
HAL Id: hal-02993015
https://hal.inria.fr/hal-02993015v2

Submitted on 28 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated prioritizing heuristics for parallel task graph
scheduling in heterogeneous computing

Clément Flint, Bérenger Bramas, Ludovic Paillat

To cite this version:
Clément Flint, Bérenger Bramas, Ludovic Paillat. Automated prioritizing heuristics for parallel task
graph scheduling in heterogeneous computing. PeerJ Computer Science, 2022. �hal-02993015v2�

https://hal.inria.fr/hal-02993015v2
https://hal.archives-ouvertes.fr

Automated prioritizing heuristics for
parallel task graph scheduling in
heterogeneous computing
Clément Flint1,2,3, Ludovic Paillat1,2,3 and Bérenger Bramas1,2,3

1 ICPS Team, ICube Laboratory, Illkirch Graffenstaden, Grand Est, France
2 CAMUS Team, Inria Nancy, Nancy, Grand Est, France
3Department of Mathematics and Computer Science, University of Strasbourg, Strasbourg, Grand
Est, France

ABSTRACT
High-performance computing (HPC) relies increasingly on heterogeneous hardware
and especially on the combination of central and graphical processing units. The
task-based method has demonstrated promising potential for parallelizing
applications on such computing nodes. With this approach, the scheduling strategy
becomes a critical layer that describes where and when the ready-tasks should be
executed among the processing units. In this study, we describe a heuristic-based
approach that assigns priorities to each task type. We rely on a fitness score for each
task/worker combination for generating priorities and use these for configuring the
Heteroprio scheduler automatically within the StarPU runtime system. We evaluate
our method’s theoretical performance on emulated executions and its real-case
performance on multiple different HPC applications. We show that our approach is
usually equivalent or faster than expert-defined priorities.

Subjects Distributed and Parallel Computing, Scientific Computing and Simulation
Keywords StarPU,Heteroprio, High performance computing, Heterogeneous scheduling, Runtime
system, Parallel computing, Multicore architecture

INTRODUCTION
Heterogeneous computing refers to the use of different kinds of processing units within a
node. This type of hardware is widespread in the the high-performance computing (HPC)
world and equips several of the fastest supercomputers, such as Summit which is ranked
second in 2021 according to TOP500 (Hans et al., 2021). Among these, most heterogeneous
systems are composed of central processing units (CPUs) and graphical processing units
(GPUs). Developing efficient applications for this type of node is challenging because it
requires managing the memory transfers and the load balancing between the processing
units. Thus, the HPC community invested much effort into designing programming models
to relieve the developers from managing these complex issues.

The task-based model has demonstrated high potential in various fields (Agullo et al.,
2014, 2015a; Carpaye, Roman & Brenner, 2018). In this method, an algorithm is divided
into tasks and data accesses from which a directed acyclic graph (DAG) is deduced. The
nodes in this DAG represent tasks, and the edges represent their dependencies. The
runtime system is in charge of abstracting the machinery and ensures a coherent parallel
execution of these DAGs. Two examples of runtime systems which handle heterogeneous

How to cite this article Flint C, Paillat L, Bramas B. 2022. Automated prioritizing heuristics for parallel task graph scheduling in
heterogeneous computing. PeerJ Comput. Sci. 8:e969 DOI 10.7717/peerj-cs.969

Submitted 15 October 2021
Accepted 11 April 2022
Published 16 September 2022

Corresponding author
Clément Flint, clement.flint@inria.fr

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 30

DOI 10.7717/peerj-cs.969

Copyright
2022 Flint et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.969
mailto:clement.�flint@�inria.�fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.969
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

workloads are Parsec (Bosilca et al., 2013) and StarPU (Augonnet et al., 2011), In this
paradigm, the scheduler decides which worker executes which ready-task. Heteroprio
(Agullo et al., 2016) is a scheduler that is implemented in StarPU. It has been designed for
heterogeneous machines and is used by several applications where it provides significant
improvements (Agullo et al., 2015b; Lopez & Duff, 2018). However, users must tune
Heteroprio by providing priorities for the different types of tasks that exist in their
applications. Heteroprio, consequently, requires more programming effort from the user
compared to most schedulers. It also relies on costly benchmarks or on correct
programmer intuition about task priorities. In both cases, the choice of priorities can lead
to inefficient scheduling decisions. Finally, the definition of static priorities prevents any
dynamic adaptation throughout the execution.

In this study, we aim to create a method that automatically computes efficient priorities
for Heteroprio. The main focus here lies in the automation of Heteroprio. Achieving high-
performance is a secondary objective. We propose different heuristics that provide a fitness
score for each combination task type/processing unit. These scores allow us to deduce the
priorities by sorting each processing unit and the task types by descending score. The
contributions of this study are as follows:

� we describe different heuristics that lead to efficient priorities;

� we define a new methodology for configuring the Heteroprio scheduler automatically
according to these automatic priorities;

� we evaluate our approach on a wide range of graphs using emulated executions;

� we validate our concept in StarPU by running existing task-based scientific applications
with our new automatic scheduler.

These contributions lead to a new version of Heteroprio in StarPU referred to as
AutoHeteroprio. AutoHeteroprio can be considered as a fully automatic scheduler,
whereas Heteroprio is semi-automatic. Moreover, we show that using the fully automatic
version does not induce significant slowdowns and may sometimes lead to speedups.

The article is organized as follows. In “Background”, the background and prerequisite
are described. We define the problem of task scheduling, we present related works, we
introduce Heteroprio and we formalize the problem we target in our study. In “Heuristics
for automatic configuration”, we present various heuristics and implementation details.
Finally, in “Performance study”, the evaluation of the performance of the approach is
presented.

BACKGROUND
Scheduling problem
The objective of the task graph scheduling problem is usually to minimize the overall
program finish time (i.e., makespan). This finish time depends on the sequence in which
the tasks are executed and on their affectation to a processor type (Kwok & Ahmad, 1999).
There are variations of the finish time objective. For example, some research aims at
reducing the mean finish time (MFT), also known as the mean time of a system or the

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 2/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

mean flow time, which is the average finish time of all of the tasks executed (Bruno,
Coffman & Sethi, 1974; Leung & Young, 1989). The MFT criterion tends to minimize the
memory required to hold the incomplete tasks. Some works aim at improving other
metrics, such as energy consumption (Zhou et al., 2016). The overall finish time, however,
remains the most often used metric in scheduling and this is why we use it for measuring
performance.

Related work
In the context of heterogeneous computing, it has been proven that finding an optimal
schedule is NP-complete in the general case (Brucker & Knust, 2009). Therefore, the
research community has proposed various schemes whose goals are to obtain efficient
executions. There are two typical ways of performing scheduling: statically or dynamically.
In static scheduling, the decisions are computed before the execution, whereas in dynamic
scheduling, the scheduler takes decisions throughout the execution of the application.
There can be different degrees of static and dynamic scheduling, and some studies describe
hybrid static/dynamic strategies (Donfack et al., 2011).

Yu-Kwong & Ahmad (1996) presented a static scheduling which distributes the
workload on fully connected multiprocessors. This algorithm is known as the dynamic
critical-path scheduling algorithm and relies on the computation of a critical path. In
practice, the high-performance community tends towards dynamic rather than static
scheduling. One of the reasons for this is that some complex dependencies cannot be
represented by a DAG. This algorithm can, therefore, not be used to its full potential in
most modern applications. Topcuoglu, Hariri & Min-You (2002) presented the
Heterogeneous Earliest-Finish-Time (HEFT) and the CPOP algorithms. HEFT relies on
the computation of the earliest finish time (EFT). It prioritizes tasks that minimize the
EFT. The critical path on processor algorithm differs from HEFT in the manner it
computes the critical paths for each processor, which lets it estimate communication costs
and takes them into account for its scheduling. HEFT has become a widespread algorithm
and is implemented in most execution engines. The original implementation of this
scheduler, however, needs to analyze the task graph in its entirety. This results in a
significant overhead that increases as the graph grows in size. Khan (2012) introduced the
constrained earliest finish time (CEFT) algorithm. This method adds the concept of
constrained critical paths (CCPs), which are small task windows representing ready tasks
at one instance. The CEFT algorithm usually performs better than the original HEFT
algorithm but has the same major bottlenecks. Jiang, Shao & Guo (2014) explored the
possibility of using Tuple-Based Chemical Reaction Optimization to perform scheduling.
Their implementation typically produces results comparable to those of HEFT. Choi et al.
(2013) proposed a dynamic scheduling that relies on a history-based Estimated-Execution-
Time (EET) for each task. The idea of this algorithm is to schedule each task on its
fastest architecture. In some cases, the scheduler ignores this rule and executes a task on a
slower processor (e.g., in the case of work starvation for a worker type). Xu et al. (2014)
introduced an efficient genetic algorithm for heterogeneous scheduling. This algorithm
achieves performance comparable to HEFT variants and CPOP on their test cases. The

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 3/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

drawback of current state-of-the-art genetic-based schedulers is that they typically require
large-sized DAGs or may require multiple repeats to reach their full efficiency.Wen, Wang
& O’Boyle (2014) computed the relative CPU and GPU speedups and directly use this
metric to compute the priority of the tasks. This approach is notably efficient when data
transfers are low. There are, however, cases where the speedup predictor is not sufficient
for performing efficient scheduling. Luo et al. (2021) used a specific graph convolutional
network to analyze the DAG and infer the probability of executing each task. Additionally,
multiple agents are used for defining the scheduling strategy. A reinforcement learning
algorithm improves these agents over the execution period. This method does produce
efficient scheduling in simulators, but it is unlikely to be applicable in real-time executions.
We refer to the works of Maurya & Tripathi (2018) and Beaumont et al. (2020) which
provide surveys of several classical schedulers.

