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Abstract—Factorization machines (FMs) are a powerful tool
for regression and classification in the context of sparse ob-
servations, that has been successfully applied to collaborative
filtering, especially when side information over users or items
is available. Bayesian formulations of FMs have been proposed
to provide confidence intervals over the predictions made by
the model, however they usually involve Markov-chain Monte
Carlo methods that require many samples to provide accurate
predictions, resulting in slow training in the context of large-
scale data. In this paper, we propose a variational formulation of
factorization machines that allows us to derive a simple objective
that can be easily optimized using standard mini-batch stochastic
gradient descent, making it amenable to large-scale data. Our
algorithm learns an approximate posterior distribution over the
user and item parameters, which leads to confidence intervals
over the predictions. We show, using several datasets, that it
has comparable or better performance than existing methods in
terms of prediction accuracy, and provide some applications in
active learning strategies, e.g., preference elicitation techniques.

I. INTRODUCTION

Data collected from a crowd is imperfect: ratings in rec-
ommender systems, outcomes of students over educational
exercises, annotations provided by humans for crowdsourcing
tasks. It is crucial to model it properly in order to provide
interesting recommendations to users, identify misconceptions
of students, determine the true labels. The challenge here relies
in modeling both the items being annotated, and the users
annotating them.

In the particular case of recommender systems, we have
access to some ratings provided by users over items, and
we want to generalize to new user-item pairs. Collaborative
filtering [1] is a famous technique that consists in learning
an embedding for each user and item, so that the rating can
be expressed as a function of the user and item embeddings.
In various applications, side information is also available on
either users or items, such as: the different genres of the
movies, or their actors, directors, etc. The challenge now
becomes, how to use this extra information to improve the
recommendations? This is why factorization machines were
developed [2]. They generalize collaborative filtering in the
presence of side information.

Models typically encountered in collaborative filtering, such
as the latent factor model, learn point estimates of the user
and item parameters; but it is sometimes more useful to learn
distributions over these parameters, in order to have confidence

intervals over predictions that can guide decision making. In
educational applications, this is particularly useful: what is
the uncertainty over the algebra level of this student? Should
I continue to ask them algebra questions, or should I switch
to geometry? On a recommender system, knowing that the
predictions are uncertain for a specific user-item pair can be
more valuable than just predicting an average grade; using
this uncertainty, one can even let the user control whether
they want recommendations with high confidence, or more
risky ones in order to explore more the item database. This
is particularly important when new users come in, and that
we have to identify in few questions their position in latent
space to quickly provide good recommendations to them. This
is called preference elicitation [3]. One way to do so is to use
probabilistic matrix factorization [4].

However, when we learn these models using Bayesian
inference, the posterior distribution over the parameters is
usually intractable, and we resort to MCMC techniques like
Metropolis-Hastings [5] or Gibbs sampling [6], [7]. These
techniques have the advantage to recover the exact distribu-
tion asymptotically, at the cost of many samples. Variational
inference [8], [9] has been proposed to compute at a cheaper
cost an approximate inference of the posterior.

In this paper, we propose a variational approach to learn
factorization machines. Distributions over the user and item
parameters are estimated easily, and likelihood maximization
is done by increasing a lower bound. By acting directly on
factorization machines, our results naturally extend to the
latent factor models typically encountered in collaborative
filtering such as probabilistic matrix factorization or item
response theory.

Our contribution is a simple algorithm for learning Bayesian
factorization machines that works both for classification and
regression tasks. We show using several datasets of various
sparsity that it achieves comparable performance at predicting
unseen pairs than existing methods for regression tasks, and
better performance in classification tasks.

This paper is built as follows. First, we expose related
work, then we present factorization machines, our variational
objective, our algorithm, experiments and results. In particular,
we show how those VFMs can be used for querying the
preference of users interactively, which is the goal of large-
scale recommender systems or intelligent tutoring systems.



