinsic stationarity can be stated as follow.

Definition 5. A process {χs, s ∈ D ∈ Rd} is said to be (globally) second-order
stationary if the following conditions hold:

(i) E[χs] = m, ∀ s ∈ D ⊆ Rd;
(ii) Cov(χsi ,χsj ) = E[〈χsi −m,χsj −m〉] = C(h), ∀ si, sj ∈ D ⊆ Rd, h =

si − sj .

A process {χs, s ∈ D ∈ Rd} is said to be (globally) intrinsically stationary if:

(i) E[χs] = m, ∀ s ∈ D ⊆ Rd;
(ii’) Var(χsi − χsj ) = E[‖χsi − χsj‖

2] = 2γ(h), ∀ si, sj ∈ D ⊆ Rd, h =
si − sj .

Finally, the condition of isotropy can be established as follow.

Definition 6. A second-order stationary random process is said to be isotropic
if:

Cov(χsi ,χsj ) = C(‖h‖), ∀ si, sj ∈ D ⊆ Rd, h = si − sj ,

where ‖ · ‖ is a norm on D.
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Remark 7. When H = L2 and global second-order stationarity and isotropy
for the process (1) are in force, the trace-semivariogram (7) corresponds to the
integrated version of pointwise semivariograms γ(hi,j ; t) = 1

2 Var(χsi(t)−χsj (t))
(assumed to exist a.e.):

γ(hi,j) =

∫
T
γ(hi,j ; t)dt, (10)

being hi,j = ‖si− sj‖. This has been introduced in (Giraldo et al., 2008a) with
the name of trace-semivariogram. However our definition is more general and
permits the analysis of functional data in more complex situations. For instance,
we might want to take explicitly into account the regularity of the elements of
H – which captures the dependence along the coordinate t ∈ T – by assuming
that H is an appropriate Sobolev space and working with the inner product
consistent with this assumption.

In particular, let Hk, k ≥ 1, be the subset of L2 consisting of the equivalence
classes of functions with weak derivatives DαX , α ≤ k, in L2:

Hk(T ) = {X : T → R, s.t. DαX ∈ L2,∀α ≤ k, α ∈ N}.

By considering on Hk the usual inner product and norm, the resulting trace-
variogram is (D0χs = χs):

2γ(si, sj) = Var(χsi − χsj )Hk =

k∑
α=0

Var(Dαχsi −D
αχsj )L2 ,

where Var(Dαχsi − Dαχsj )L2 are the trace-variograms in L2 relative to the
weak derivative random fields {Dαχs, s ∈ D}, 0 ≤ α ≤ k (assumed to exist,
for every α = 0, 1, . . . , k), which might significantly influence the overall trace-
variogram.

The choice of the most proper Sobolev space may allow to distinguish among
functional random fields which might appear similar from a spatial dependence
point of view, but indeed very different in the structure of dependence along the
coordinate t ∈ T (see Section 3).

Moreover, suppose the random field to be the random path of a stochastic
dynamical system, {χτ , τ ∈ D ⊂ R}, whose state χτ is a functional random
variable belonging to a Sobolev space H – determined by the equations which
govern the dynamics of the system – (Arnold, 2003). In dynamical system theory,
the Sobolev norm of the state coincides with (twice) the energy of the system.
Therefore, the choice of the most proper Sobolev space for geostatistical analysis
implies a precise physical meaning for the measure of stochastic variability:
indeed, the global variance represents (twice) the mean energy of the system,
while the trace-variogram (twice) the mean energy of the increments between
two states.

In the light of the Proposition 3, existence of strong, (globally) second-order
and (globally) intrinsic stationary functional processes can be established by
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direct construction as in (Hörmann and Kokoszka, 2011). Considering an or-
thonormal basis {ej , j ≥ 1} of H, every functional random process (1) with
constant mean m admits the following expansion:

χs = m+
∑
j≥1

ξj(s)ej . (11)

The scalar fields ξj(s) = 〈χs − m, ej〉, j = 1, 2, . . ., determine the stationar-
ity of the functional process. In fact, as proved in (Hörmann and Kokoszka,
2011), process (1) is strong stationary if and only if the scalar fields ξj(s) are
strictly stationary for all j ≥ 1; moreover the random element χs, s ∈ D, be-
longs to L2(Ω;H) if and only if the sequence {ξj(s)}j≥1 belongs to `2(Ω;R) (i.e.∑
j≥1 E[ξj(s)

2] <∞). Furthermore, second-order stationarity of each scalar field
ξj(s), j = 1, 2, . . ., ensures that the cross-covariance operator Cs,s+h depends
only on the increment vector h ∈ D, for every s ∈ D, which is in fact a suffi-
cient condition for the functional process to be globally second-order stationary.
This condition can be weakened in order to obtain the following necessary and
sufficient condition for global second-order stationarity:∑

j≥1

E[ξj(s)ξj(s+ h)] = C(h), (12)

for each s,h ∈ D and for some real-valued function C. As a consequence,
a necessary condition for global second-order stationarity is the independence
of the `2-norm of the sequence {ξj(s)}j≥1 from the location s ∈ D.

As in finite-dimensional theory, intrinsic stationarity is a weaker condition
than second-order stationarity. Indeed, a d-dimensional isotropic Brownian mo-
tion {Ws, s ∈ D ⊆ Rd} can be seen as a functional random field on H =
L2([0, 1]), such that each elementWs : [0, 1]→ R, s ∈ D, is a functional random
variable whose realization Ws(ω, ·), ω ∈ Ω, is constant over the domain [0, 1]:
Ws(ω, t) = Ws(ω), for all t ∈ [0, 1]. Obviously, each Ws belongs to L2(Ω, H)
and:

Var(Wsi −Wsj ) = E[(Wsi −Wsj )
2] = ‖si − sj‖,

while

Cov(Wsi ,Wsj ) = E[WsiWsj ] = (‖si‖+ ‖sj‖ − ‖si − sj‖),

which is not a function of (si − sj).

2.2. Universal Kriging predictor

Consider a non-stationary random process {χs, s ∈ D}, whose elements are
representable as:

χs = ms + δs, (13)

where ms, the drift, describes the non-constant spatial mean variation, while
the residual term δs is supposed to be a zero-mean, second-order stationary and
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isotropic random field, i.e.: E[χs] = ms, s ∈ D ⊆ Rd;
E[δs] = 0, s ∈ D ⊆ Rd;
Cov(δsi , δsj ) = E[〈δsi , δsj 〉] = C(‖h‖), ∀ si, sj ∈ D ⊆ Rd, h = si − sj .

