
HAL Id: hal-03886094
https://hal.inria.fr/hal-03886094v2

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CMSec: A Vulnerability Prevention Tool for Supporting
Migrations in Cloud Composite Services

Mohamed Oulaaffart, Rémi Badonnel, Olivier Festor

To cite this version:
Mohamed Oulaaffart, Rémi Badonnel, Olivier Festor. CMSec: A Vulnerability Prevention Tool for
Supporting Migrations in Cloud Composite Services. CloudNet 2022 - IEEE International Conference
on Cloud Networking, Nov 2022, Paris, France. �hal-03886094v2�

https://hal.inria.fr/hal-03886094v2
https://hal.archives-ouvertes.fr


CMSec: A Vulnerability Prevention Tool for
Supporting Migrations in Cloud Composite Services

Mohamed Oulaaffart
RESIST Research Team

LORIA / INRIA Nancy Grand Est,
University of Lorraine, CNRS

54600 Villers-les-Nancy, France
mohamed.oulaaffart@loria.fr

Rémi Badonnel
RESIST Research Team

LORIA / INRIA Nancy Grand Est,
University of Lorraine, CNRS

54600 Villers-les-Nancy, France
remi.badonnel@loria.fr

Olivier Festor
RESIST Research Team

LORIA / INRIA Nancy Grand Est,
University of Lorraine, CNRS

54600 Villers-les-Nancy, France
olivier.festor@loria.fr

Abstract—The growing maturity of orchestration languages,
such as the Topology and Orchestration Specification for Cloud
Applications (TOSCA) language, and the continuous improve-
ment of virtualization techniques contribute to the large-scale de-
ployment of cloud composite services based on multiple resources
that may be hosted over different cloud service providers. The
resources composing these services may be subject to migrations,
either live or offline, in order to cope with performance objectives,
such as load balancing, latency minimization, and energy savings.
However, these migrations may induce changes affecting the
configurations of migrated resources. In particular, these changes
may lead to vulnerabilities, that may compromise the security of
resources, or even the security of the whole cloud service. This
demonstration showcases a vulnerability prevention tool, called
CMSec, for supporting the resource migrations of TOSCA-based
cloud composite services by considering OVAL vulnerability
descriptions together with verification techniques. Based on two
main scenarios, we will expose how the CMSec tool is able to
detect vulnerable configurations prior to resource migrations,
and to suggest corrective operations for remediating them.

I. BACKGROUND

The maturity of orchestration languages contribute to the
design and deployment of elaborated cloud services through
the composition and configuration of multiple computing
resources . These resources are subject to changes over time,
that may cause vulnerabilities compromising the resources,
or even the whole cloud service. The recent advances on
virtualization techniques facilitate cold and hot migrations, that
consist in transferring the resource(s) of a cloud composite
service from a given provider (or a given infrastructure) to
another provider (or infrastructure). While it is often motivated
by performance and cost objectives, the migration process
may impact the protection of cloud services by involuntarily
generating configuration vulnerabilities. It is therefore of major
importance to prevent such vulnerabilities in order to minimize
the exposure of these services to security attacks.

Supported by the project CONCORDIA that has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 830927

The challenge of automating the protection of cloud services
and their underlying resources have already been investigated
in the literature through several security approaches. In par-
ticular, endogenous security mechanisms directly impact the
resources, such as generating specific cloud images with a low
attack surface [1], modifying the internal parameterization of
resources [2], and exploiting certification techniques for guar-
anteeing the resource behaviours [3]. However, these solutions
are often not designed for addressing the properties of cloud
environments (e.g. elasticity, heterogeneity), or do not focus
on vulnerable configurations. In addition, exogenous security
mechanisms enable protecting cloud resources through the
exploitation of external security functions. For instance, a
security orchestrator based on the NFV MANO1 architecture
has been introduced in [4] for supporting the deployment of
network security functions in front of the considered resources.
However, such solutions have mainly investigated access con-
trol rules that are specified using orchestration language exten-
sions. In order to strengthen the security of cloud resources,
several approaches have also focused on trust features for
cloud infrastructures, by considering the virtualization systems
used in these environments, such as enabling secure migration
based on trusted platform modules [5]. These methods are
complementary to our solution for cloud composite services,
which addresses configuration vulnerabilities that may occur
even in fully trusted cloud environments.

In this demonstration paper we will present the imple-
mentation architecture of our CMSec vulnerability prevention
tool, detail its main components and their interactions, and
finally describe the two main scenarios considered for the
demonstration.