Heteroprio overview

The Heteroprio scheduler has been developed for optimizing the fast multipole method
and is implemented in StarPU (Bramas, 2016; Agullo et al., 2016; Augonnet et al., 2011).
StarPU is designed such that the scheduler is a distinct component that a user can
change or customize. StarPU schedulers rely on two mechanisms known as push-task
and pop-task. The push-task is called when a task becomes ready (i.e., when all its
dependencies are satisfied). The workers indirectly provoke this call at the end of the
execution of a task, if it does allow a new task to be executed. A worker calls the pop
function when it fetches a task. This happens either because it has just finished executing a
task or after it has been idle for a certain amount of time. Thus, in StarPU, the behavior of a
scheduler can be summarized by its push and pop mechanisms.

Heteroprio uses multiple lists of buckets. Each bucket is a first in, first out (FIFO) queue
of tasks. When a task becomes available, it is pushed to a bucket. The target bucket is set by
the user when submitting the task. There is typically one bucket per task type but the user
can choose to group the tasks as they wish. Besides, each architecture has a priority list
that represents the order in which the corresponding workers access the buckets. When a
worker becomes available, it iterates over the buckets using the priority list and picks a task
from the first non-empty bucket it finds. Therefore, these lists define which tasks are
favored by a particular architecture. The user must fill them before the beginning of the
parallel execution. Figure 1 schematizes how the workers select their tasks in Heteroprio.
For the sake of simplicity, the CPU and GPU priorities are mirrored, but this is not
necessarily the case: we can apply any permutation to the priority list of a processor type.

We provide a detailed example of an execution with Heteroprio in the “Heteroprio
execution example”. In 2019, an enhancement has been brought to Heteroprio to take into
account the data locality (Bramas, 2019). The original version treats all workers of the same
type exactly equally, which completely discards memory management and can lead to
massive and sometimes avoidable data movement. In the new version of Heteroprio,
known as LaHeteroprio, workers select their tasks not only depending on their position in
the FIFO list of the buckets but also depending on their memory affinity with the tasks. The
affinity is computed thanks to multiple heuristics that the user can choose.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 4/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Formalization
General scheduling problem
The scheduling problem is usually defined as follows. Let us consider an application that
has a matching DAG referred to as G = (V, E), where V are the v nodes and E are the edges.
Each node represents a task, and each edge represents a dependency between two
tasks. We define Q as the set of q processors and W as the computation cost matrix.
The nodes (tasks) are referred to as vi, where i can range from 1 to v. The processors are
referred to as pj, where j can range from 1 to q. This computation cost matrix is of size v × q
and wi,j represents the cost of executing task vi on processor pj. The cost can be any metric
that we seek to minimize. In our case, it is the execution time of a task.

To take data transfers into account, we can add the following definitions. The Data
matrix represents the required data transfers. Datai,k is the amount of data that needs to be
transferred from the processor that executes vi to the processor that executes vk. The B
matrix defines the transfer rates between processors: Bi,k is the transfer rate between pi and
pk. The L vector represents the communication startup cost of each processor. Hence, the
model allows us to define the communication cost of one edge (i, k):

ci;k ¼ Lm þ Datai;k
Bm;n

; (1)

where m and n represent, respectively, the chosen processor for vi and vk.
To provide a formal definition of the makespan, we introduce the Actual Start Time,

and the Actual Finish Time (AST, and AFT). The AFT of a task vi is defined by AFT(vi) =
AST(vi) + wi,j (where pj is the chosen processor for task vi). The AST of a task vi is defined
as follows:

ASTðviÞ ¼ maxvj2predðviÞðAFTðvjÞ þ cj;iÞ; (2)

where pred(vi) is the set of predecessors of vi. This formula expresses that the task vi starts
as soon as possible, but after all the transfers have been completed. The memory transfers
can be ignored by removing the cj,i term.

Figure 1 Schema of the principle of Heteroprio. The CPU workers iterate on buckets 1, then 2, and
finally 3. The GPU workers iterate the other way around in this example.

Full-size DOI: 10.7717/peerj-cs.969/fig-1

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 5/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-1
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

The schedule length (or makespan) is defined as the finish time of the last task:

makespan ¼ max
vi2V

ðAFTðviÞÞ: (3)

We define this makespan as our objective and aim to minimize it. The formalization
we provide in this section is general and applicable to most scheduling situations. In the
next section, we define additional notations and constraints that relate to the use of
Heteroprio.

Heteroprio automatic configuration problem

In this section, we present additional definitions that are needed for the specific Heteroprio
scheduling problem. We define a set of b buckets referred to as bi, where i can range
from 1 to b. The concept of bucket is explained in “Heteroprio overview”. A solution is
defined by a matrix S, where Si,j is the priority of task vi on processor pj. When a task is
affected to a processor pj, it has to be the one with the highest priority in the S matrix for
pj over all the tasks that are ready to be executed. We assume that a single bucket is
assigned to each type of task. As explained in “Heteroprio overview”, this is not necessarily
the case. The number of task types is expected to be significantly smaller than the total
number of tasks. Thanks to this, our algorithms have complexity tied to q or b (rather
than v) and run fast in practice. This can be illustrated by comparing the possible
Heteroprio schedules against all the possible schedules. Consider a graph of 32 tasks with
no edges (no dependencies), two different types (A and B), and one processor. As only the

execution order of the tasks can change, there are
32
1

� �
¼ 32! � 2:63 � 1035 possible

schedules. The scheduling decisions that Heteroprio can take depend on the matrix S,
which has only two possible configurations in this case: one where A has the highest
priority and one where it is B. In every situation, Heteroprio has always exactly (b!)q

possible schedules, where b is the number of different task types, which is assumed to equal
the number of buckets. As Heteroprio is designed to handle two processor types, we can
simplify some notations. If arch refers to the CPU, arch refers to the GPU and vice versa. It
should be noted, however, that the heuristics have been generalized to more than two
processing unit types. Additionally, warch

i refers to the estimated cost of executing vi on
processor arch. Finally, the presented model does not take into account memory transfers,
as they are only to a small degree taken into account in Heteroprio.

HEURISTICS FOR AUTOMATIC CONFIGURATION
In this section, we first detail the metrics that we use as a basis for our heuristics (Relevant
metrics). The heuristics are described in a second step in “Heuristics for task prioritizing”.

Relevant metrics
We recall that we do not try to obtain priorities for each task but for each type of task.
Consequently, when the number of predecessors, the number of successors, or the
execution time are required, the average of all tasks of the same type is used. We also

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 6/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

emphasize that these metrics are not the heuristics, but rather the values that are fed to the
heuristics. These only aim at giving a quantitative input to the heuristics.

CPU-GPU execution time difference

The CPU-GPU execution time difference can be expressed either as a relative or an
absolute difference.

We use the following notations when referring to these metrics:

diffarchðviÞ ¼ warch
i � warch

i ; (4)

rel diffarchðviÞ ¼ warch
i

warch
i

; (5)

where warch
i is the cost of vi on arch.

The idea of using these metrics is to be able to favor the most efficient architecture.
Although the two metrics aim at measuring the same effect, they are not equivalent, as
explained in the following example.

Let us consider the costs of two tasks on two architectures of Table 1. The question is
which task type should a CPU worker favor. Here, we consider that both types of
processors can execute tasks of types A and B. The relative difference would suggest
executing B is a better choice, as its relative difference is higher (the CPU is 10 times faster).
However, the absolute difference would suggest that A is a better choice, as it saves 30 s
instead of 9 s.

The absolute and relative differences can, therefore, induce different scheduling choices.

Normalized out-degree (NOD)
The normalized out-degree formula (Lin et al., 2019) is given by:

NODðviÞ ¼
X

vj2succðviÞ

1
IDðvjÞÞ ; (6)

where ID(vj)) is the inner degree of task vj (i.e., its number of predecessors). This metric
gives an indication about how many tasks can be expected to be released. In this view,
it would mean that releasing 1

IDðvjÞÞ of a task vj is as if it is partially released, at a proportion
of 1

IDðvjÞÞ. For example, releasing two tasks at a “ratio” of 12 can be viewed as being equivalent

Table 1 Example of tasks costs and time differences for two types of tasks and two types of
processors.

Task Worker A B

CPU 100 s 1 s

GPU 130 s 10 s

Relative difference (wGPU
i =wCPU

i) ×1.3 ×10

Absolute difference (wGPU
i � wCPU

i) 30 s 9 s

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 7/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

to releasing 10 tasks at a ratio of 1
10. This obscures the combinatorial nature of task-based

execution but is a useful tool for guiding heuristics.
However, the NOD does not take into account the type of the tasks that will be released,

which is critical in some cases. For example, in a case where we lack GPU jobs (starvation),
the released GPU work is more beneficial than the released CPU work.

Normalized released time (NRT)
We introduce the normalized released time (NRT). This metric is derived from the NOD
and given by:

NRTarchðviÞ ¼
X

vj2succðviÞ

Pexecðvj; archÞ � warch
j

IDðvjÞÞ ; (7)

where Pexec(vj, arch) is the probability that vj is executed on architecture arch. This
probability is not known during an execution. We instead measure the processor execution
proportion of each task type during the execution and use this proportion as an
approximation of the probability in our formula.