II. RELATED WORK

Factorization machines (FMs) are a multilinear model of
regression or classification using sparse features, described
in [2]. Under their regression form, FMs can be seen as
a generalization of the latent factor model encountered in
collaborative filtering. Under their classification form, Vie
and Kashima [10] have shown that FMs can be seen as a
generalization of multidimensional item response theory [11].
Variational learning of item response theory models have been
proposed at EDM 2020 [12] and the methods in the present
article can be directly applied to learning multidimensional
item response theory models.

Rendle [2] describes several algorithms to train factorization
machines implemented in C++ in the libFM package, notably a
Bayesian version where every feature (user, item, or other) has
a Gaussian prior, and Gamma hyperpriors. Using a Markov-
chain Monte Carlo (MCMC) method called Gibbs sampling,
they can sample the hyperpriors, the parameters, then the
predictions. One specific advantage of MCMC is that it
automatically optimizes the regularization parameter during
training, avoiding to perform costly hyper-parameter selection
through cross-validation.

Since then, several variants of factorization machines have
been proposed, such as deep factorization machines [13],
[14], convex factorization machines [15] and higher-order
factorization machines [16]. Higher-order FMs consider not
only pairwise interactions but n-order terms. In all these
works, the MCMC version is recognized as a hard baseline,
that sometimes beats deep counterparts [17], [18], which is
why it is our principal competitor in this paper.

To the best of our knowledge, the only independent attempts
at developing variational learning for factorization machines
are an open-source implementation in Chainer [19] reaching
higher RMSE on Movielens 1M than our method; and an
unpublished preprint for the regression task only [20], with
very efficient open-source code in C++, for either full batch
or online scenario (batch size of one). As FMs are multilinear
in their parameters, [20] can compute the ELBO objective in
closed form, the exact gradients and the best possible updates
for each parameter, so their approach is similar to alternating
least squares. Terms are cached to optimize the complexity of
computation. However, in the classification task, there is no
closed form of the objective, for our choice of distributions
and link function.

III. FACTORIZATION MACHINES

Let d ≥ 0 be an integer. Every feature k = 1, . . . ,K, be it
a user, an item, a tag, etc. is parameterized using one scalar
bias wk ∈ R and an embedding vk ∈ Rd. We will note V the
matrix having all embeddings v1, . . . ,vK as columns.

Each sample i = 1, . . . , n is described by a pair (x, y)
where y is a label (say, a rating) and x is a sparse vector
which determines the presence (xk 6= 0) or absence (xk = 0)
of each feature k, see Table I. For example, if there are Nu

Sparse features x
y

U0 U1 U2 I0 I1 I2

User 1 Item 1: 5/5 0 1 0 0 1 0 5
User 1 Item 2: 4/5 0 1 0 0 0 1 4
User 2 Item 1: 2/5 0 0 1 0 1 0 2
User 2 Item 1: 2/5 0 0 1 0 1 0 2
User 2 Item 2: 5/5 0 0 1 0 0 1 5

TABLE I: Example of sparse features encoded for a factoriza-
tion machine. Each column of x corresponds to either a user
or an item.

users, Ni items and no side information, one can encode the
event “user i gave item j 5 stars” with the pair

x = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0, 1︸︷︷︸
Nu+j

, 0, . . . , 0),

y = 5.

The expression at the core of factorization machines is the
following, see also Figure 1:

y(x) = w0 +

K∑
k=1

wkxk +
∑

1≤k<`≤K

xkx`〈vk,v`〉

= w0 + 〈w,x〉+
1

2

||V x||22−
d∑

f=1

||(V T )f ◦ x||22


= w0 + 〈w,x〉+

1

2

(
||V x||22−||(V ◦ V )T (x ◦ x)||22

)
where ◦ denotes the pairwise product and w0 is a global bias.
Therefore the parameters of the model are (w0,w, V ). The
last expression is easier to compute as x is sparse, which
also makes it convenient for computing the predictions of one
batch.