II. CLOUD MIGRATION SECURITY TOOL

The proposed tool, called CMSec (Cloud Migration Se-
curity), aims at preventing known vulnerabilities that may
affect cloud composite services during the migration of their

1Management And Network Orchestration



Se
cu

ri
ty

 F
u

n
ct

io
n

s 
 t

o
 b

e
 A

p
p

lie
d

C
M

Se
c

V
u

ln
er

ab
ili

ty
 P

re
ve

n
ti

o
n

 T
o

o
l

fo
r 

Su
p

p
o

rt
in

g 
C

lo
u

d
 M

ig
ra

ti
o

n
s Projector of the Migrated Resource

(First-Order Logic Specification)

Assessor of the Resource Configuration
(SMT-LIB Specification)

Selector of the Security Functions
(SMT-LIB Specification)

SMT Solver
CVC4

SMT Solver
VeriT

SMT Solver
Z3

Orchestration Language 

Migration of Cloud Resources
TO

SC
A

 
Sp

ec
if

ic
at

io
n Vulnerability Descriptions

Security Function 
Descriptions

O
V

A
L 

Sp
ec

if
ic

at
io

n

Orchestrated Cloud 
Composite Service

Fig. 1: Main building blocks of the CMSec vulnerability prevention tool for supporting cloud migrations

resources, through the assessment of their configurations and
the selection of adequate countermeasures when vulnerabil-
ities are identified. It corresponds to the implementation of
the strategy that we have formalized in [6]. The CMSec
architecture, detailed on Figure 1, has been prototyped using
the Python language version 3.7, and relies on SMT solvers
compatible with the SMT-LIB (Satisfiability Modulo Theories
LIBrary) format [7] as back-end services. As shown on the
figure, the three main building blocks (represented in green) of
the CMSec tool include: (1) the migrated resource projector,
(2) the resource configuration assessor, and (3) the security
function selector, that intervene successively in the process of
preventing configuration vulnerabilities during the migration
of resources in cloud composite services.

The CMSec tool considers cloud composite services or-
chestrated using the TOSCA2 orchestration language [8].
This language is both open-source and characterized by a
high expressivity for supporting flexible, interoperable and
distributed applications regardless of the underlying cloud
service providers. It provides an important knowledge source
about cloud services to our tool, by describing the elementary
resources of these services, as well as their relationships. In
particular, it specifies a cloud service as a TOSCA topology
which defines a set of TOSCA nodes (e.g. web micro-service
nodes) that are interconnected by a set of TOSCA relation-
ships (e.g. the interconnection to MySQL database nodes).
In addition, our CMSec tool relies on a set of vulnerabil-

2Topology and Orchestration Specification for Cloud Applications

ity descriptions coming from the official OVAL3 repository
to perform vulnerability prevention activities. OVAL is an
open standardized language supported by MITRE [9] for
describing vulnerability descriptions and specifying how to
assess and report upon a system state. A vulnerability is
typically considered as a logical combination of conditions
that if observed on a target system, the security problem
described by such vulnerability is present on the system. The
OVAL language follows the same concept by considering a
vulnerability description as an OVAL definition. An OVAL
definition specifies a criterion that logically combines a set of
OVAL tests. Each OVAL test in turn represents the process
by which a specific condition or property is assessed on the
target system. Each OVAL test examines an OVAL object
(e.g. an Apache web server) looking for a specific OVAL
state (e.g. a specific version for this server). Components
found in the system matching the OVAL object description
are called OVAL items. These items are compared against
the specified OVAL state in order to build the OVAL test
result. The overall result for the criterion specified in the
OVAL definition is built using the results of each referenced
OVAL test, and permits to determine whether the configuration
resulting from a migration corresponds to a vulnerable state.
The OVAL language provides also a support for specifying
countermeasures (also called security functions) that may be
used to remediate identified configuration vulnerabilities (e.g.
applying a given security patch to the cloud resource, or
activating a specific firewall rule).

3Open Vulnerability and Assessment Language



Assessment Scenario

Projector of the Migrated 
Resource

Assessor of the Resource 
Configuration

TOSCA-Based Composite 
Cloud Service

OVAL Vulnerability 
Descriptions

2

1

4

53

9

Selector of the Security 
Functions

Security Function 
Descriptions

7

8

CVC4 SMT Solver CVC4 SMT Solver

6

Cloud Orchestrator

Remediation Scenario

Fig. 2: Two main demonstration scenarios corresponding respectively to the vulnerability assessment of a migrated cloud resource (in blue
color) and the selection of countermeasures (in orange color) by the CMSec vulnerability prevention tool

A. Migrated Resource Projector

The first building block, called migrated resource projector,
is responsible for determining the new configuration of the
migrated resource(s), as well as the other impacted resources
using the specification of the cloud composite service. This
projection is performed before effectively performing the mi-
gration, in order to prevent the occurrence of vulnerable con-
figurations that may expose the composite service to security
attacks. Based on a first-order logic specification, this building
block exploits the TOSCA specification of the cloud composite
service, which describes its elementary resources and their
relationships, together with the contextual changes induced by
the resource migration (e.g. new environment offered by the
destination cloud service provider or by the destination cloud
infrastructure), in order to infer the new configuration of the
migrated resource(s). The analysis of dependencies permits
also to identify the other resources that may be impacted by
the considered migration.