This formula is more refined than the first NOD formula for two reasons. Firstly, it takes
into account the cost of the potential released successors. It is presumably better to
release N tasks with a cost of 10 s, than N tasks of 1 s because it may release a higher
workload. Secondly, CPU and GPU execution times are differentiated. This difference is
crucial in a heterogeneous system. Having an NRT formula for both CPU and GPU gives
information about where the released work is likely to be executed.

Useful released time (URT)

We extend the normalized released time to define the useful released time given by:

URTðviÞ ¼ NRTCPUðviÞ � IDLEðCPUÞ þ NRTGPUðviÞ � IDLEðGPUÞ; (8)

where IDLE(arch) is the idle proportion of arch workers over all the execution. The URT
represents how much useful time will be released after a task has finished its execution.
The useful time is defined as the amount of released work that could help feeding the
starving processors. This useful released time is estimated by scaling the released work
(NRT) of each architecture to the idle proportion of the corresponding architecture. It is
implied that the idle proportion is a relevant way of quantifying how much a processor is
starving.

Heuristics for task prioritizing
In this section, we present six heuristics: PRWS, PURWS, offset model, softplus model,
interpolation model, and NOD-time combination1.

Parallel released work per second
In a typical scenario, tasks with high NOD scores should be encouraged to be executed
as soon as possible, since they tend to release new tasks in the long run. In both theoretical
and practical scenarios, however, using NOD alone as a score does not produce

1 Other heuristics are presented in a
research report (Flint & Bramas, 2020).

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 8/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

efficient priorities. Indeed, a task can have numerous successors (high NOD) but of
low cost. If the costs of the successors are low, the newly released workload will also be low.

To take this effect into account, we introduce a new variable that is designed to
give information about the quality of the released tasks. The idea is to keep a high
degree of parallelism. This variable is the sum of the execution times of the successors of a
task on their best architecture. With this variable we create the formula for the PRWS
heuristic:

PRWSarchðviÞ ¼ NODðviÞ
warch
i

�
X

vj2succðviÞ
min
arch2Q

ðwarch
j Þ

0
@

1
Aþ diffarchðviÞ (9)

Dividing by the cost of the task lets us measure the “releasing speed” (the released work
comes at the cost of executing vi). Adding diffarch(vi) to the sum helps favoring the best
architecture. To improve the work balance between the CPUs and the GPUs, the URT
metric can be used instead of the NOD. The Eq. (9) becomes:

PURWSarchðviÞ ¼ URTðviÞ
warch
i

�
X

vj2succðviÞ
min
arch2Q

ðwarch
j Þ

0
@

1
Aþ diffarchðviÞ: (10)

Offset model
The offset model has a score that is defined by the following formula:

offset modelarchðviÞ ¼ ðURTðviÞ þ aÞ � ðdiffarchðviÞ þ bÞ: (11)

In this model, the score is computed by multiplying URT(vi) and diffarch(vi). α and β are
two hyperparameters that control the displacement for each of the two values. For
example, if α = 0 and β = 0, then tasks that have a URT of 0 and those that have a diff of 0
would have the same score (0), implying that they are equivalent in terms of criticality. The
default values for α and β are 1.3 and 1. This model has the downside of requiring two
hyperparameters. Moreover, it is unable to distinguish between tasks when their diff equals
− β, even if their URT are different.

Softplus model
The softplus model is given by the formula:

softplus modelarchðviÞ ¼ ð1þ URTðviÞÞ � lnð1þ ediffarchðviÞÞ (12)

The idea of this model is comparable to that of the offset model but uses the softplus
function (softplus(x) = ln(1 + ex)). In contrary to the offset model, we multiply by softplus
(diffarch(vi)) rather than by diffarch(vi) directly. The softplus mostly changes the behavior
of the heuristic when the diff is negative or around zero. This tends to negate the impact of
diff when it tends towards zero.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 9/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Interpolation model
The interpolation model combines the two previous models. When the URT approaches
zero, it tends towards the offset model. It behaves more like the softplus model as the URT
grows. It is given by:

interpolation modelarchðviÞ ¼
rpgðURTðviÞÞ � ð1þ URTðviÞÞ � ð1þ archðviÞÞ
þð1� rpgðURTðviÞÞÞ � ðð�logð1þ expð�archDiff ÞÞÞÞ;

(13)

where the interpolation is defined by the rpg function as follows:

rpgðxÞ ¼ 1 if x � 1ffiffiffi
x

p � ffiffiffiffiffiffiffiffiffiffiffi
2� x

p
otherwise

�
(14)

This model aims at improving the two previous ones. We assume that the offset
model gives particularly good priorities when URT is low and conversely for the softplus
model. The idea is to perform an interpolation between the two models depending on the
URT value and is controlled by the rpg function. rpg(URT(vi)) ∈ [0,1] because the URT
is always positive. WhenURT(vi) = 0, the interpolation model behaves like the offset model
(with α = 1 and β = 1). When URT(vi) ≥ 1, it behaves like the softplus model, but without
the (1 + URT(vi)) term.

NOD-time combination
The NOD-time combination (NTC) heuristic is defined by the following formula:

NTCarchðviÞ ¼ diffarch þ a � NODðviÞ � e�b�max rel diff 2 (15)

where

max rel diff ¼ maxðrel diffarchðviÞ; 1=rel diffarchðviÞÞ (16)

This equation needs two hyperparameters a and b. This heuristic aims at diminishing
the importance of the NOD as the relative cost difference increases. α controls the
importance of the NOD, compared to that of the diff, while β controls the range in which
the NOD is taken into account. If rel_diffarch(vi) is too high, the exponential is negated and
the score equals diffarch. The default value of α and β are 0.3 and 0.5.

Notes concerning the implementation in StarPU
Cost normalization
If all the costs of the nodes of a DAG are scaled by a factor α, the heuristics should give the
same priorities. This would not be the case if we directly input the raw task costs. We,
therefore, choose to normalize the costs of the task types.

Normalizing a set of heterogeneous costs is not straightforward. We propose the
following normalization formula:

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 10/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

zi;j ¼ v � wi;jP
0�i<v min

0�j<q
ðwi;jÞ ; (17)

where zi,j is the normalized cost.
This formula normalizes the costs so that the average cost of a task on its best

architecture equals 1. This method relies on the assumption that tasks are usually executed
on their best architecture. This assumption, however, is disputable in some scenarios.

Execution time prediction
The heuristics presented in this study rely on the execution times of the tasks. We consider
that every task of a certain type has the same execution time. In practice, however,
tasks of the same type can have radically different costs. Since the tasks have not been
computed at the time they are pushed in the scheduler, we need to estimate their duration
in real-time. We choose to approximate the cost of a task group by taking the average
effective execution time of previous tasks of the corresponding type. If a task has never
been executed on an architecture, we have no precise estimation of its execution time. We,
therefore, implement two behaviors:

� the estimation is set to a default value of 100,000 s (default behavior);

� if an estimation exists on another processor, we take the fastest estimation, else we take
100,000 s.

This solution is imperfect, in particular when their execution times are dispersed. In this
case, the scores given by the heuristics may translate into inefficient priorities. We assume
that in most cases, taking the average execution time is sufficient for generating reliable
priorities.

Task-graph
In this model, we consider that the applications are converted into a task graph which is a
DAG. Most memory access types (READ, WRITE, READ-WRITE) can be translated in a
dependency in a DAG. Some accesses, however, cannot be transcribed in terms of
direct static dependencies. For example, StarPU has a memory access type known as
STARPU_COMMUTE which is used when several contiguous (READ-)WRITE accesses
can be performed in any order but not at the same time. A simplistic use case of this would
be when the tasks increment a shared counter. This access mode has been used in
mathematical applications, e.g., for an optimized discontinuous Galerkin solver or the fast
multipole method (Agullo et al., 2017; Bramas et al., 2020). For this type of access, we can
reason in terms of availability rather than dependency: (1) if no task is commuting on
the data, any task can take the memory node, and (2) if one task is commuting, the
memory node is blocked. Thus, the heuristics cannot use all the information they have on
applications that use these relatively uncommon memory access types. In practice, in the
presented heuristics, these accesses are treated as write accesses.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 11/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Heteroprio automatic configuration
In our implementation, we update the priority lists in the scheduler only when a task is
pushed in the scheduler. More precisely, the priorities are updated the first time a task
is pushed (the first time the scheduler discovers a new type of task), and then every nth

pushed task. This choice avoids updating the priorities too often and should, therefore,
help reduce the scheduling overhead.

PERFORMANCE STUDY
Evaluation based on emulated executions
We create a simple simulator for running a fake StarPU execution. As input, it takes
the fake DAG of an application, the costs of the tasks, and the priority lists. It then
simulates an execution with the Heteroprio scheduler based on our model (see “Heteroprio
automatic configuration problem”). As output, it gives the theoretical execution time of the
whole fake application. This theoretical execution time does not include data transfers.

It can be viewed as a black box where we input priorities and obtain an execution time as
output. We, therefore, choose this tool as a base for elaborating our experimental protocol.
This protocol aims at generating a score for a heuristic based on how well it performs in
multiple scenarios. It has two purposes. Firstly, it provides a fast way to check how
successful a heuristic is. Secondly, it provides an additional argument for our work if the
heuristics perform as well in the protocol as in real applications.