As in classical geostatistics (Cressie, 1993), assume the following linear model
for the drift ms:

ms(t) =

L∑
l=0

al(t)fl(s), s ∈ D, t ∈ T , (14)

where f0(s) = 1 for all s ∈ D, fl(·), l = 1, . . . , L, are known functions of the
spatial variable s ∈ D and al(·) ∈ H, l = 0, . . . , L, are functional coefficients
independent from the spatial location. Hence it is supposed that the dependence
of the mean ms on the spatial variable s ∈ D is explained by the family of
functions {fl(·)}l=1,...,L, that are constant with respect to the variable t ∈ T ; in
the meantime, the functional nature of the drift ms is preserved thanks to the
introduction of the functional coefficients al(·), l = 0, . . . , L.

For most applications, these assumptions are not too restrictive: in fact this
model is able to describe precisely the drift term whenever it is a separable
function or in the presence of a scalar external drift.

Given n observations χs1 , . . . , χsn sampled from a realization of {χs, s ∈ D},
our next goal is the formulation of the Universal Kriging predictor of the variable
χs0 located in s0 ∈ D, which is the best linear unbiased predictor (BLUP):

χ∗s0 =

n∑
i=1

λ∗iχsi ,

whose weights λ∗1, . . . , λ
∗
n ∈ R minimize the global variance of the prediction

error under the unbiasedness constraint:

(λ∗1, . . . , λ
∗
n) = argmin

λ1,...,λn∈R :
χλs0

=
∑n
i=1

λiχsi

Var(χλs0 − χs0) s.t. E[χλs0 ] = ms0 . (15)

In (15) both the variance to be minimized and the unbiasedness constraint
are well defined since the linear predictor χλs0 (and thus χλs0 − χs0) belongs
to the same space H as the variables χs1 , . . . ,χsn , because H is closed with
respect to linear combinations of its elements.

From the unbiasedness constraint, the following set of restrictions on the
weights can be easily derived:

n∑
i=1

λifl(si) = fl(s0), ∀ l = 0, . . . , L. (16)
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By including (16) in the minimization problem through L+ 1 Lagrange multi-
pliers, µ0, . . . , µL, problem (15) can be solved by minimizing the functional Φ:

Φ = Var(χλs0 − χs0) + 2

L∑
l=0

µl

(
n∑
i=1

λifl(si)− fl(s0)

)
,

easily reduced to:

Φ =

n∑
i=1

n∑
j=1

λiλjC(si, sj) + C(0)− 2

n∑
i=1

λiC(si, s0)

(17)

+ 2

L∑
l=0

µl

(
n∑
i=1

λifl(si)− fl(s0)

)
.

Under suitable assumptions on the sampling design – namely Σ = (C(hi,j)) ∈
Rn×n positive definite and Fs = (fl(si)) ∈ Rn×(L+1) of full rank, the functional
(17) admits a unique global minimum that can be found solving the following
linear system:

C(0) · · · C(h1,n) 1 f1(s1) · · · fL(s1)
...

. . .
...

...
...

...
...

C(hn,1) · · · C(0) 1 f1(sn) · · · fL(sn)
1 · · · 1 0 0 · · · 0

f1(s1) · · · f1(sn) 0 0 · · · 0
...

...
...

...
...

...
...

fL(s1) · · · fL(sn) 0 0 · · · 0





λ1

...
λn
µ0

µ1

...
µL


=



C(h0,1)
...

C(h0,n)
1

f1(s0)
...

fL(s0)


,

(18)
where C(hi,j) denotes the trace-covariogram function of the residual process
{δs, s ∈ D}, evaluated in hi,j = ‖si − sj‖.

Notice that, by combining (3) and (7), one can easily extend to the functional
case the well-known relation between trace-covariogram and trace-semivariogram:

γ(hi,j) = C(0)− C(hi,j),

that allows to express equivalently the linear system (18) in terms of the semi-
variogram function γ.

In addition, we can associate to the pointwise prediction χ∗s0 in s0 a measure
of its global variability through the Universal Kriging variance:

σ2
UK(s0) = C(0)−

n∑
i=1

λiC(hi,0)−
L∑
l=0

µlfl(s0) (19)

=

n∑
i=1

λiγ(hi,0) +

L∑
l=0

µlfl(s0), s0 ∈ D; f0(s) = 1, ∀s ∈ D.
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Observe that both kriging system (18) and the kriging variance (19) have
exactly the same form of the finite-dimensional corresponding expressions, indi-
cating the consistency of our extensions with the real-valued random field case
(if H = R, the trace-covariogram reduces to the usual covariogram).

Moreover, when considering the very specific case treated at the beginning of
Remark 7, the Universal Kriging system (18) reduces to the Ordinary Kriging
system already presented in (Giraldo et al., 2008a). Furthermore, with the same
arguments of Remark 7, one can easily see that if H = L2 the Universal Kriging
system (18) coincides with that derived in (Caballero et al., 2013).

Finally, global second-order stationarity of the residual process has been as-
sumed for the construction of the optimal predictor: however, as in classical
theory, the Ordinary Kriging predictor is also well defined under the hypothesis
of intrinsic stationarity. In fact, second-order stationarity for the residuals has
to be required whenever the mean ms is not constant and the residual trace-
variogram is unknown: in such a case, the trace-covariogram is needed for the
generalized least squares estimate of the drift (see Subsection 2.4).

2.3. Variogram estimation

In order to determine the Universal Kriging predictor in s0 by solving (18),
an estimation of the trace-covariogram or, as usually preferred, of the trace-
semivariogram is needed. As in classical geostatistics, semivariogram estimation
can be performed by first determining an empirical estimator and then fitting
a valid model. The latter step is necessary in order to fulfil the requirements on
the trace-semivariogram function, e.g. conditional negative definiteness.

Suppose to know the realization δs1 , . . . , δsn of the residual process {δs,
s ∈ D}, in the n sampling locations s1, . . . , sn of the domain D in which we
observe the functional dataset χs1 , . . . , χsn . Recall that the residual process is
zero-mean second-order stationary and isotropic, so that:

γ(h) =
1

2
E[‖δsi − δsj‖2], ∀ si, sj ∈ D ⊆ Rd, h = ‖si − sj‖.

Following the approach adopted in (Giraldo et al., 2008a) and by analogy
with the finite-dimensional case, a method-of-moments estimator can be used:

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi − δsj‖2, (20)

where N(h) indicates the set of all couples of sites separated by a distance
h and |N(h)| is its cardinality. In applications, since it is hardly possible to
calculate an estimate γ̂(h) for every value of h, a discretized version γ̂(h) =
(γ̂(h1), . . . , γ̂(hK)) of γ̂(h) can be used instead, for K classes of distance centered
in h1, . . . , hK .