B. Resource Configuration Assessor

The second building block, called resource configuration
assessor, is responsible for assessing the new configuration of
the migrated resource(s) based on a set of OVAL vulnerability
descriptions. The analysis relies on the projection of the
migrated resource(s) provided by the first building block. It
compares the resource configuration expected after the migra-
tion, to a given set of OVAL vulnerability descriptions, and
it determines whether the projection matches one or several
of the specified vulnerable configurations. Additionally, it is
possible to quantify the severity and exploitability of identified
vulnerabilities based on the CVSS4 scoring associated to

4Common Vulnerability Scoring System

OVAL vulnerability descriptions. This second building block
relies on a SMT solver serving as a back-end service to
identify vulnerabilities using a SMT-LIB specification. We
mainly consider the CVC4 SMT solver [10], which provides
better overall performance than other SMT solvers according
to recent benchmarking on open-source solvers [11]. However,
the CMSec tool also supports other solvers compatible with
the SMT-LIB format, such as Z3 [12] and VeriT [13]. When
configuration vulnerabilities are detected by this configuration
assessor, the tool activates the third building block to deter-
mine countermeasures.

C. Security Function Selector

The third building block, called security function selector,
is responsible for selecting countermeasures in order to re-
mediate detected vulnerable configurations. Based on a set
of security function descriptions (expressed with the OVAL
language), it aims at determining adequate countermeasures to
prevent the occurrence of vulnerabilities, when the migration
is effective. These countermeasures may be directly executed
on the migrated resource(s), such as software patches or
new internal parameters. They also may rely on security
mechanisms that are hosted by the cloud service providers,
such as virtualized network functions (VNF) implementing
intrusion detection systems, firewalls or data leakage preven-
tion mechanisms. This building block exploits again a SMT
solver as a backend service, typically the same one than
the resource configuration assessor block, in order to select
security functions using a SMT-LIB specification.

III. THE DEMONSTRATION

In this demonstration we will show the operation of the
CMSec vulnerability prevention tool for supporting migrations



in cloud composite services orchestrated with the TOSCA
language, by considering two main scenarios (shown on Fig-
ure 2) illustrating respectively the assessment of a migrated
resource and the selection of countermeasures. In that context,
we consider an e-commerce cloud composite service involving
a set of micro-services together with back-end databases.
The micro-services are implemented in the form of a web
application built with the Struts open-source framework, that
extends the Java Servlet API, and are running over Apache
web servers deployed on virtualized infrastructures. Let us
consider that one of these micro-services undergoes migrations
across several cloud service providers that support different
operating systems, namely Linux CentOS, Linux RedHat
Enterprise, and Microsoft Windows Server, under different
versions.

A. Assessment Scenario

The first scenario, depicted in blue color on the figure,
illustrates the main steps of assessing the security of a migrated
component for the orchestrated cloud composite service. It
represents the migration of a web micro-service based on
the Struts framework version 2.3.32, running over an Apache
server version 2.4.54. During this migration, the source cloud
environment supports Microsoft Windows Server 2016, while
the destination cloud environment supports Microsoft Win-
dows Server 2019. Both of them exploit the same version
of the Struts framework and the same version of the Apache
server. The cloud orchestrator which manages the cloud ser-
vice (Arrow 1) invokes our CMSec vulnerability prevention
tool (Arrow 2) before performing the effective migration. The
CMSec tool then establishes the projection of the migrated
resource in the destination cloud environment by collecting
the necessary knowledge from the TOSCA specification of
the considered cloud composite service (Arrow 3). Once
established, the projection is sent to the assessor of the
resource configuration (Arrow 4). This latter relies on a set of
vulnerability descriptions from the official OVAL repository
(Arrow 5). The vulnerability assessment process is formalized
as a satisfiability issue [6], by considering the vulnerability
descriptions together with the resource projection, and gener-
ates an SMT-LIB specification. Our assessor building block
then exploits the CVC4 SMT solver to interpret and solve
this SMT-LIB specification, and therefore determine whether
the projection matches any vulnerable configurations. When
no vulnerability is identified with regard to known vulnerable
configuration, the CMSec tool notifies the cloud orchestrator
that the Struts web micro-service can be migrated to the
destination cloud environment (Arrow 6).