Graph generation

To be able to evaluate our heuristics, we generate a dataset of 32 graphs with diversity in
the number of task types, the costs of the tasks, and the graph shape. To generate a graph,
we generate tasks while filling a pipeline of workers2. We affect each task to its best worker.
Consequently, at the end of the generation process, we know the scheduling that
minimizes the makespan and have a lower bound for a hardware configuration that
corresponds to the pipeline. We also generate a predecessor matrix P randomly. This
predecessor matrix is of size v × v and Pi,j. It represents the average number of predecessors
of tasks of type i that are of type j. Our graph generation method uses this predecessor
matrix as input and adjusts the predecessors of the newly created tasks so that they match
the values of the matrix.

The generator needs the following parameters:

� a seed for the generation of random numbers

� the final amount of tasks

� a list of task types, with their associated CPU and GPU costs and their expected
proportion in the pool of tasks

� a number of CPU and GPU workers

� a predecessor matrix

Table 2 gives details about the generated datasets.

2 The DAG generating code is publicly
available (Bramas, Flint & Paillat, 2021).

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 12/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Protocol
We run fake executions on the 32 generated graphs for each heuristic. We compare the
obtained makespans to the makespans obtained with control priorities and provide a
slowdown for each heuristic. The control priorities are obtained with an iterative
optimization algorithm. The algorithm begins with random CPU and GPU priorities. It
then performs multiple iterations, alternating between CPU and GPU. At every iteration,
all the possible priority permutations for the current architecture (CPU/GPU) are tested

Table 2 Details of the graph dataset generated randomly. CPU-GPU close tasks are the tasks that have less than +20% between the two processor
costs and conversely for far CPU-GPU costs. Here, “numerous” means five or more.

Data
index

CPU
number

GPU
number

CPU/
GPU

Close
CPU-GPU
task
proportion

Far CPU-
GPU task
proportion

Task with
numerous
predecessors
proportion

Average
predecessor
number

Max
predecessor
number

Task
without
successor
proportion

Task with
numerous
successors
proportion

Max
successor
number

Average
CPU-GPU
diff
(relative)

0 4 14 0.286 0.549 0.336 0.502 4.038 7 0.423 0.243 41 0.580

1 13 8 1.625 0.377 0.623 0.000 2.101 3 0.467 0.084 105 0.905

2 11 12 0.917 0.687 0.135 0.000 2.526 3 0.781 0.033 540 0.855

3 2 7 0.286 0.191 0.302 0.211 2.529 4 0.388 0.104 142 1.089

4 13 15 0.867 0.508 0.233 0.007 1.289 5 0.575 0.057 102 1.605

5 9 7 1.286 0.276 0.573 0.141 2.301 4 0.360 0.127 546 1.154

6 13 3 4.333 0.314 0.026 0.000 2.396 3 0.339 0.118 62 0.715

7 11 1 11.000 0.226 0.531 0.000 1.491 3 0.496 0.062 307 1.036

8 9 12 0.750 0.418 0.582 0.000 1.675 3 0.255 0.070 22 0.187

9 12 1 12.000 0.405 0.043 0.367 2.927 4 0.176 0.180 57 0.388

10 2 9 0.222 0.167 0.777 0.000 0.995 1 0.301 0.005 7 3.791

11 13 10 1.300 0.232 0.529 0.000 1.384 3 0.507 0.083 24 1.720

12 4 6 0.667 0.286 0.530 0.000 1.325 3 0.658 0.060 103 1.179

13 4 11 0.364 0.018 0.497 0.000 1.462 3 0.563 0.031 72 1.484

14 8 1 8.000 0.498 0.468 0.000 1.850 2 0.459 0.088 52 1.756

15 3 8 0.375 0.112 0.888 0.000 2.686 3 0.570 0.072 111 4.153

16 15 3 5.000 0.294 0.126 0.000 1.347 2 0.466 0.094 20 1.243

17 10 1 10.000 0.452 0.514 0.000 2.258 3 0.766 0.064 548 0.228

18 7 3 2.333 0.160 0.565 0.139 1.679 4 0.432 0.094 54 1.793

19 9 14 0.643 0.269 0.725 0.000 1.817 3 0.334 0.084 108 2.238

20 8 11 0.727 0.386 0.392 0.000 1.859 3 0.294 0.093 25 0.850

21 8 8 1.000 0.527 0.324 0.323 2.655 5 0.386 0.083 439 0.917

22 15 9 1.667 0.350 0.650 0.126 2.268 4 0.281 0.107 147 2.050

23 14 4 3.500 0.008 0.973 0.000 1.288 3 0.228 0.022 116 12.786

24 1 2 0.500 0.115 0.175 0.133 1.934 5 0.327 0.115 18 0.881

25 9 11 0.818 0.278 0.278 0.000 2.030 3 0.275 0.119 13 0.626

26 4 14 0.286 0.299 0.512 0.166 1.884 4 0.372 0.111 34 0.771

27 15 1 15.000 0.453 0.417 0.000 1.551 2 0.685 0.090 55 0.253

28 9 3 3.000 0.635 0.266 0.099 1.474 5 0.477 0.066 131 0.187

29 15 8 1.875 0.288 0.539 0.396 3.558 6 0.186 0.264 50 1.534

30 10 10 1.000 0.612 0.000 0.169 2.552 7 0.368 0.197 28 0.434

31 12 13 0.923 0.395 0.605 0.000 1.516 3 0.482 0.094 17 2.245

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 13/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

and the fastest permutation is kept. In the case of a tie, the fastest priorities are chosen
randomly among the equally-ranked bests. These control priorities aim at giving anchor
points for computing the slowdowns of the heuristics.

Results
The results of our emulated simulations are available in Table 3. We show the slowdown of
the six heuristics we present in this article (compared to the control priorities): PRWS,

Table 3 Slowdown obtained on emulated executions by comparing the estimated lower-bound
against Heteroprio-based executions using the different heuristics. The lower bound is estimated
with an iterative optimization algorithm.

Heuristic Test case Offset Softplus Interpolation PURWS PRWS NTC

0 1.119 1.120 1.119 1.285 1.285 1.135

1 1.001 1.049 1.001 1.062 1.062 1.001

2 1.045 1.031 1.063 1.170 1.264 1.209

3 1.096 1.154 1.032 1.178 1.208 1.241

4 1.117 1.104 1.138 1.159 1.119 1.110

5 1.052 1.048 1.007 1.194 1.165 1.062

6 1.318 1.280 1.361 1.182 1.061 1.452

7 1.436 1.536 1.530 1.752 1.056 1.019

8 1.144 1.078 1.076 1.046 1.017 1.025

9 1.029 1.042 1.029 1.017 1.017 1.023

10 1.329 1.329 1.329 1.000 1.000 1.048

11 1.010 1.010 1.010 1.128 1.160 1.010

12 0.992 1.009 1.035 1.038 1.047 0.990

13 1.026 1.126 1.069 1.183 1.183 1.126

14 1.014 1.003 1.014 1.034 1.034 1.014

15 1.010 1.010 1.010 1.321 1.281 1.283

16 1.020 1.297 1.297 1.020 1.020 1.020

17 1.052 1.019 1.058 1.050 1.050 1.026

18 1.193 1.054 1.040 1.366 1.304 1.193

19 1.163 1.487 1.163 1.224 1.279 1.354

20 1.000 1.000 1.268 1.254 1.254 1.163

21 1.156 1.251 1.156 1.474 1.351 1.158

22 1.134 1.118 1.134 1.143 1.197 1.065

23 0.999 1.126 0.999 1.002 1.126 1.154

24 1.007 1.055 1.020 1.191 1.154 1.043

25 1.042 1.068 1.042 1.037 1.037 1.055

26 1.124 1.063 1.076 1.075 1.084 1.070

27 1.028 1.028 1.013 1.002 1.002 1.019

28 1.034 1.018 1.114 1.065 1.077 1.034

29 1.092 1.082 1.083 1.159 1.159 1.009

30 1.014 1.014 1.014 1.075 1.051 0.992

31 1.106 1.106 1.106 1.118 1.118 1.118

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 14/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

PURWS, offset model, softplus model, and interpolation model. We see that some
slowdowns are lower than 1. This means that some heuristics find better priorities than the
control priorities, which have been found with an iterative optimization algorithm.
In general, we observe that the slowdown ranges between +0% and +20%. In most test
cases, the best of the six heuristics usually has a slowdown of less than +10%. There are
some exceptions such as cases number 0, 4, 19, 21, 22, or 31. From these simulated
executions, we expect the choice of heuristic to have a significant impact.

Evaluation on real applications
Configuration
Hardware

We carry out our experiments on three configurations. Each one has a different GPU
model. In this article, we use the model name of the GPUs for referring to the associated
configuration:

� K40M is composed of 2 Dodeca-cores Haswell Intel Xeon E5-2680 v3 2.5 GHz, and 4
K40m GPUs (4.29 TeraFLOPS per GPU). We use 7 CUDA streams per GPU;

� P100 is composed of 2 Hexadeca-core Broadwell Intel Xeon E5-2683 v4 2.1 GHz, and 2
P100 GPUs (8.07 TeraFLOPS per GPU). We use 16 CUDA streams per GPU;

� V100 is composed of 2 Hexadeca-core Skylake Intel Xeon Gold 6142 2.6 GHz, and 2
V100 GPUs (14.0 TeraFLOPS per GPU). We use 16 CUDA streams per GPU.