In the particular case where there is no side information,
we can recover collaborative filtering: if there are Nu users,
Ni items, rij is the rating given by user i over item j and x
is the concatenation of a 1-hot vector of size Nu having 1 at
position i, and a 1-hot vector of size Ni having 1 at position
j, we get:

y(x) = w0 + wi + wNu+j + 〈vi,vNu+j〉.

Therefore, the first Nu entries of w (resp. V ) contain the user
biases (resp. embeddings), the next Ni entries of w (resp. V )
contain the item biases (resp. embeddings).

a) Regression: For a new sample x of sparse features,
FM will output a prediction ŷ ∈ N (y(x), 1/α) where α > 0
models noise and can be seen as a regularization parameter,
and N is the normal distribution. While optimizing likelihood,
we recover a squared loss term.

b) Classification: For a new sample x of sparse features,
FM will output a prediction ŷ ∈ B(φ(y(x)) where φ is a link
function and B is the Bernoulli distribution. In this paper φ =
σ : x 7→ 1/(1 + exp(−x)) is the sigmoid function but in the
libFM package, φ = Φ is the cumulative density function of
the standard normal distribution, because it is more convenient
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Fig. 1: Architecture of a FM. Pairwise dot products of embed-
dings are added to the biases of activated features.

for Gibbs sampling, although very similar in shape. Please note
that when d = 0, the V term vanishes and we recover logistic
regression when φ = σ and probit regression when φ = Φ.
There is no regularization parameter here, as explained by [21]
(possibly because the prediction never matches the true label
in classification scenarios).

A. Training of FMs

Training of FMs can be done using standard algorithms such
as stochastic gradient descent (SGD), alternating least squares
(ALS) in their regression form, or Gibbs sampling [2] in their
Bayesian version where parameters w0, w and V are random
variables. In libFM, the lowest error is usually achieved by
training FMs using MCMC.

IV. VARIATIONAL FACTORIZATION MACHINES (VFM)

We now detail the variational training of FMs which is our
main contribution in this paper.

Let θ denote the random variables of a VFM, i.e. w0, w and
V . We will denote sample i by its features xi and outcome
yi.

For regression, the likelihood is p(yi|xi, θ) =
N (y(xi), 1/α) while for classification, the likelihood is
p(yi|xi, θ) = B(σ(y(xi)) where σ is the sigmoid function.

A. Priors

We use the same prior as libFM:

p(wk) = N (νwg(k), 1/λ
w
g(k)) p(vkf ) = N (νv,fg(k), 1/λ

v,f
g(k))

where g(k) > 0 is an integer representing the group of feature
k (user, item, etc.) and g(0) = 0 for the global bias. Rendle
uses hyperpriors ν ∼ N (0, 1), λ ∼ Γ(1, 1) where Γ denotes
the Gamma distribution because it is convenient for Gibbs
sampling as it is the conjugate of the normal distribution [2].
In our case, we just treat νw, λw, νv,f and λv,f as parameters.

We found similar results with simpler priors such as
N (0, 1). Saha et al. use νw = νv,f = 0 [20].
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Fig. 2: Parameters of a VFM, the global bias being omitted for
clarity. For each feature we learn a distribution over its bias
and a distribution over its embedding. Together, they form an
approximate posterior distribution from which we can sample
the parameters, and the predictions.

B. Approximate posteriors

Our variational approximation:

q(wk) = N (µwk , (σ
w
k )2) q(vkf ) = N (µv,fk , (σv,fk )2)

where (µwk , σ
w
k , µ

v,f
k , σv,fk ) are parameters that we will learn.

Hence, we have 2(d+ 1)(K +G) + 5 parameters to estimate
representing respectively the posterior of entities, the hyper-
parameters related to prior of groups, the global bias, and and
α, see Figure 2.

Sampling a random variable θk ∈ {wk,vk} from the
posterior is easy because we just need to do:

θk ← µθk + ε · σθk
for some ε ∼ N (0, 1). This is called the reparameterization
trick [9].