For the fitting step, a least squares criterion can be used, minimizing the
distance between the empirical estimate γ̂(h) and a parametric valid model
γ(h;ϑ), properly chosen among the classical families of valid (semi)variogram
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models (Cressie, 1993). Indeed, in classical geostatistics there exists a number
of parametric families of valid models that can be used in the functional case as
well, since the trace-semivariogram is a real valued function which has to fulfil
the same set of requirements as its finite-dimensional analogue. As an alter-
native, ad hoc constructed valid models can be tested for conditional negative
definiteness by means of spectral methods (Armstrong and Diamond, 1984).

2.4. Drift estimation

Although the drift coefficients are not directly included in the Universal Krig-
ing system (18), their estimation is necessary in order to assess the trace-
semivariogram of the residual process {δs, s ∈ D}, since, in general, this is
unobserved.

Assuming the dichotomy (13) and the linear model (14), the original process
can be expressed as:

χs =

L∑
l=0

alfl(s) + δs, s ∈ D. (21)

Hence, the compact matrix form for model (21) for the random vector χ~s =
(χs1 , . . . ,χsn)T – whose realization χ~s belongs to the product space Hn =
H ×H × · · · ×H – is:

χ~s = F~sa~l + δ~s, (22)

where a~l = (a0, . . . , aL)T is the vector of coefficients, δ~s = (δs1 , . . . , δsn)T is the

random vector of spatially-correlated residuals and F~s = (fl(si)) ∈ Rn×(L+1) is
the design matrix.

The theory of linear models in functional data analysis (FDA, Ramsay and
Silverman (2005)) has been developed under the founding hypothesis of inde-
pendent and identically distributed residuals, so that the ordinary least squares
approach developed in that framework inevitably turns out to be somewhat in-
adequate in the presence of correlated residuals. In order to properly take into
account the structure of spatial dependence existing among observations, we
propose a generalized least squares criterion (GLS) with weighting matrix Σ−1,
the inverse of the n× n covariance matrix Σ of χ~s.

Indeed, a measure of the statistical distance among functional random vari-
ables X ,Y in Hn can be provided through the following extension of the notion
of Mahalanobis distance (Mahalanobis, 1936):

dΣ−1(X ,Y) = ‖X − Y‖Σ−1−Hn = ‖Σ−1/2(X − Y)‖Hn ,

where Σ−1/2 indicates the square root matrix of Σ−1 (or, equivalently, the in-
verse of the square root matrix of Σ) and ‖·‖Hn denotes the norm in Hn, defined
as ‖X‖2Hn =

∑n
i=1 ‖Xi‖2H , for X = (X1, . . . ,Xn) ∈ Hn.

The GLS estimator âGLS~l
= (âGLS0 , . . . , âGLSL )T can be determined by solving

the following optimal problem:

min
â~l∈HL+1

ΦGLS(â~l) (23)
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where the functional ΦGLS to be minimized corresponds to the functional Ma-
halanobis distance between fitted values m̂~s = F~sâ~l and observed data:

ΦGLS(â~l) = ‖χ~s − F~sâ~l‖
2
Σ−1−Hn = ‖χ~s − m̂~s‖2Σ−1−Hn . (24)

Proposition 8. If rank(F~s) = L+1 ≤ n and rank(Σ) = n, there exists a unique

vector âGLS~l
solving the estimation problem (23), which admits the following

explicit representation:

âGLS~l
= (FT~sΣ−1F~s)−1FT~sΣ−1χ~s. (25)

Moreover, the (unique) GLS drift estimator m̂~s is:

m̂~s = F~s(FT~sΣ−1F~s)−1FT~sΣ−1χ~s. (26)

Since estimators (25) and (26) are linear, their mean and variance-covariance
matrix can be easily derived:

E[âGLS~l
] = a~l; Cov(âGLS~l

) = (FT~sΣ−1F~s)−1; (27)

E[χ̂~s] = m~s; Cov(m̂~s) = F~s(FT~sΣ−1F~s)−1FT~s . (28)

Besides being unbiased, the following result holds.

Proposition 9. The estimator âGLS~l
is the BLUE ( Best Linear Unbiased Es-

timator) for the coefficients a~l, i.e. for any other linear unbiased estimator
â~l = Aχ~s + b of a~l, the matrix:

Cov(â~l)− Cov(âBLUE
~l

)

is positive semi-definite. As a consequence, m̂
GLS
~s is the BLUE for the mean

vector m~s.

Let ΣGLS be the n× n covariance matrix of the estimator δ̂~s = χ~s− m̂
GLS
~s ,

ΣGLS = E[δ̂~sδ̂
T

~s ], then the identity:

Σ = Cov(m̂
GLS
~s ) + ΣGLS , (29)

can be verified through orthogonality arguments (for details see the Appendix).
Expression (29) provides a decomposition of the covariance matrix Σ in a part

depending on the variability of the drift estimator m̂
GLS
~s and a component

representing the dependence structure of the estimated residual process.
Although an unbiased estimator of the covariance matrix ΣGLS repre-

sents a natural estimator of Σ, it provides a biased estimation of the spatial-
dependence structure, underestimating it for a quantity: B =
Cov(m̂

GLS
~s ) = F~s(FT~sΣ−1F~s)−1FT~s . However, the bias of such an estimator

proved to be negligible in all the performed simulations, as shown in (Menafoglio
et al. (2013)).

Finally, observe that when Σ = σ2I, that is precisely the case of (globally)
uncorrelated residuals, OLS and GLS criteria coincide. From the point of view
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of the residual variogram, the (global) uncorrelated case corresponds to a pure
nugget structure, because the mean squared norm of the discrepancy among
uncorrelated observations is equal to the variance σ2 of the process, being thus
independent from their separating distance. Therefore, the estimation of the
residuals variogram (or semivariogram), besides allowing the analysis of the
spatial dependence structure, will be the leading tool in the determination of
the most proper procedures for the statistical treatment of the observations, as
will be clarified in the next sections.

3. Trace-variograms in Sobolev spaces: An example

The purpose of this first example is to show how the choice of the space H data
are assumed to belong to might heavily influence the way in which the spatial
dependence is modeled (see also Remark 7 in Section 2).