Software

We select four applications that are already parallelized with StarPU to evaluate our
scheduler:

� ScalFMM (Agullo et al., 2014) is an application that implements the fast multipole
method (FMM). The FMM algorithm computes the n-body interactions between the
particles directly and across a tree mapped over the simulation box. We use it with two
test-cases based on the testBlockedRotationCuda program. The first one runs with the
default parameters and 10 million particles. The other one runs with a block size of
2,000, a tree height of 7, and 60 million particles;

� QrMUMPS computes the QR factorization of sparse matrices (Agullo et al., 2013) using
the multifrontal method (Duff & Reid, 1983). When it was extended to heterogeneous
architectures in 2016 by Florent LOPEZ (Lopez, 2015), Heteroprio was the fastest
scheduler of StarPU for this application. In our experiment, we choose to measure the
factorization time of the TF16 matrix (Thiery, 2008), from the JGD_Forest dataset;

� Chameleon is a library for dense linear algebra operations that supports heterogeneous
architectures (Agullo et al., 2010). We select the same operations as the ones
considered by the authors for the benchmarks presented in their user guide: a Matrix
Multiplication (GEMM), a QR factorization (QRM), and a Cholesky factorization
(POTRF). We use a block size of 1,600 and a matrix size of 40,000 for the Matrix

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 15/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Multiplication and the QR factorization. For the Cholesky factorization, we use a matrix
size of 50,000;

� PaStiX is a library which provides a high performance solver for sparse linear
systems (Hénon, Ramet & Roman, 2002; Lacoste, 2015). We consider two stages of the
example program named ’simple’: the LU factorization and the solve step. The program
generates a Laplacian matrix. We choose a matrix size of 1003.

For a given set of parameters (scheduler, hardware configuration, etc.), each application
is run 32 times. All these applications can be configured to use StarPU and, therefore, the
task-based model. The codelets (low-level kernels) are encapsulated into tasks that are
submitted to StarPU. The four applications have CPU and CUDA kernels and at least one
task that has both a CPU and a CUDA implementation. For the latter hybrid tasks, the
scheduler is responsible for making the proper processor type choice. Finally, the
tested applications are all written in C, except for QrMUMPS which is written in Fortran.
To make the applications usable for our tests, we change parts of them. We update
QrMUMPS and ScalFMM so that they use performance models, which are needed by
our automatic strategy but also by most schedulers. Additionally, we create new static
priorities for the Heteroprio scheduler in Chameleon and PaStiX. The methodology for
setting these priorities is detailed in the “Manual priority settings”. Unless otherwise
indicated, the execution times are the median value of the 32 corresponding runs. All
schedulers that need a calibration run (which sets up the performance models) use an extra
run that is not included in the final results.

Figure 2 Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio in the two ScalFMM test cases.We study two
test cases: (A) Ten million particles and (B) 60 million particles. The hatched area represents the interval of confidence of the 32 corresponding runs.

Full-size DOI: 10.7717/peerj-cs.969/fig-2

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 16/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-2
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Comparison between manual and automatic priorities
In this study, we compare the performance of four versions of the scheduler: Heteroprio,
LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio (AutoHeteroprio with LA
enabled). We use Heteroprio as the reference value and provide the speedups of the three
other versions. For AutoHeteroprio and LaAutoHeteroprio, we provide the data of the best
heuristic, i.e., the heuristic whose average execution time is the lowest. The median
execution time of Heteroprio (the reference) is divided by each individual execution
time for obtaining speedups. By doing so, we obtain a set of speedups for each case, rather
than a single value. This lets us display a median and two limits of a confidence interval.
For this confidence interval, we exclude the 5% highest and 5% lowest values.

Figure 2 shows the results for ScalFMM. In the first test case (10 million particles), all
the versions are comparable on the p100 and k40m architecture. In the v100 case,
AutoHeteroprio and LaAutoHeteroprio are about 2 times faster than normal Heteroprio.
In the second test case (60 million particles), AutoHeteroprio and LaAutoHeteroprio are
more than 80 times faster on the p100 and k40m architectures and about 5 times faster
on the v100 architecture. LaHeteroprio (respectively, LaAutoHeteroprio) does not show
such a high difference to Heteroprio (respectively, AutoHeteroprio) in this scenario.
The reason for this is that data transfers are hard to avoid in this application because only

Figure 3 Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio on Chameleon test cases (GEMM, POTRF,
and GEQRF). P100, V100 and K40M relate to the hardware configuration. The hatched area represents the interval of confidence of the 32 cor-
responding runs. Full-size DOI: 10.7717/peerj-cs.969/fig-3

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 17/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-3
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

two task types have a GPU implementation. Their data must be transferred back to the
main memory to be used by tasks on the CPU.

Figure 3 shows the results for Chameleon. In this application, automatic priorities are
systematically slower than their manual counterparts. Indeed, AutoHeteroprio generally
has a speedup of less than 1 and LaAutoHeteroprio is usually worse than LaHeteroprio.
Furthermore, LaHeteroprio and LaAutoHeteroprio tend to be faster, which suggests that
locality has greater importance in Chameleon than in ScalFMM.

We explain the lack of performance of automatic versions by a lack of precision in the
execution time estimations of the tasks. This leads to an inefficient choice of priorities.
The execution time estimations of the tasks are biased because AutoHeteroprio averages
the execution time of a task type. Yet, in Chameleon, the data size has an important impact
on the execution times of the tasks. This breaks our initial premise which is that each task
within a bucket has the same execution time.

We provide the results for the QR Factorization from QrMUMPS and on the LU
Factorization from PaStiX in Figs. 4A and 4B, respectively. In both cases, AutoHeteroprio
shows a significant increase in performance on all configurations. In the QR-MUMPS test,
AutoHeteroprio reaches more than +18% speedup. In the LU factorization, it goes past
x2.3 speedup on the k40m architecture. It appears that the dynamic change of the priorities
at runtime of the automatic Heteroprio is an advantage in both applications (to evaluate
these changes, we manually export the priorities during the executions).

Overall, we have multiple observations. It appears that using automatic priorities does
not always harm performance. In some cases, it can even increase them. Automatic
priorities are only slower in the case of the GEMM and POTRF test cases in Chameleon. In
some cases, the speedups of the automatic priorities become particularly high when run on

Figure 4 Speedups of LaHeteroprio, AutoHeteroprio, and LaAutoHeteroprio against Heteroprio in theQr factorization (QrMumps) and the
LU factorization (PaStiX). (A) Qr factorization (QrMUMPS). (B) LU factorization (PaStiX). The hatched area represents the interval of confidence
of the 32 corresponding runs. Full-size DOI: 10.7717/peerj-cs.969/fig-4

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 18/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-4
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

a new architecture (e.g., Fig. 2). This demonstrates the ability of automatic priories to adapt
to the current architecture. Manual priorities, on the other hand, can hardly be efficient on
multiple different architectures.

Comparison with other schedulers
In this section, we compare Heteroprio with other schedulers available in StarPU:

� the Eager scheduler uses a central task queue from which all workers retrieve tasks
concurrently. There is no decision on the task distribution. The worker picks the first
task that is compatible with their PU;

� the LWS (Locality Work Stealing) scheduler uses one queue per worker. When a task
becomes ready, it is stored in the queue of the worker that released it. When the queue of
a worker is empty, the worker tries to steal tasks from the queues of other workers;

� the Random scheduler randomly assigns the tasks to compatible workers;

� the DM (deque model) scheduler uses a HEFT-like strategy. It tries to minimize the
makespan by using a look-ahead strategy;

� the DMDA (deque model data aware) follows the principle of DM but adds the data
transfer costs;

� the DMDAS (deque model data aware) acts as the DMDA scheduler but lets the user
affect priorities to the tasks. Since this scheduler needs user-defined priorities, we
discard DMDAS from the results when the application does not define custom priorities.

For the sake of conciseness, by default we only display the results for the best between
Heteroprio (respectively AutoHeteroprio) and LaHeteroprio (respectively
LaAutoHeteroprio). When the difference between the LA and the non-LA version is
noticeable, we display the four versions. For the automatic Heteroprio versions

Figure 5 Execution times of the PaStiX solve step for different schedulers on the P100 configuration.
The boxes show the distribution of the 32 makespans (896 for AutoHeteroprio and LaHeteroprio) for
each scheduler. Full-size DOI: 10.7717/peerj-cs.969/fig-5

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 19/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-5
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

(AutoHeteroprio and LaHeteroprio), we aggregate all the data of every heuristic designed
in AutoHeteroprio. Since there are 28 different heuristics in AutoHeteroprio and 32 runs
for each one, the data for the automatic configuration consists of 28 × 32 = 896 runs, while
other the other shown data consist of 32 runs.

Figure 5 shows the execution times of the solve step in PaStiX with different schedulers
on the p100 configuration (the results for the v100 and k40m configurations are
comparable).

We can group the schedulers into three performance categories (sorted from slowest to
fastest):

� AutoHeteroprio and LaAutoHeteroprio

� DM, DMDA, and DMDAS

� basic Heteroprio, LaHeteroprio, LWS, and Eager

To explain this result, let us explain the task structure of this application. There are only
two types of tasks with average execution times of 95 and 120 microseconds. These
execution times are relatively short for a runtime system like StarPU. Indeed, the overhead
of StarPU is relatively high, as it has been designed to handle large amounts of data. In
particular, the use of a scheduler is only relevant when the expected gained time is
greater than the overhead of the scheduler. In this test case, it appears that the scheduling
decision has less importance than in other applications, as lightweight schedulers tend to
perform better. It confirms that Heteroprio and LaHeteroprio have a low overhead. Their
overhead is comparable to those of LWS and Eager. This test also points out that
AutoHeteroprio and AutoLaHeteroprio have a significant overhead. For these, the
overhead is higher than that of DM, DMDA, and DMDAS.

Figure 6 Execution times for QrMumps for different schedulers on the three configurations. The
boxes show the distribution of the 32 makespans (896 for AutoHeteroprio) for each case.