C. Evidence lower bound objective

What we would like to increase is the likelihood over all
training samples:

log p(y) =

N∑
i=1

log p(yi)

But it’s intractable. So instead we maximize a lower bound
over log p(y):

log p(y) ≥
N∑
i=1

Eq(θ)[log p(yi|xi, θ)]− KL(q(θ)||p(θ))︸ ︷︷ ︸
Evidence Lower Bound (ELBO)

=

N∑
i=1

Eq(θ)[log p(yi|xi, θ)]− KL(q(w0)||p(w0))

−
K∑
k=1

KL(q(θk)||p(θk))

where q(θk) = q(wk)q(vk) = q(wk)
∏d
f=1 q(vkf ).



Hopefully, by increasing the Evidence Lower Bound
(ELBO), we will indirectly increase the log-likelihood. This
is at the core of variational inference.

In our case, the ELBO is easy to derive as the KL term is
between two Gaussian distributions so it can be computed in
closed form. Also all parameters and pairwise independent
so everything can be rewritten as a product of univariate
Gaussians.

When we estimate the ELBO for a single batch of samples
B ⊆ {1, . . . , N}, we have to rescale our estimate to alleviate
bias. Let Nk (resp. NB

k ) be the number of occurrences of
feature k in the training set (resp. batch B). We denote F (B)
the set of unique features that are present in the batch: k ∈
F (B) ⇐⇒ NB

k > 0 ⇐⇒ ∃i ∈ B, xik > 0.

LB =
N

|B|
Eq(θ)

[∑
i∈B

log p(yi|xi, θ)

]

− K∑
k αk

∑
k∈F (XB)

αkKL(q(θk)||p(θk))

where αk = NB
k /Nk is a rescaling weight for debiasing

the ELBO estimate. In practice though, we compute such a
weighted combination of KL for each group (users, items) in
order to ensure unbiasedness.

The expected log-likelihood can also be written in closed
form in the regression case, as the FM model is multilinear
in the parameters. This is what [2], [20] do to speed up the
computations. However, in the classification case, such closed
form is not feasible and we have to resort to sampling. S is
the number of variational samples, although in most of this
paper, S = 1.

LB =
N

|B|S

S∑
s=1

∑
i∈B

log p(yi|xi, θ(s))]

− K∑
k αk

∑
k∈F (B)

αkKL(q(θk)||p(θk))

θ(1), . . . , θ(S) ∼ q(θ)
⇐⇒ θ

(s)
k = µθk + ε · σθk ε ∼ N (0, 1)

The gradients of LB with respect to parameters
µwk , σ

w
k , µ

v,f
k , σv,fk are easy to compute because the prediction

y is linear in them in the regression case, log-linear in the
classification case.

We learn the parameters µ, σ and hyper-parameters ν, λ, α
using Adam optimizer over minibatches. We only update
the parameters of features that are present in the batch,
which simplifies computation over one batch. Our algorithm
is displayed in Algorithm 1.

D. Evaluating predictions on a test set

There are various ways to use the learned distributions to
perform prediction. We can either sample from the last iterate

Algorithm 1 Variational Training of FMs
for each batch B ⊆ {1, . . . , N} do

Sample w0 ∼ q(w0)
for k ∈ F (B) feature involved in batch B do

Sample S times wk ∼ q(wk), vk ∼ q(vk)
. Only required if we do not have a closed form

end for
for k ∈ F (B) feature involved in batch B do

Update parameters µwk , σ
w
k , µ

v,f
k , σv,fk to increase

ELBO estimate LB for this batch
end for
Update hyper-parameters µ0, σ0, ν, λ, α
Keep a moving average of the parameters to compute

mean predictions
end for

of the learned distribution of w0, w and V , or use the last
mean (what is called last in experiments), or average iterates
of the distribution parameters (what is called mean in the
experiments). The latter approach has been denoted as Polyak-
Ruppert averaging [22] or stochastic weight averaging and acts
as a beneficial regularization [23]–[25].