To see this, we now consider two globally second-order stationary and isotropic

functional random fields, {χ(m)
s , s ∈ D}, m = 1, 2, built by direct construction

as in (11) by combining 7 independent, zero mean, second-order stationary and
isotropic scalar random fields {ξj(s), s ∈ D}, j = 1, . . . , 7, as:

χs
(1) =

7∑
k=1

ξ
(1)
k (s)ek =

7∑
k=1

ξk(s)ek (30)

χs
(2) =

25∑
k=1

ξ
(2)
k (s)ek =

25∑
k=19

ξk−18(s)ek, (31)

where {ek, k ≥ 1} denotes the Fourier basis.
An example of functional data generated by processes (30) and (31) is shown

in the left panels of Figure 1a and 1b respectively, where, for each dataset,
5 of the 100 simulated curves are represented. Here, the functional datasets

χ
(m)
s1 , . . . , χ

(m)
s100 , m = 1, 2, are obtained by combining according to (30) and (31)

a set of realizations of the scalar fields ξj , j = 1, . . . , 7, simulated following
the scheme described in Section S.1 of the supplementary material (Menafoglio
et al., 2013). The different behavior of the curves is evident: the first dataset
has a less fluctuating pattern along the coordinate t ∈ [0, 1], since only the first
3 frequencies are excited; conversely, the second dataset is characterized by a
very fluctuating pattern, due to the higher order basis truncation involving only
the 10th to 12th frequencies. First order derivatives are represented in the right
panels of Figure 1a and 1b.

Notice that, by construction, each realization of both processes belongs not
only to L2, but also to H1; moreover, both processes are globally second-order
stationary either in L2 or in H1. Indeed, L2 trace-variograms, as well as H1

trace-variograms, can be explicitly computed.
Assume first H = L2. For si, sj ∈ D, m = 1, 2, (N1 = 7, N2 = 25):

2γ(m)(si, sj)L2 = E[‖χ(m)
si − χ

(m)
sj ‖

2
L2 ] =

Nm∑
k=1

E
[
|ξ(m)
k (si)− ξ(m)

k (sj)|2
]
.
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(b) 25 basis functions

Fig 1. First 5 data of the functional datasets and corresponding derivatives. On the left: 5
data of the first dataset, built on a 7 Fourier functions basis. On the right: 5 data of the second
dataset, built on a 25 Fourier functions basis, assuming non-zero only the last 7 coefficients.

Therefore, for both functional random fields, the L2 trace-variograms coincide:

2γ
(1)
L2 = 2γ

(2)
L2 =

7∑
k=1

2γξk ,

where 2γξk indicate the variogram of the field ξk, k = 1, . . . , 7. Obviously, also
their empirical estimates coincide (Figure 2a). Notice that the different be-
havior of the two datasets along the coordinate t is lost when inspecting L2

trace-variograms: they are able to capture only the structure of spatial depen-
dence determined by the fields ξj , j = 1, . . . , 7, ignoring the possibly different
associated frequencies.
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Fig 2. Empirical trace-variograms in L2 (on the left) and H1 (on the right).

Information regarding curve fluctuation can be modeled through first deriva-
tive: we thus assume H = H1. Trace-variograms in H1 can be computed by:

2γ(m)(si, sj)H1 = 2γ(m)(si, sj)L2 + Var(Dχ(m)
si −Dχ

(m)
sj )L2 .

However, since:

Var(Dχ(m)
si −Dχ

(m)
sj )L2 = E[‖Dχ(m)

si −Dχ
(m)
sj ‖

2
L2 ]− ‖E[Dχ(m)

si −Dχ
(m)
sj ]‖2L2

=

Nm∑
k=1

⌊
k

2

⌋2

π2E
[
|ξk(si)− ξk(sj)|2

]
,

2γ
(1)
H1 does not coincide with 2γ

(2)
H1 . Indeed:

2γ
(1)
H1 = 2γ

(1)
L2 +

7∑
k=2

⌊
k

2

⌋2

π22γξk =

7∑
k=1

(
1 +

⌊
k

2

⌋2

π2

)
2γξk ;

2γ
(2)
H1 = 2γ

(2)
L2 +

25∑
k=19

⌊
k

2

⌋2

π22γξk−18
=

25∑
k=19

(
1 +

⌊
k

2

⌋2

π2

)
2γξk−18

.

Notice that, for k = 1, . . . , 7, the weights associated to the variogram 2γξk
depends on the frequency associated to ξk, a greater weight being assigned to a
higher frequency.

Figure 2b shows the empirical H1 trace-variograms estimated from the two
datasets. Even if the shapes of the estimates are not completely appreciable
from the Figure, they are very similar, without showing notable differences with
respect to L2 estimates; however the orders of magnitude of the horizontal
asymptotes – twice the sills – are significantly different. Indeed, the different
variances characterizing the two fields appear clearly: the curve corresponding

to 2γ
(2)
H1 (in red) is much higher than the other (in blue), since the energy of the
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random field {χ(2)
s , s ∈ D} is much higher than that of the other. In conclusion,

the example clearly evidences that the choice of the space for the analysis has
to be carefully taken, according to the dataset structure and, above all, to the
purposes of the analysis. Indeed, if the aim of the analysis is purely spatial, then
L2 space is rich enough for exploratory analysis and for kriging prediction. In
other situations, the choice of a Sobolev space might be needed instead. This is
the case of the dynamical system example in Remark 7 of Section 2 or of the
example presented here.

4. Algorithms

Drift estimation In order to compute the Universal Kriging prediction coher-
ently with the established theoretical results, an iterative algorithm is necessary.
Indeed, both the GLS drift estimator m̂GLS

~s and the system (18) depend sub-
stantially on the residual covariance structure, that can be assessed only once an
estimation of the residual process – obtainable by difference from the estimate
m̂GLS
~s – is available.
Therefore we propose to initialize the procedure to the ordinary least squares

(OLS) estimate, computing at each step the residual estimate and the related
trace-(semi)variogram structure, as well as the update of the drift estimate on
the basis of the structure of spatial dependence currently available.

Having reached convergence, proved to be within five iterations by simula-
tions, the final estimate of the (semi)variogram model can be used to solve
the Universal Kriging system (18) – by exploiting (2.2) – deriving the desired
prediction. The described algorithm is summarized in Algorithm 10.

Algorithm 10. Given a realization χ~s = (χs1 , . . . , χsn) of the nonstationary
random field {χs, s ∈ D}, D ⊂ Rd, representable as in (13):

1. Estimate the drift vector m~s through the OLS method (m̂OLS
~s = F~s(FT~s

F~s)−1FT~s χ~s) and set m̂~s := m̂OLS
~s .

2. Compute the residual estimate δ̂~s = (δ̂s1 , . . . , δ̂sn) by difference δ̂~s =
χ~s − m̂~s.

3. Estimate the trace-semivariogram γ(·) of the residual process {δs, s ∈ D}
from δ̂~s first with the empirical estimator (20), then fitting a valid model

γ(·; ϑ̂). Derive from γ(·; ϑ̂) the estimate Σ̂ of Σ.
4. Estimate the drift vector m~s with m̂GLS

~s , obtained from χ~s using (26).
5. Repeat 2.–4. until convergence has been reached.