Full-size DOI: 10.7717/peerj-cs.969/fig-6

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 20/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-6
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

We compare the schedulers for the QrMUMPS test case in Fig. 6. AutoHeteroprio
performs better than manual Heteroprio, which is already better or as good as other
schedulers, depending on the configuration.

Figure 7 presents the results for the Matrix multiplication in Chameleon, on the k40m
and the p100 configurations. The V100 has been left out as the results are similar to the
P100 configuration. We observe that AutoHeteroprio is faster and more reliable than

Figure 7 Execution times for Chameleon GEMM for different schedulers on two configurations. The
boxes show the distribution of the 32 makespans (896 for LaAutoHeteroprio) for each case.

Full-size DOI: 10.7717/peerj-cs.969/fig-7

Figure 8 Execution times for Chameleon Cholesky factorization for different schedulers on the p100
and the k40m configuration. The boxes show the distribution of the 32 makespans (896 for-
LaAutoHeteroprio) for each scheduler. Full-size DOI: 10.7717/peerj-cs.969/fig-8

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 21/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-7
http://dx.doi.org/10.7717/peerj-cs.969/fig-8
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

schedulers like LWS or random but less efficient than the DM schedulers. The results for
the Cholesky factorization that we present in Fig. 8, are similar. In this configuration,
AutoHeteroprio is closer to the performances of DM. Manual Heteroprio performs almost
as well as DM.

We present the results for the Chameleon QR Factorization in Fig. 9. In the p100
configuration (and the v100 configuration which is comparable), both Heteroprio versions
perform comparably to the DM scheduler. In the k40m configuration, the performance of
both versions is low. Heteroprio only seems to do better than the random scheduler. The
Eager scheduler outmatches DM schedulers.

Figure 9 Execution times for Chameleon QR factorization for different schedulers on the p100 and
the k40m configuration. The boxes show the distribution of the 32 makespans (896 for LaAutoHe-
teroprio) for each scheduler. Full-size DOI: 10.7717/peerj-cs.969/fig-9

Figure 10 Execution times for PaStiX factorization for different schedulers on the three hardware
configurations (k40m, p100 and v100). The boxes show the distribution of the 32 makespans (896
for AutoHeteroprio and LaAutoHeteroprio) for each scheduler.

Full-size DOI: 10.7717/peerj-cs.969/fig-10

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 22/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-9
http://dx.doi.org/10.7717/peerj-cs.969/fig-10
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

In the case of factorization with PaStiX (Fig. 10), AutoHeteroprio performs well on the
p100 configuration. In contrast, on the k40m configuration, DMDAS, DMDA, and
LWS schedulers perform better. With the v100 configuration, the results of
AutoHeteroprio are only better than the ones of Heteroprio.

The results of the ScalFMM tests cases are shown in Figs. 11 and 12. These are
represented using a logarithmic scale because of the high differences between the execution
times of the schedulers. We can see that AutoHeteroprio performs well on this application.
It is comparable and sometimes better than schedulers of the DM family. Note that the
DM and DMDA schedulers can use more than one calibration run. This presumably

Figure 11 Execution times for the first ScalFMM test case on the three hardware configurations
(k40m, p100 and v100). The scale of the Y-axis is logarithmic. The boxes show the distribution of
the 32 makespans (896 for AutoHeteroprio) for each scheduler.

Full-size DOI: 10.7717/peerj-cs.969/fig-11

Figure 12 Execution times for the second ScalFMM test case on the three hardware configurations
(k40m, p100 and v100). The scale of the Y-axis is logarithmic. The boxes show the distribution of the 32
makespans (896 for AutoHeteroprio) for each scheduler. Full-size DOI: 10.7717/peerj-cs.969/fig-12

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 23/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-11
http://dx.doi.org/10.7717/peerj-cs.969/fig-12
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

explains their uppermost bullets in the figures. AutoHeteroprio only needs one calibration
run before achieving its best performance.

This second study gives an overview of the performance of different applications with
various schedulers in StarPU. With these results we can estimate the impact of the
choice of scheduler on the overall execution time and evaluate the competitiveness of
Heteroprio with manual or automatic priorities. In general, AutoHeteroprio offers
satisfying results compared to its competitors. When it does not, it is usually in cases where
the Heteroprio (manual) version is already slow. The only cases where AutoHeteroprio
does not achieve acceptable performance when compared to Heteroprio are the
Chameleon GEMM and the PaStiX solve step. Moreover, AutoHeteroprio does improve
the performance of Heteroprio significantly in other cases such as in QrMumps, PaStiX
factorization, and some ScalFMM configurations. Therefore, this study suggests that
AutoHeteroprio is a competitive scheduler for a runtime system like StarPU. In addition to

Table 4 Longest and shortest relative time observed between heuristics across all test-cases.

Application FMM (%) Chameleon
POTRF (%)

Chameleon
GEMM (%)

Chameleon
GEQRF (%)

PaStiX (%) QrMUMPS (%)

Longest time +3 +5 <+1 <+1 +1.5 +1

Shortest time >−1 −4 >−1 >−1 −1 −1

Figure 13 Relative difference between six heuristics in the case of the Cholesky factorization
(Chameleon POTRF). Full-size DOI: 10.7717/peerj-cs.969/fig-13

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 24/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-13
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

this, it is fully automatic, contrary to some of its competitors (Heteroprio, LaHeteroprio,
and DMDAS).

Comparison of different heuristics in AutoHeteroprio
In AutoHeteroprio, the priority lists are computed thanks to heuristics. In “Comparison
between manual and automatic priorities”, we show the performance of the best heuristic
over all the 28 measured executions, while in “Comparison with other schedulers” we show
the aggregated performance of the 28 heuristics. In this section we seek to measure the
impact of the choice of heuristic. We compute the average execution time of each heuristic
and compare it against the average execution time of all heuristics. We establish the results
shown in Table 4, which are the maximum and minimum differences observed across all
the 28 heuristics on each application. While it appears that the relative difference is
relatively low, typically around 1%, it is always less than 5%, with the largest difference
being in the POTRF test case. In the latter case, the slowest heuristic is nearly 10% slower
than the fastest.

We provide the average relative differences between heuristics for the Cholesky
factorization in Chameleon (POTRF) in Fig. 13. This is the application in which the choice
of heuristic has the most impact.

We observe that the heuristics PRWS and PURWS are the ones that give the best
execution times, while the NTC (NOD Time Combination) heuristic is the one leading to
the worst execution times for this application.

This study suggests that the choice of heuristic typically has an impact of less than 1%
on the resulting execution time. The highest impact we measure is less than 10% slowdown
between the fastest and the slowest heuristic in the POTRF test case. The impact of the
choice of heuristic is, therefore, limited compared to the one of the scheduler. In practice,
this implies that application developers can rapidly assess the performance of Heteroprio
on their application only by testing one heuristic (typically with a ±1% makespan
confidence interval). Additionally, once a user determines that Heteroprio is efficient for
their application, they can further fine-tune the scheduler by benchmarking different
heuristics and choosing the best one.

CONCLUSION
Our study presents six heuristics that allow finding efficient priorities automatically. These
heuristics rely on the properties of the tasks, such as their makespan or their potential to
release other tasks. We show that they can be used to set up the Heteroprio scheduler
automatically and achieve high-performance. We perform a theoretical evaluation of
the heuristics, which demonstrates that on random graphs the makespan difference
between them is typically less than 10%. We then evaluate these heuristics on four real
applications. In a first study, we show that AutoHeteroprio usually offers performance
comparable to that of Heteroprio, the main difference being that AutoHeteroprio is fully
automatic while Heteroprio needs expert-defined priorities. In a second study, we show
that the choice of heuristic has a limited impact on the execution time in these four
applications (±1% execution time). This suggests that real executions are generally more

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 25/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

impacted by the choice of scheduler (Heteroprio, HEFT, etc.) than by the choice of
heuristic within the AutoHeteroprio framework. These two studies support the
contributions that AutoHeteroprio brings to HPC developers in practice. On the one hand,
it can be quickly tested since it is fully automatic, contrary to Heteroprio. On the other
hand, it can be further tuned if needed, either by choosing among the 28 existing heuristics
or by designing a new heuristic by hand.

The study for the Chameleon GEMM (Fig. 7) emphasizes that AutoHeteroprio can be
slower than Heteroprio. This is due to the overhead induced by the cost of fetching the
data of the tasks and of computing the priorities. It can theoretically be removed by
enabling the automatic mode in the first runs and inputting the resulting priorities in the
normal semi-automatic Heteroprio mode. Hence, the following runs would be as fast as
possible, as long as the automatic priorities are efficient. We plan on adding a feature that
would automatically switch Heteroprio to a non-automatic mode once enough data are
fetched. This feature should take the performance AutoHeteroprio to the same level as
Heteroprio in the eyes of application developers who use AutoHeteroprio as a fully
automatic scheduler.

The most problematic cases are the ones where neither Heteroprio nor Auto-Heteroprio
succeed in achieving high-performance, e.g., in PaStiX (Fig. 10) and Chameleon
factorizations (Fig. 9). These cases suggest that our approach could be more general. We
are working on a new scheduling paradigm where the tasks are not grouped by type
anymore. In this paradigm, the same heuristics as in AutoHeteroprio are used, but for each
task individually, rather than for the whole bucket. This induces problems, as the total
number of tasks can become very large, while the number of buckets is assumed to be
limited.