V. EXPERIMENTS

We conducted experiments on real datasets. Given existing
entries, the task consisted in predicting the remaining ones.

A. Tasks and Datasets

The datasets are described in Table II. We distinguish three
tasks: regression and classification, which can be respectively
understood as matrix completion and binary matrix comple-
tion; and preference elicitation.

a) Regression: This task is related to collaborative filter-
ing in recommender systems. Ratings are on an ordinal scale,
between 1 and 5 (sometimes including decimal ratings such
as 2.5). Predictions on a 20% test set are compared using root
mean squared error (RMSE):

RMSE =

√
1

|D|
∑
i∈D

(yi − ŷi)2.

b) Classification: We generated binary Movie100k and
Movie1M datasets from the original datasets by setting the
outcome to rij = 1 if the rating that user i gave to item
j was 4 or 5 stars, 0 otherwise. Predictions on a 20% test
set are compared using accuracy, area under the ROC curve
(AUC) and mean average precision (MAP). This latter metric
summarizes a precision-recall curve as a weighted mean of
precisions achieved at each threshold, with the increase in
recall from the previous threshold used as weight:

MAP =
∑
n≥1

(Rn −Rn−1)Pn
∑
n≥1

Rn −Rn−1 = 1

where Pn (resp. Rn) is the precision (resp. recall) at the nth
threshold.



Task Dataset #users #items #entries Sparsity

Regression Movie100k 944 1683 100000 0.937
Movie1M 6041 3707 1000209 0.955

Classification Movie10k 100 100 10000 0
Movie100k 944 1683 100000 0.937
Movie1M 6041 3707 1000209 0.955
Duolingo 1213 2416 1199732 0.828

TABLE II: Datasets used for our experiments.

We also made experiments using some side information.
The Duolingo dataset for second language acquisition model-
ing1 was used for a competition at the BEA workshop of the
NAACL-HLT conference [14], [26]. It contains the traces of
1,200 English-speaking users learning French by answering
exercises among 3 different formats (reverse translate, type
what they are hearing, listen and type). The observed outcome
of user i learning word j in format of exercise k is 1 if
they got it correct, 0 otherwise. Therefore the sparse features
are a concatenation of 3 one-hot vectors corresponding to the
following groups: user, word, and format of exercise. There
are 1.2M million entries but some people try several times the
same word over time (only 500k unique user–word pairs), and
in this paper we consider the same prediction in this case, as
we do not explicitly model learning over time. In order to do
it, we can use temporal features as side information, see the
literature in knowledge tracing [10], [14].

c) Preference elicitation: For this final task, we want
to guess which items the user knows by selecting few items
to ask. We generated the Movie10k dataset for classification
from Movielens 25M by first selecting the 100 movies with the
most ratings, then randomly choosing 100 users that had rated
at least one but not all of those movies. The Movie10k dataset
is the complete 100×100 binary matrix R whose element rij
corresponds to 1 if user i has rated movie j, 0 otherwise.

80% of users are fully observed in the training set for
learning item parameters. Once item parameters have been
learned, they are frozen and items are separated into inter-
active training (50%) and validation sets (50%). For each
of the remaining 20% of unobserved users in parallel, we
select 4 items in the interactive training set for which we
reveal whether they have rated those movies or not. Then we
update those users’ variational parameters, mean and variance,
evaluate the predictions on the validation set using ACC, AUC,
MAP like in the classification task, then select 4 items again.
Another quantity of interest is the reduction in variance for
the predictions of items in the validation set.

We compare three strategies for item selection:

• random selection in the interactive training set;
• mean, which selects the item for which the probability of

the FM model is closest to 0.5;
• and variance, which selects the item for which the vari-

ance of prediction is the highest.

1https://sharedtask.duolingo.com/2018.html

B. Models

The main baselines are the libFM2 implementation of Gibbs
sampling (MCMC) for training FMs [2], and variational Bayes
factorization machines (VBFM) and their online counterpart
(OVBFM) from [20]. OVBFM provides stochastic online
training compared to full batch training in VBFM, however
the OVBFM implementation from the authors is not expected
to work on classification datasets.