For computational efficiency reasons, the step 4. can be performed through

the auxiliary uncorrelated vector ̂̃χ~s = L−1χ~s, where L appears in the Cholesky

decomposition Σ̂ = LLT . Indeed, ̂̃χ~s is an estimate of χ̃~s = Σ−1/2χ~s since the
inverse Cholesky factor L−1 provides an estimate of Σ−1/2 (for details see the
proof of Proposition 8 in the Appendix).

Drift model selection Although knowledge of the functions fl, for l =
1, . . . , L (f0(s) = 1 for all s ∈ D), is one of the underlying assumptions for



A Universal Kriging predictor for functional data 2225

the procedure detailed in Algorithm 10, in most applications no ‘a priori’ infor-
mation is available about the family {fl}l=0,...,L = {f0, . . . , fL} (e.g., no scalar
external drift for the observed phenomenon is known). Therefore a model selec-
tion step before the application of Algorithm 10 is needed. In order to handle
the model selection problem, we propose first to choose a number of candidate
regressors families – e.g. the 25 polynomials of order lower than 2 – then to
select the optimal set of regressors with a predictive criterion.

Formally, consider Nf collections of functions fk~l = {fk0 , . . . , fkL}, correspond-

ing to Nf possible drifts mk
s =

∑L
l=0 alf

k
l (s), s ∈ D, k = 1, . . . , Nf . The aim of

the proposed method is the determination of a permutation {(1), . . . , (Nf )} of
the set of indexes {1, . . . , Nf} according to the mean squared error of prediction:

MSEk = E[‖χs − χ∗ks ‖2], k = 1, . . . , Nf .

that can be assessed by a cross-validation (leave-on-out) technique combined
with a Universal Kriging prediction, based on a proper drift estimate. The pro-
posed procedure is summed up in the following Algorithm.

Algorithm 11. Given a realization χs1 , . . . , χsn of the nonstationary random
field {χs, s ∈ D} and Nf collections of functions fk~l = {fk0 , . . . , fkL} (candidate

forms for the drift):

1. Fix a collection fk~l , k = 1, . . . , Nf ;

2. Compute the GLS drift estimate m̂GLS,k
~s , the residual estimate δ̂k~s and the

corresponding trace-semivariogram model γk(·) applying M iterations of
Algorithm 10 (M = 1 for OLS estimate);

3. For each fixed i = 1, . . . , n, predict χsi from χ~s−i = (χsj )j 6=i through the
Universal Kriging predictor χ∗ksi solving (18) with γ = γk and f~l = fk~l ;

4. Compute the sample mean squared error: MSEk = 1
n

∑n
i=1 ‖χsi − χ∗ksi ‖

2;
5. Repeat 1.-4. for every collection fk~l , k = 1, . . . , Nf ;

6. Sort {MSE1, . . . ,MSENf } in increasing order, determining the optimal
permutation {(1), . . . , (Nf )} of {1, . . . , Nf}; order the collections

{fk~l }k=1,...,Nf according to {(1), . . . , (Nf )}, {f (k)
~l
}(k)=1,...,Nf ;

7. For k = 1, . . . , Nf :

a. Check the second-order stationarity of the residual semivariogram model
γ(k)(·) relative to the (k)-th model;

b. If γ(k)(·) proves to be second-order stationary, select the optimal drift
model as:

mopt
s =

L∑
l=0

alf
(k)
l (s), s ∈ D,

and stop the procedure.

Note that step 7. of Algorithm 11 guarantees the stationarity of the resid-
uals and thus ensures that the Universal Kriging hypotheses are fulfilled by
the selected drift model. The residual second-order stationarity can be checked
through the analysis of the residual empirical (semi)variogram with the same
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criteria used in finite-dimensional geostatistics (e.g., presence of a sill close to the
estimated variance and sub-quadratic growth for increasing distances). More-
over the adoption of a predictive criterion contributes to avoid over-fitting: very
complex models are unable to filter the noise in the observed data, therefore
the selection of a too complex drift structure would also catch part of their
stochastic variability, reducing considerably the predictive power of the model.

In order to obtain the final Universal Kriging prediction, Algorithms 10
and 11 need to be combined. Two main choices can be made, according to
computational efficiency or estimation accuracy criteria.

The first possibility is to consider for step 2. of Algorithm 11 the OLS es-
timation method, which actually corresponds to the very first iteration of the
Algorithm 10. By making this choice a three-step procedure is finally obtained:
first drift model selection by Algorithm 11, second GLS estimation by Algo-
rithm 10, finally Universal Kriging prediction. This choice aims mainly in con-
trolling the computational costs, ignoring the possible influences of the drift
estimation method on the prediction (not always negligible).

The second possible choice is the integration of Algorithms 10 and 11, by con-
sidering GLS estimation method during step 2. of Algorithm 11 and then using
the drift estimate of the selected model, available at the end of Algorithm 11,
for Universal Kriging prediction. This choice does not preserve the computa-
tional costs from becoming high in the presence of many candidates families,
but permits to perform a more precise drift model selection, which contributes
to make the kriging prediction more accurate. Moreover, the fairly high speed of
convergence of Algorithms 10 – within 5 iterations in all the simulations – and
the consideration of a moderate number of drift candidates contribute to control
the computational efficiency of the procedure. For these reasons, we make the
latter choice for the case study illustrated in the next section.

We explore the performance of the Algorithms 10 and 11 with an extensive
simulation study presented as supplementary material in (Menafoglio et al.,
2013).

5. A case study: Analysis of Canada’s Maritime Provinces
Temperatures

Analysis of averaged temperatures data The proposed methodology will
be now applied to the Canada’s Maritime Provinces Temperatures dataset
(available in R package geofd (Giraldo et al., 2010b)), that collects daily mean
temperatures data, observed in 35 meteorological stations located in Canada’s
Maritimes Provinces (Figure 3). This region consists of three provinces, Nova
Scotia, New Brunswick and Prince Edward Island, located in the south-eastern
part of Canada (Figure 3, first panel), whose very distinctive feature is the expo-
sition toward the sea: indeed, especially because of the Gulf Stream coming from
the Ocean, the Provinces climate is temperate, characterized by mild winters
and cool summers (Stanley, 2002).