In summary, this study shows that the semi-automatic scheduling paradigm of
Heteroprio can be extended to a fully automatic paradigm where user interaction is no
more required for guiding the scheduler. It leads to the creation of heuristics that have been
tested and validated in an execution simulator. These heuristics allow the conception of
AutoHeteroprio: an automatic version of Heteroprio in StarPU. Our benchmarks show
that the AutoHeteroprio alternative usually performs as well as (and sometimes better
than) its semi-automatic counterpart.

APPENDIX
Heteroprio execution example
To understand the theoretical principle of Heteroprio, let us consider the example DAG
shown in Fig. 14 and the associated costs of Table 5.

There are three task types (A, B, and C). We assume that within a type, all tasks have the
same costs. Let us consider a case where there are 2 CPU workers and 1 GPU worker.
For the sake of simplicity, let us assume that the tasks are selected in a predefined order:
CPU-1 pops a task if there is one available, then GPU-1, and then CPU-2. In practice, this
order is not known in advance. In a real StarPU execution, there is a “prefetch”mechanism
that ensures that a worker can start the job immediately after the dependencies are
satisfied.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 26/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Intuitively, “A” tasks seem to be better suited for CPUs, which execute them twice as
fast, whereas “B” tasks seem better suited for GPUs. The “C” tasks do not, seem to have
particular affinities. In our model, whatever priorities we set, A1 is always executed by
CPU-1. Also, C2 seemingly has great importance, since it has three successors.

Let us test what happens under three different priority lists. In Table 6, we show three
different test cases.

Figure 14 Example of a DAG with three task types (blue, red, and green).
Full-size DOI: 10.7717/peerj-cs.969/fig-14

Table 5 Example execution times of for the two processing unit types (CPU/GPU) and the three task
types (1, 2, and 3).

Architecture Task CPU (s) GPU (s)

A 1 2

B 2 1

C 1 1

Table 6 Example priorities for a configuration of two processing unit types (CPU/GPU) and three
task types (A, B, and C).

Architecture Task CPU GPU

1 B-C-A A-C-B

2 A-C-B B-C-A

3 C-A-B B-C-A

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 27/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-14
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

In case 1, B is the highest-priority task type on CPUs and A is the lowest one. On GPUs,
the priorities are reversed. For both processors, C is the median priority. In this first case,
the slowest architectures are intentionally promoted. For case 2 and case 3, we promote the
fastest architectures. The difference between the two is that the priorities in case 2 are
mirrored compared to the ones in case 1, whereas in case 3, we exchange the C and A types
in the CPU. The idea of this swap is to favor the execution of C2 which has numerous
successors.

The three executions are schematized in Fig. 15. In this model, the makespan of case 1 is
lower (7 s) than the one of case 2 and case 3 (5 s). Here, case 2 and case 3 are equivalent in

Figure 15 Example executions for the three different priority settings using two CPU workers and
one GPU worker. Full-size DOI: 10.7717/peerj-cs.969/fig-15

Table 7 Tested priorities and slowdown factors for the POTRF operation (Chameleon’s Cholesky factorization).

Name CPU priorities Cuda priorities Slowdown factors

trsm syrk gemm

base portf – splgsy – trsm – syrk – gemm trsm – syrk – gemm 11.0 26.0 29.0

inverted-CPU trsm – syrk – gemm – portf – splgsy trsm – syrk – gemm 11.0 26.0 29.0

inverted-GPU portf – splgsy – gemm – syrk – trsm gemm – syrk – trsm 11.0 26.0 29.0

low-factors portf – splgsy – trsm – syrk – gemm trsm – syrk – gemm 2.0 2.0 4.0

high-factors portf – splgsy – trsm – syrk – gemm trsm – syrk – gemm 25.0 45.0 49.0

Note:
Row in bold are the priorities used in our benchmarks.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 28/33

http://dx.doi.org/10.7717/peerj-cs.969/fig-15
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

terms of makespan. In case 3, however, CPU-2 and GPU-1 are freed sooner (after 4 s of
execution) than in case 2, where they are still working after 5 s of execution. Case 3
can, therefore, be seen as potentially better. This emphasizes the difficulty of finding
heuristics automatically. Indeed, some tasks should be prioritized depending on their
execution time, but others should be prioritized because they have particular importance in
the execution graph (as C in our example).

Table 9 Tested priorities and slowdown factors for the GEQRF operation (Chameleon’s QR factorization).

Name CPU priorities Cuda priorities Slowdown factors

ormqr tpmqrt

base geqrt – tpqrt – plrnt – lacpy – laset – ormqr – tmpqrt ormqr – tmpqrt 10.0 10.0

inverted_CPU ormqr – tmpqrt – geqrt – tpqrt – plrnt – lacpy – laset ormqr – tmpqrt 10.0 10.0

inverted_others lacpy – laset – geqrt – tpqrt – plrnt – ormqr – tmpqrt ormqr – tmpqrt 10.0 10.0

low-factors geqrt – tpqrt – plrnt – lacpy – laset – ormqr – tmpqrt ormqr – tmpqrt 2.0 2.0

high-factors geqrt – tpqrt – plrnt – lacpy – laset – ormqr – tmpqrt ormqr – tmpqrt 22.0 22.0

Note:
Row in bold are the priorities used in our benchmarks.

Table 8 Tested priorities and slowdown factors for the GEMM operation (Chameleon’s matrix/
matrix multiplication).

Name CPU priorities Cuda priorities Slowdown factors gemm

base plrnt – gemm gemm 29.0

inverted gemm – plrnt gemm 29.0

low-factors plrnt – gemm gemm 1.0

high-factors plrnt – gemm gemm 40.0

Note:
Row in bold are the priorities used in our benchmarks.

Table 10 Tested priorities and slowdown factors for the PaStiX.

Name CPU Priorities Slowdown factors

cblk_gemm blok_trsm blok_gemm

base olve_blok_{trsm – gemm} – cblk_{getrf1d – gemm} – blok_{getrf – trsm – gemm} 1.0 10.0 10.0

better_factors solve_blok_{trsm – gemm} – cblk_{getrf1d – gemm} – blok_{getrf – trsm – gemm} 4.0 2.0 3.0

inverted_groups blok_{getrf – trsm – gemm} – cblk_{getrf1d – gemm} – solve_blok_{trsm – gemm} 1.0 10.0 10.0

better_factors_higher solve_blok_{trsm – gemm} – cblk_{getrf1d – gemm} – blok_{getrf – trsm – gemm} 5.0 3.0 4.0

low-factors blok_{getrf – trsm – gemm} – cblk_{getrf1d – gemm} – solve_blok_{trsm – gemm} 1.0 1.0 1.5

high-factors blok_{getrf – trsm – gemm} – cblk_{getrf1d – gemm} – solve_blok_{trsm – gemm} 5.0 15.0 5.0

Cuda priorities base cblk_gemm – blok_{trsm – gemm} - - - better_factors cblk_gemm – blok_{trsm
– gemm}

– – –

inverted_groups blok_{trsm – gemm} – cblk_gemm – – –

better_factors_higher cblk_gemm – blok_{trsm – gemm} – – –

low-factors blok_{trsm – gemm} – cblk_gemm – – –

high-factors blok_{trsm – gemm} – cblk_gemm – – –

Note:
Row in bold are the priorities used in our benchmarks.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 29/33

http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Manual priority settings
For the results we provide in “Evaluation on real applications”, the non-automatic
Heteroprio executions use manual priorities. These priorities are selected from a careful
benchmark for each application. We follow different strategies for choosing them and we
provide the different priorities that we test: Table 7 for POTRF, Table 8 for GEMM, Table 9
for GEQRF, and Table 10 for PaStiX. For QrMumps and Scalfmm, we use the already
existing priorities set in the code.

ACKNOWLEDGEMENTS
Experiments presented in this report were carried out using the PlaFRIM experimental
testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux
INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr/).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the ICPS Team from the ICube laboratory, the CAMUS team
from Inria Nancy, and by the Department of Mathematics and Computer Science,
University of Strasbourg. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
ICPS Team from the ICube laboratory.
CAMUS Team from Inria Nancy.
Department of Mathematics and Computer Science, University of Strasbourg.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Clément Flint conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Ludovic Paillat performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

� Bérenger Bramas analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitLab: https://gitlab.inria.fr/cflint/auto_heteroprio_analysis.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 30/33

https://www.plafrim.fr/
https://gitlab.inria.fr/cflint/auto_heteroprio_analysis
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.969#supplemental-information.

REFERENCES
Agullo E, Augonnet C, Dongarra J, Ltaief H, Namyst R, Thibault S, Tomov S. 2010. Faster,

cheaper, better—a hybridization methodology to develop linear algebra software for GPUs. In:
Wen-Mei WH, ed. GPU Computing Gems. Vol. 2. Burlington: Morgan Kaufmann.

Agullo E, Aumage O, Bramas B, Coulaud O, Pitoiset S. 2017. Bridging the gap between OpenMP
and task-based runtime systems for the fast multipole method. IEEE Transactions on Parallel
and Distributed Systems 28(10):2794–2807 DOI 10.1109/TPDS.2017.2697857.

Agullo E, Bramas B, Coulaud O, Darve E, Messner M, Takahashi T. 2014. Task-based FMM for
multicore architectures. SIAM Journal on Scientific Computing 36(1):C66–C93
DOI 10.1137/130915662.

Agullo E, Bramas B, Coulaud O, Darve E, Messner M, Takahashi T. 2015a. Task-based FMM for
heterogeneous architectures. Concurrency and Computation: Practice and Experience
28(9):2608–2629 DOI 10.1002/cpe.3723.