We didn’t include any deep model in our benchmarks,
as they are often beaten by simpler models in collaborative
filtering [17]. Still, we tried DeepFM on Movie100k and got
a higher RMSE of 0.93 than the other baselines, although we
couldn’t perform cross-validation due to time constraints.

C. Framework

For the regression and classification tasks, 20% of the
training set was used for cross-validating the embedding size
d of FMs. We found that among {2, 5, 10}, d = 5 got
the best results on the validation set. In all experiments we
increased our ELBO estimate using the Adam optimizer [27]
over full batch for Movie100k and Movie1M, using learning
rate γ = 0.1. We used S = 1 variational sample, except for
the preference elicitation task where S = 100.
w0, w and V embeddings were initialized using N (0, 1),

precision parameters λ initialized with 0.02. To enforce posi-
tivity of the standard deviation, we can use absolute value |·|
or softplus : x 7→ log(1 + exp(x)). We chose the latter.

For all models considered, all hyperparameters, notably α,
were learned during training. For VFM, the stopping rule for
validation was when the validation metric (RMSE or AUC)
was worsening for 10 consecutive steps. For training or refit, it
was when the ELBO estimate decreased during 4 consecutive
steps. Our implementation, available online3, is written in Ten-
sorFlow 1.154 using TensorFlow Distributions and TensorFlow
Probability [28]. We also provide a simpler implementation in
PyTorch using the torch.distributions package.

Using probabilistic programming, we can code the log-
likelihood term in the ELBO as

outputs.log_prob(observed).mean()

using the same expression in the classification and the regres-
sion case.

VI. DISCUSSION

The results are reported in Figure 3 and Table III for
the regression and classification tasks, and in Figure 4 and
Table IV for the preference elicitation task. For all models,
considering the average of weights always leads to better
performance than considering only the weights of the last
epoch. Such an approach is called stochastic weights averaging
[23], [24].

On regression tasks, all models have comparable perfor-
mance. VBFM is the fastest to converge, thanks to their closed

2http://www.libfm.org
3https://github.com/jilljenn/vae/
4Good old times where TF had more identity than just Keras.
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Fig. 3: Test metrics of all models on Movielens 100k datasets (regression task on the left, classification task on the right). On
the right, VFM stopped early at 100 epochs.

FM MCMC [2] VFM VBFM [20] OVBFM

Movie100k RMSE 0.906 0.906 0.907 0.912
Movie1M RMSE 0.840 0.854 0.856 0.846

Movie100k-binary ACC 0.717 0.722 0.692 –
AUC 0.788 0.791
MAP 0.811 0.813

Movie1M-binary ACC 0.739 0.746 0.732 –
AUC 0.809 0.818
MAP 0.840 0.851

Duolingo ACC 0.848 0.846 0.842 –
AUC 0.814 0.809
MAP 0.948 0.946

TABLE III: Results on all datasets. First rows are on the regression task, the latter ones on the classification task. The best
results are in bold. VBFM and OVBFM is not suited for classification, still it is possible to run VBFM but just to observe
accuracy.

form expressions of gradients. VFM may converge in fewer
epochs if we use more variational samples, which induces an
artificial reduction in variance but with slower training.

It is natural that VFM may be beaten by MCMC, as the
latter does not assume an approximate posterior but samples
from the real posterior. Still, on most classification tasks, VFM
outperforms MCMC and VBFM in all metrics considered.
It also converges faster. Indeed, there is no closed form
expression of the gradient updates so VBFM speedup does
not hold here.

To optimize the ELBO, we use Adam while VBFM use
Robbins-Monro to decay their learning rate [20]. Indeed,
learning rate decays can accelerate convergence in convex
scenarios, as we observe it on regression but not on our
classification experiments [22]–[25].