For each sampled site (Figure 3, second panel), identified by geographical
coordinates (longitude, latitude), the original raw data consist of 365 measure-
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Fig 3. Canada’s Maritime Provinces Temperatures dataset, averaged over 1960–1994. From
left to right: map of Canada highlighting the Maritimes region; zoom of Maritime Provinces
and sampled locations; 8 raw data; 8 fitted data.

ments (one per day), obtained by averaging, over the years 1960 to 1994, the
daily mean temperatures recorded by the Meteorological Service of Canada. This
dataset, besides being very similar to the Canadian Weather dataset handled
in (Ramsay and Silverman, 2005), has been analyzed in the literature concern-
ing geostatistical theory for stationary and isotropic functional processes (e.g.,
(Giraldo, 2009; Giraldo et al., 2010a)).

Coherently with previous analyses, the Hilbert space H has been set to be
L2 and raw data (Figure 3, third panel) have been projected on a basis of 65
Fourier function, selected in (Giraldo, 2009) through a non parametric functional
cross-validation procedure (Figure 3, last right panel).

Denote with {χs, s ∈ D ⊂ Rd} the random field of temperature functions and
call D the spatial domain, endowed with the non-Euclidean metric induced by
the geodesic distance that, assuming a spherical approximation for the Earth,
can be explicitly computed as:

dg(s1, s2) = 2Rm arcsin

(√
sin2

(
ζ1 − ζ2

2

)
+ cos(ζ1) cos(ζ2) sin2

(
ϕ1 − ϕ2

2

))
,

(32)
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Fig 4. Estimated trace-semivariograms from data (on the left) and from residuals (on the
right).

where si = (ζi, ϕi), (longitude and latitude) i = 1, 2 e Rm ' 6371 km indicates
the Earth’s mean radius. Although the validity of usual parametric variogram
models is not guaranteed in non-Euclidean spaces (Curriero, 2006), both the
spherical and the exponential models are valid in the spherical geometry (Huang
et al., 2011) and thus can be used in this case.

By a first stationary analysis of the data through the trace-semivariogram
empirical estimate, represented in the left panel of Figure 4, the non-stationarity
of the field is apparent (super-quadratic growth for increasing distances, no
evidence of a sill close to the sample variance of the data). Therefore, we analyze
the data by means of Algorithms 10 and 11, searching the optimal drift model
among polynomials of degree lower than 2.

The linear model singled out by the Algorithm 11 is model 23:

m(s, t) = a0(t)+a1(t)y+a2(t)x2 +a3(t)xy, s = (x, y), t ∈ T = [0, 365], (33)

where the coordinates are identified with latitude and longitude, (x, y) = (ζ, ϕ).
Concerning the residuals structure of spatial dependence, the right panel of
Figure 4 shows that the parametric model that best fits the empirical trace-
semivariogram estimate is a pure-nugget model, meaning that the estimated
residuals are uncorrelated. Therefore, the spatial variability characterizing the
data is mostly explained by the deterministic drift term, while the residuals
do not seem to contribute to the spatial correlation of the stochastic pro-
cess.

In such a case, Universal Kriging predictor reduces to the drift estimate – i.e.
the prediction which would have been obtained via FDA linear models, which
in fact provides the best predictive performance among the functional forms
tested by the Algorithm 11. In particular, it is better performing – in terms of
cross-validation errors – than the Ordinary Kriging predictor (i.e. drift model 1)
computed by using geodesic distance (Table 1, second column), as well as by
using Euclidean distance – adopted in previous works (e.g., (Giraldo et al.,
2010a)) – (Table 1, third column). Indeed, cross-validation statistics obtained
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Table 1
Comparison of cross-validation squared error statistics computed by Universal Kriging

(UKFD), Ordinary Kriging (OKFD, Giraldo et al. (2010a)) – using geodesic and Euclidean
distance. The per cent reduction of UKFD error with respect to OKFD is reported

between brackets

UKFD OKFD OKFD
(Pure nugget; Geod. dist.) (Geod. dist.) (Eucl. dist.)

Median 99.1 (↓ 31%, 32%) 144.3 144.6
Mean (MSE) 155.4 (↓ 8%, 13%) 168.8 179.2
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Fig 5. Canada’s Maritime Provinces Temperatures dataset, year 1980. From left to right:
map of Maritime Provinces and sampled locations; 6 raw data; 6 fitted temperature curves.

with the proposed methodology are improved at least of 8% with respect to the
stationary methods and at least of 13% with respect to the analyses already
presented in the literature1.

The fact that the residuals do not show a non-trivial structure of spatial
dependence might be due to the average over 34 years made on the original
data, which may have masked the small scale variability. For this reason, we will
now apply our methodology to a one-year dataset, collecting the measurements
recorded in the same area, during the year 1980.

Analysis of 1980 temperatures data The dataset analyzed in this sec-
ond part of the case study collects daily mean temperatures recorded, along
the (leap) year 1980, in 27 meteorological stations located in the same region
considered before (Figure 5, left panel). The raw data (Figure 5, central panel),
available on Natural Resources of Canada website (2012), have been projected
as before on a basis of 65 Fourier functions, obtaining the functional dataset
represented in the right panel of Figure 5. Choices for the functional and spatial
metrics have been taken coherently with the previous analysis (H = L2 and
geodesic distance on the spatial domain).

1The codes for computing the stationary predictors are available in geofd R package.
Cross-validation statistics are here computed with respect to fitted data and are thus different
from statistics reported in previous works (e.g., (Giraldo et al., 2010a)), that refer to raw data
instead.
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Fig 6. Estimated trace-semivariograms from data (on the left) and from residuals (on the
right).

Although the empirical trace-semivariogram estimated from the data (Fig-
ure 6, left panel) seems not so far from stationarity, we proceed in applying our
procedure, since among polynomials of degree lower than two also the stationary
model is tested by Algorithm 11. The selected model is model 31:

m(s, t) = a0(t)+a1(t)y+a2(t)x2+a3(t)y2+a4(t)xy, s = (x, y), t ∈ T = [0, 366],

which provided the best cross-validation results.
By observing the residuals trace-semivariogram, a strong correlation among

residuals can be recognized; in particular, the exponential structure appears
suitable for fitting the empirical semivariogram. Therefore, in this case, GLS
method is the most appropriate for estimating the drift, while Universal Kriging
seems the most appropriate method to perform optimal spatial prediction.

Figure 7 shows the contour plots of the GLS drift estimate (upper panels)
and of the Universal Kriging prediction (lower panels), obtained by fixing the
time coordinate t to the Spring Equinox (21st March, first panels), the Summer
Solstice (21st June, second panels), the Autumn Equinox (23rd September, third
panels) and the Winter Solstice (21st December, fourth panels).