Agullo E, Bramas B, Coulaud O, Darve E, Messner M, Takahashi T. 2016. Task-based FMM for
heterogeneous architectures. Concurrency and Computation: Practice and Experience
28(9):2608–2629 DOI 10.1002/cpe.3723.

Agullo E, Buttari A, Guermouche A, Lopez F. 2013. Multifrontal QR factorization for multicore
architectures over runtime systems. In: 19th International Conference Euro-Par (EuroPar 2013).
521–532.

Agullo E, Buttari A, Guermouche A, Lopez F. 2015b. Task-based multifrontal QR solver for
GPU-accelerated multicore architectures. In: 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC). Piscataway: IEEE, 54–63.

Augonnet C, Thibault S, Namyst R, Wacrenier P-A. 2011. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurrency and Computation: Practice
and Experience 23(2):187–198 DOI 10.1002/cpe.1631.

Beaumont O, Canon L-C, Eyraud-Dubois L, Lucarelli G, Marchal L, Mommessin C, Simon B,
Trystram D. 2020. Scheduling on two types of resources: a survey. ACM Computing Surveys
53(3):1–36 DOI 10.1145/3387110.

Bosilca G, Bouteiller A, Danalis A, Faverge M, Hérault T, Dongarra JJ. 2013. PaRSEC: exploiting
heterogeneity to enhance scalability. Computing in Science & Engineering 15(6):36–45
DOI 10.1109/MCSE.2013.98.

Bramas B. 2016. Optimization and parallelization of the boundary element method for the wave
equation in time domain. Theses, Université de Bordeaux.

Bramas B. 2019. Impact study of data locality on task-based applications through the Heteroprio
scheduler. PeerJ Computer Science 5(10):e190 DOI 10.7717/peerj-cs.190.

Bramas B, Flint C, Paillat L. 2021. Auto-heteroprio analysis. Available at https://gitlab.inria.fr/
cflint/auto_heteroprio_analysis.

Bramas B, Helluy P, Mendoza L, Weber B. 2020.Optimization of a discontinuous Galerkin solver
with OpenCL and StarPU. International Journal on Finite 15(1):1–19.

Brucker P, Knust S. 2009. Complexity results for scheduling problems. Available at http://www2.
informatik.uni-osnabrueck.de/knust/class/.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 31/33

http://dx.doi.org/10.7717/peerj-cs.969#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.969#supplemental-information
http://dx.doi.org/10.1109/TPDS.2017.2697857
http://dx.doi.org/10.1137/130915662
http://dx.doi.org/10.1002/cpe.3723
http://dx.doi.org/10.1002/cpe.3723
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1145/3387110
http://dx.doi.org/10.1109/MCSE.2013.98
http://dx.doi.org/10.7717/peerj-cs.190
https://gitlab.inria.fr/cflint/auto_heteroprio_analysis
https://gitlab.inria.fr/cflint/auto_heteroprio_analysis
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://www2.informatik.uni-osnabrueck.de/knust/class/
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Bruno J, Coffman EG, Sethi R. 1974. Scheduling independent tasks to reduce mean finishing time.
Communications of the ACM 17(7):382–387 DOI 10.1145/361011.361064.

Carpaye JMC, Roman J, Brenner P. 2018. Design and analysis of a task-based parallelization over
a runtime system of an explicit finite-volume CFD code with adaptive time stepping. Journal of
Computational Science 28:439–454 DOI 10.1016/j.jocs.2017.03.008.

Choi H, Son D, Kang S, Kim J, Lee H-H, Kim C-H. 2013. An efficient scheduling scheme using
estimated execution time for heterogeneous computing systems. The Journal of Supercomputing
65(2):886–902 DOI 10.1007/s11227-013-0870-6.

Donfack S, Grigori L, Gropp WD, Kale V. 2011. Hybrid static/dynamic scheduling for already
optimized dense matrix factorization. ArXiv preprint. DOI 10.48550/arXiv.1110.2677.

Duff IS, Reid JK. 1983. The multifrontal solution of indefinite sparse symmetric linear. ACM
Transactions on Mathematical Software 9(3):302–325 DOI 10.1145/356044.356047.

Flint C, Bramas B. 2020. Finding new heuristics for automated task prioritizing in heterogeneous
computing. Working Paper. Available at https://hal.inria.fr/hal-02993015.

Hans WM, Erich S, Jack D, Horst DS. 2021. Top500, the list. Available at https://www.top500.org/
lists/top500/2021/06/ (accessed 30 September 2010).

Hénon P, Ramet P, Roman J. 2002. PaStiX: a high-performance parallel direct solver for sparse
symmetric positive definite systems. Parallel Computing 28(2):301–321
DOI 10.1016/S0167-8191(01)00141-7.

Jiang Y, Shao Z, Guo Y. 2014. A DAG scheduling scheme on heterogeneous computing systems
using tuple-based chemical reaction optimization. The Scientific World Journal 2014(2):1–23
DOI 10.1155/2014/404375.

Khan MA. 2012. Scheduling for heterogeneous systems using constrained critical paths. Parallel
Computing 38(4):175–193 DOI 10.1016/j.parco.2012.01.001.

Kwok Y-K, Ahmad I. 1999. Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys 31(4):406–471 DOI 10.1145/344588.344618.

Lacoste X. 2015. Scheduling and memory optimizations for sparse direct solver on multi-core/
multi-GPU duster systems. PhD thesis, Université de Bordeaux.

Leung JY-T, Young GH. 1989. Minimizing schedule length subject to minimum flow time. SIAM
Journal on Computing 18(2):314–326 DOI 10.1137/0218022.

Lin H, Li M-F, Jia C-F, Liu J-N, An H. 2019. Degree-of-node task scheduling of fine-grained
parallel programs on heterogeneous systems. Journal of Computer Science and Technology
34(5):1096–1108 DOI 10.1007/s11390-019-1962-4.

Lopez F. 2015. Task-based multifrontal QR solver for heterogeneous architectures. Thesis,
Université Paul Sabatier - Toulouse III, Toulouse, France.

Lopez F, Duff I. 2018. Task-based sparse direct solver for symmetric indefinite systems. In: 10th
International Workshop on Parallel Matrix Algorithms and Applications (PMAA), Mini-
Symposium on Task-Based Programming for Scientific Computing.

Luo J, Li X, Yuan M, Yao J, Zeng J. 2021. Learning to optimize dag scheduling in heterogeneous
environment. ArXiv preprint. DOI 10.48550/arXiv.2103.06980.

Maurya AK, Tripathi AK. 2018. On benchmarking task scheduling algorithms for heterogeneous
computing systems. The Journal of Supercomputing 74(7):3039–3070
DOI 10.1007/s11227-018-2355-0.

Thiery N. 2008. Matrix: JGD_Forest/TF16. Available at https://www.cise.ufl.edu/research/sparse/
matrices/JGD_Forest/TF16.html.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 32/33

http://dx.doi.org/10.1145/361011.361064
http://dx.doi.org/10.1016/j.jocs.2017.03.008
http://dx.doi.org/10.1007/s11227-013-0870-6
http://dx.doi.org/10.48550/arXiv.1110.2677
http://dx.doi.org/10.1145/356044.356047
https://hal.inria.fr/hal-02993015
https://www.top500.org/lists/top500/2021/06/
https://www.top500.org/lists/top500/2021/06/
http://dx.doi.org/10.1016/S0167-8191(01)00141-7
http://dx.doi.org/10.1155/2014/404375
http://dx.doi.org/10.1016/j.parco.2012.01.001
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1137/0218022
http://dx.doi.org/10.1007/s11390-019-1962-4
http://dx.doi.org/10.48550/arXiv.2103.06980
http://dx.doi.org/10.1007/s11227-018-2355-0
https://www.cise.ufl.edu/research/sparse/matrices/JGD_Forest/TF16.html
https://www.cise.ufl.edu/research/sparse/matrices/JGD_Forest/TF16.html
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

Topcuoglu H, Hariri S, Min-You W. 2002. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems
13(3):260–274 DOI 10.1109/71.993206.

Wen Y, Wang Z, O’Boyle MFP. 2014. Smart multi-task scheduling for OpenCL programs on
CPU/GPU heterogeneous platforms. In: 2014 21st International Conference on High
Performance Computing (HiPC). 1–10.

Xu Y, Li K, Hu J, Li K. 2014. A genetic algorithm for task scheduling on heterogeneous computing
systems using multiple priority queues. Information Sciences 270:255–287
DOI 10.1016/j.ins.2014.02.122.

Yu-Kwong K, Ahmad I. 1996. Dynamic critical-path scheduling: an effective technique for
allocating task graphs to multiprocessors. IEEE Transactions on Parallel and Distributed Systems
7(5):506–521 DOI 10.1109/71.503776.

Zhou J, Wei T, Chen M, Yan J, Hu XS, Ma Y. 2016. Thermal-aware task scheduling for energy
minimization in heterogeneous real-time MPSoC systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35(8):1269–1282
DOI 10.1109/TCAD.2015.2501286.

Flint et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.969 33/33

http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1016/j.ins.2014.02.122
http://dx.doi.org/10.1109/71.503776
http://dx.doi.org/10.1109/TCAD.2015.2501286
http://dx.doi.org/10.7717/peerj-cs.969
https://peerj.com/computer-science/

	Automated prioritizing heuristics for parallel task graph scheduling in heterogeneous computing
	Introduction
	Background
	Heuristics for automatic configuration
	Performance study
	Conclusion
	Appendix
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