For the preference elicitation task, we see that most strate-
gies for item selection have comparable performance. The
variance strategy can result in higher scores with few items.
Selecting items of which the probability of being rated is
closest to 0.5 (mean strategy) for the first batch of 4 items
does not have a good performance because the resulting items

may be collinear and not bring diversity. For this initial batch,
random selection or highest variance is more informative.
When asking 8 items over 100, the mean strategy performs
best, followed by variance. However later, most strategies have
comparable performance, with mean still achieving the best
metrics after 20 items.

VII. FUTURE WORK

We showed that on large-scale datasets, especially classi-
fication datasets, variational training of FMs could result in
faster and better training. Our training relies on batches of
data, which can be used in online inference of FMs, for active
learning applications such as preference elicitation. We showed
the impact of selecting items of probability close to 0.5 or with
high variance in the predictions in order to acquire information
efficiently, still many other criteria from information geometry
can be used, such as maximizing the trace or determinant of
Fisher information. We plan to derive entropy-based strategies,
that is, reducing the expected entropy at most at each item. We
couldn’t do it in this paper as it required to simulate too many
possibilities to select the best possible items. However with
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Fig. 4: Comparing strategies for preference elicitation on the Movie10k dataset.

Accuracy
Items 4 8 12 16 20

Random 0.784 0.772 0.813 0.811 0.816
Mean 0.759 0.819 0.811 0.819 0.832

Variance 0.782 0.801 0.807 0.816 0.811

Area under the ROC curve
Items 4 8 12 16 20

Random 0.685 0.717 0.814 0.824 0.828
Mean 0.685 0.815 0.805 0.810 0.835

Variance 0.713 0.790 0.803 0.817 0.822

Mean average precision
Items 4 8 12 16 20

Random 0.513 0.529 0.654 0.673 0.680
Mean 0.459 0.663 0.666 0.673 0.705

Variance 0.510 0.587 0.619 0.651 0.666

Mean variance of predictions
Items 4 8 12 16 20

Random 3.368 8.510 2.149 2.594 1.804
Mean 3.379 3.513 3.884 2.250 1.697

Variance 4.181 2.609 1.889 1.954 1.427

TABLE IV: Results on a validation set of different strategies for item selection in an interactive set, on the Movie10k dataset.

careful derivation of formulas, such updates can be computed
efficiently.

In this paper, we saw the impact of stochastic weight
averaging on performance. Other techniques can be tested,
such as putting a stronger regularization on popular features in
the dataset, just like ALS-WR (alternating least squares with
weighted λ regularization) does in collaborative filtering [29].

There sure is a jungle of deep models for factorization but
they contain even more hyper-parameters (number of layers,
number of neurons) to calibrate. As the input data is sparse,
those deep models may overfit. The interested reader may want
to look at [18], [30], [31] for state-of-the-art benchmarks5.

Berg et al. have shown that matrix completion can be
modeled as message-passing on a graph [32]. The variational
stochastic gradient updates in this paper can also be framed
this way, as collaborative filtering can be seen as edge predic-
tion in a bipartite graph of users and items. We plan to make
more contributions in this direction, where side information
such as movie posters [33] could be embedded in the graph
and speed up preference elicitation.

We showed that a Gaussian approximation performs well,
but it can be replaced with other, more complex families using

5https://deepctr-doc.readthedocs.io/en/latest/Features.html

normalizing flows or even stable diffusion [34], as long as the
Jacobian is easy to compute [35].

VIII. CONCLUSION

In this paper we showed how factorization machines could
be trained easily by optimizing a simple variational objective.
By recovering an approximation of the posterior distribution
over the parameters of the model, one can identify which
features need extra data points. Another advantage is that
hyperparameter optimization is automatically done during
training. This work opens the door to new techniques of
active learning, or upper confidence bound algorithms from
multi-armed bandits, because now reward functions can be
expressed in function of the uncertainty of the model. We hope
to see many applications in adaptive education and interactive
recommender systems.
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