The first interesting result to be noticed is the climatical interpretation emerg-
ing from the obtained maps. The exposition of the Maritimes region towards the
sea plays a key role indeed, due to the alternation of Atlantic warm-humid cur-
rents with freezing streams coming from the internal Canadian regions. These
currents circulations significantly influences the temperatures and clearly reflects
on drift contour lines (Figure 7, upper panels) with a clear rotation, which begins
during the springtime and continues until September under the influence of Gulf
Stream from South (third panel). Indeed, the early spring drift map (first panel)
presents colder temperatures in the internal part of New Brunswick, while the
warmer temperatures are recorded in the South; early summer panel (second
panel) presents the opposite spatial behavior instead, featured by a warmer zone
in the continental region and a cooler area along the sea. Moreover, notice the
different rotation speed during the year – much faster in the transition from
spring to summer and from summer to autumn than during the other months –
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Fig 7. Drift estimation and Universal Kriging prediction contour plots for the Spring Equinox
(21st March), to the Summer Solstice (21st June), to the Autumn Equinox (23rd September)
and to the Winter Solstice (21st December).

that reflects the climatical trend in the region, featured by long lasting cold
seasons and shorter warm periods.

Together with the drift rotation speed, the complexity in the spatial behavior
(Figure 7, lower panels) seems to change along the temporal coordinate. Indeed,
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Table 2
Comparison of cross-validation squared error statistics computed by Universal Kriging

(UKFD), and Ordinary Kriging (OKFD) using in both cases geodesic distance. The
reduction of UKFD error with respect to OKFD is reported between brackets

UKFD OKFD
(Geod. dist.) (Geod. dist.)

Median 190.2 (↓ 8%) 205.9
Mean (MSE) 263.5 (↓ 14%) 306.8

Universal Kriging maps relative to colder seasons (first, third and fourth panels)
point out a much stronger influence of the drift component on the prediction
with respect to the summer season (second panel); the latter is featured by very
local structures instead, which seem to be strongly related to the geographical
configuration of the area – notice in particular the low temperature zones marked
off by the Bay of Fundy and by the Atlantic Ocean. The interpretability of our
results supports the conclusions drawn from the simulation study presented in
the supplementary material (Menafoglio et al., 2013): our methodology applied
to real data provides fairly accurate results also locally, although curves are
handled as points of an infinite-dimensional space, under global assumptions.

Besides being climatically interpretable, the obtained results are consistent
with the seasonal reference maps published by Natural Resources Canada, pro-
viding a further validation of the model.

Finally, cross-validation analysis has been performed, comparing non-station-
ary results with those obtained by applying a stationary model. Table 2 reports
cross-validation statistics relative to Universal and Ordinary Kriging, using in
both cases the geodesic distance (first and second column respectively). A sig-
nificant reduction in the prediction error is due to the introduction of the drift
term: indeed, moving from Ordinary to Universal Kriging the error decreases
at least of 8% – if we consider the median value, presenting a 14% reduction in
mean.

Concerning the local errors along the temporal coordinate t, the modeling of a
non-constant spatial mean makes the prediction unbiased and thus prevents the
systematic overestimation or underestimation of the data, which occurs instead
in OKFD prediction, in Bon Accord and Truro respectively (Figure 8a).

Moreover, by considering the spatial distribution of cross-validation errors
(Figure 8b), it clearly appears that the most significant increase of predictive
power is obtained in peripheral zones, in particular Bon Accord (NS) and Truro
(NB) (western part of the maps). This kind of improvement is explained by the
increased flexibility reached through the introduction of a drift term. This drives
the prediction in peripheral areas and allows to reach more extreme predicted
values, above all during the winter season where the drift is more influent on
the prediction. For instance, observe the NW corner of Universal Kriging maps
computed for the 1st January (Figure 9a): with OKFD the most extreme pre-
dicted temperatures are around -9C, while UKFD prediction reaches values
below −16◦ C.
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(a) Cross-validation functional residuals
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Fig 8. Comparison of cross-validation results for Universal Kriging and Ordinary Kriging,
using in both cases the geodesic distance. In Subfigure (a): functional residuals for the 27
locations (grey lines) highlighting Bon Accord (NS) (green line) and Truro (NB) (blue line).
In Subfigure (b): squared errors map; the dimension of the points is proportional to the cross-
validation squared error; Bon Accord (NS) (green points) and Truro (NB) (blue points) are
marked in the western part of the maps.

On the other hand, the additional flexibility obtained by introducing the drift
term contributes to mitigate the smoothing effect of kriging; this reflects on a
very accurate local prediction that reproduces the local structures much better
than the Ordinary Kriging interpolation. For example, look at the local struc-
tures that arise during the summer period between the Bay of Fundy and the
Atlantic Ocean in Figure 9b: they are very well reproduced by UKFD prediction,
while they are severely smoothed in the OKFD interpolation.

Therefore, the non-stationary prediction, obtained by applying our proce-
dure, proves to be much more satisfactory than the stationary interpolations
in terms both of global prediction error as well as of local behavior: Univer-
sal Kriging prediction is precise and flexible, besides being simple and easy to
compute.
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Fig 9. Comparison of the results obtained with Universal Kriging and Ordinary Kriging,
using in both cases the geodesic distance. Upper panels show contours maps, lower panels
represent the associated 3D plots.
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6. Conclusions and further research

In this work, a new kriging methodology for non-stationary spatially depen-
dent functional data has been developed. On one hand, the theoretical effort
has been spent for the formulation of a coherent framework, based on minimal
assumptions. On the other hand, the developed algorithms aimed at making
our theoretical results applicable on real data, through reliable and efficient
procedures.

The development of inferential tools for spatially dependent functional data
is still one of the most challenging topic to be addressed: the significance of
regressors coefficients should be tested during drift model selection and krig-
ing confidence bands should be provided together with point-wise prediction.
To this end, a possible immediate perspective is given by the extension to the
georeferenced functional case of non-parametric resampling methods like the
bootstrap – e.g., (Efron and Tibshirani, 1993) and more recently, in the field of
FDA, (Ferraty et al., 2010), which would allow to avoid distributional assump-
tions by means of a computer-intensive technique.

Developing statistical models and inferential procedures for general Hilbert
spaces, instead of working out ad hoc techniques for the L2 space, opens broad
perspectives of research: indeed, it may allow the integration of the kriging
methodology, which is in fact an interpolation technique, with the physical
model underlying the observed phenomenon. In this direction, more complex
linear models (e.g., FDA Total Model (Ramsay and Silverman, 2005)) would
be worth investigating in order to model more precisely the drift term, possibly
including more complex regressors which might influence or drive the physical
system.

7. Appendix: Proofs

Proof of Proposition 8. Consider the auxiliary optimal problem:

min
â~l∈HL+1

Φ̃OLS(â~l) (34)

where:
Φ̃OLS(â~l) = ‖χ̃~s − F̃~sâ~l‖

2
Hn , (35)

with χ̃~s = Σ−1/2χ~s, whose components are uncorrelated, and F̃~s = Σ−1/2F~s.
It is easily seen the equivalence of the estimation problems (23) and (34), as

ΦGLS(â~l) = Φ̃OLS(â~l).

Assume that Σ is known and denote with Ṽ the closed subspace of Hn

generated by linear combination of F̃~s columns with coefficients in H and let
Ṽ ⊥ be its orthogonal complement:

Ṽ = {ṽ ∈ Hn : ṽ = F̃~sa~l, a~l ∈ H
L}, (36)

Ṽ ⊥ = {w̃ ∈ Hn : 〈w̃, ṽ〉Hn = 0, ∀ṽ ∈ Ṽ }. (37)
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The estimator ̂̃m~s = F̃~sâ~l of m̃~s – mean vector of χ̃~s – minimizing Φ̃OLS is the

projection of χ̃~s on Ṽ , while the residual vector
̂̃
δ~s = χ̃~s− ̂̃m~s is the projection

of χ̃~s on Ṽ ⊥:

̂̃m~s = PṼ χ̃~s (38)̂̃
δ~s = PṼ ⊥χ̃~s (39)

If rank(F~s) = L+ 1 and rank(Σ) = n, then rank(F̃~s) = L+ 1, which ensures
the existence and uniqueness of the projections (38) and (39).

Moreover, the projection (38) can be explicitly computed pre-multiplying χ̃~s
by the orthogonal projection matrix H̃ = F̃~s(F̃T~s F̃~s)

−1F̃T~s , deriving directly the
following linear expressions:

âGLS~l
= (F̃T~s F̃~s)

−1F̃T~s χ̃~s;̂̃m~s = H̃χ̃~s = F̃~s(F̃T~s F̃~s)
−1F̃T~s χ̃~s. (40)

Applying the inverse transformation, expressions (25) and (26) can be finally
obtained.

Proof of Proposition 9. Let â~l be a generic linear estimator of the coefficients a~l:

â~l = Aχ~s + b, (41)

with A ∈ RL+1,n, b ∈ HL+1. The unbiasedness condition translates into the
constraints:

AF~s = In (42)

b = 0, a.e. (43)

where In is the identity matrix in Rn, 0 ∈ HL+1 is the vector of L+1 identically
zero functions.

By definition of optimality of âBLUE
~l

, for every other linear unbiased estima-
tor â~l, the matrix:

Cov(â~l)− Cov(âBLUE
~l

),

is positive semi-definite, or equivalently:

xT (Cov(â~l)− Cov(âBLUE
~l

))x ≥ 0, ∀x ∈ Rn.

For a generic linear estimator (41), under the unbiasedness constraints (43),
the variance-covariance matrix is:

Cov(â~l) = AΣAT ;

and, by the inequality (Shumway and Dean, 1968):

αC−1αT ≥ αD(DTCD)−1DTαT ,
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that holds for C ∈ Rn,n semidefinite positive, D ∈ Rn,L+1 and α ∈ Rn, a lower
bound for xT Cov(â~l)x can be obtained by setting C = Σ−1, α = xTA and
D = F~s:

xTAΣATx ≥ xTAF~s(FT~sΣ−1F~s)−1FT~sA
Tx, ∀x ∈ Rn.

The lower bound is reached for:

ABLUE = (FT~sΣ−1F~s)−1FT~sΣ−1.

Hence, the optimal linear estimator is:

âBLUE
~l

= (FT~sΣ−1F~s)−1FT~sΣ−1χ~s ≡ â
GLS
~l

,

that in particular minimizes the mean square errors MSEl simultaneously for
every l = 0, . . . , L:

MSEl = E[‖âl − al‖2] = (AΣAT )ll,

subject to the unbiasedness constraints (42) and (43).
As a consequence, by linearity, m̂~s is the BLUE for the drift.

Proof of decomposition of variance (29). Let ΣGLS be the n×n covariance ma-

trix of the estimator δ̂~s, ΣGLS = E[δ̂~sδ̂
T

~s ] and consider the following matrix
notations:

ggT = (〈gi, gj〉), g = (g1, . . . , gn) ∈ Hn

E[A] = (E[Aij ]), A = (Aij) ∈ Rn,

Then:

Σ := Cov(χ~s) = E[(χ~s −m~s)(χ~s −m~s)
T ]

= E[Σ1/2(χ̃~s − m̃~s)(χ̃~s − m̃~s)
T (Σ1/2)T ]

= E[Σ1/2(χ̃~s ± ̂̃m~s − m̃~s)(χ̃~s ± ̂̃m~s − m̃~s)
T (Σ1/2)T ]

= Σ1/2E[(χ̃~s − ̂̃m~s)(χ̃~s − ̂̃m~s)
T + (̂̃m~s − m̃~s)(

̂̃m~s − m̃~s)
T ](Σ1/2)T

= E[Σ1/2(χ̃~s − ̂̃m~s)(χ̃~s − ̂̃m~s)
T (Σ1/2)T ]

+ E[Σ1/2(̂̃m~s − m̃~s)(
̂̃m~s − m̃~s)

T (Σ1/2)T ]

= E[(χ~s − m̂~s)(χ~s − m̂~s)
T ] + E[(m̂~s −m~s)(m̂~s −m~s)

T ]

= E[δ̂~sδ̂
T

~s ] + E[(m̂~s −m~s)(m̂~s −m~s)
T ]

= ΣGLS + Cov(m̂~s),

where the third equality holds because:

E[(χ̃~s − ̂̃m~s)( ̂̃m~s − m̃~s)
T ]

= E[(I− F̃~s(F̃T~s F̃~s)
−1F̃T~s )χ̃~sχ̃

T
~s F̃~s(F̃T~s F̃~s)

−1F̃T~s ] + E[(χ̃~s − ̂̃m~s)(m̃~s)
T ]

= (I− F̃~s(F̃T~s F̃~s)
−1F̃T~s )F̃~s(F̃T~s F̃~s)

−1F̃T~s − (m̃~s − m̃~s)(m̃~s)
T = (0)
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Supplementary Material

Simulation Study
(doi: 10.1214/13-EJS843SUPP; .pdf). In this supplement, the performance of
Algorithms 10 and 11 is tested through an extended simulation study.
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Volume 2, pp. 805–816. Kluwer Academic, Dordrecht.

Gromenko, O., Kokoszka, P., Zhu, L., and Sojka, J. (2012). Estimation
and testing for spatially indexed curves with application to ionospheric and
magnetic field trends. Annals of Applied Statistics 6 (2), 669–696. MR2976487
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