B. Remediation Scenario

The second main scenario, depicted in orange color on
the figure, illustrates the migration of another instance of the
micro-service based on the Struts framework version 2.5.8.
It appears that this version is characterized by a critical
vulnerability, described in CVE-2017-5638 [14], allowing an
attacker to execute arbitrary code remotely on a given web

application. While the source cloud environment implements
a firewall rule preventing this vulnerability to be exploited,
the destination cloud environment does not implement any
countermeasures, at the time when the migration is requested.
First, the CMSec vulnerability prevention tool establishes
the projection of the migrated resource over the destination
cloud environment. After having collected related vulnerabil-
ity descriptions, it starts the resource configuration assessor,
which detects the previously mentioned vulnerability. The last
building block is then activated for selecting adequate counter-
measures (Arrow 7) relying on security function descriptions
(Arrow 8). Two possible countermeasures are identified by
the CMSec tool: the first one corresponds to the execution
of an internal patch over the cloud resource, while the second
one stands for the activation of dedicated firewall rules using
the ModSecurity web application firewall (WAF) in order to
protect the considered cloud resource (Arrow 9). The activation
of these mechanisms may be conditioned by several factors,
such as the portability, the interoperability and the operation
of other resources using the same cloud platform.

C. Performance Evaluation

In addition to these two main scenarios, the demonstration
will also present some performance evaluation results, in par-
ticular regarding the vulnerability assessment process with dif-
ferent vulnerability description dataset from the official OVAL
repository. The experiments are performed over a regular
laptop equipped with a 2Ghz Intel Core i5 processor and 8GB
of RAM memory. The experimental results are synthesized on
Table I, considering a projected configuration corresponding
to an average of 12 properties. We can observe that the
vulnerability assessment time takes less than 2 seconds with
all the considered OVAL datasets. The highest assessment

Operating Systems Nb. of Vulnerabilities Assessment Time

CentOS Linux 3 1426 0.44s

CentOS Linux 4 1623 0.48s

CentOS Linux 5 1171 0.39s

Red Hat Enterprise Linux 3 1539 0.44s

Red Hat Enterprise Linux 5 1172 0.38s

MS Windows 8 4669 0.72s

MS Windows Svr 2012 R2 5344 1.53s

MS Windows Svr 2016 3790 1.29s

MS Windows Svr 2019 1459 1.01s

TABLE I: Vulnerability assessment time considering different oper-
ating system datasets from the official OVAL repository

time (1.53 seconds) is observed with the Microsoft Windows
Server 2012 R2 dataset, which also corresponds to the dataset
with the highest number of vulnerability descriptions, meaning
a total of 5344 OVAL vulnerability descriptions. We will
also quantify during the demonstration the overall execution
time required by the CMSec vulnerability prevention tool to



both assess and select countermeasures, corresponding to an
average time of around 3.20 seconds with the identification
of a single countermeasure, and to an average time of 7.10
seconds for identifying all potential countermeasures, during
our experiments.

This demonstration showcases the architecture of the CM-
Sec vulnerability prevention tool, as well as the benefits and
limits of this solution through concrete usage scenarios. As
future work, we are interested in investigating to what extent
this tool could be integrated into the architecture of a trusted
third-party to support inter-cloud configuration security.

REFERENCES

[1] M. Compastié, R. Badonnel, O. Festor, and R. He, “A TOSCA-Oriented
Software-Defined Security Approach for Unikernel-Based Protected
Clouds,” in Proc. of the IEEE Conference on Network Softwarization
(NetSoft), 2019, pp. 151–159.

[2] M. Barrere, R. Badonnel, and O. Festor, “A SAT-based Autonomous
Strategy for Security Vulnerability Management,” in Proc. of the IEEE
Network Operations and Management Symposium (NOMS), 2014.

[3] M. Anisetti, C. A. Ardagna, and E. Damiani, “Security Certification
of Composite Services: A Test-Based Approach,” in Proc. of the IEEE
International Conference on Web Services (ICWS), 2013.

[4] M. Pattaranantakul, R. He, Z. Zhang, A. Meddahi, and P. Wang,
“Leveraging Network Functions Virtualization Orchestrators to Achieve
Software-Defined Access Control in the Clouds,” IEEE Transactions on
Dependable and Secure Computing, Dec. 2018.

[5] B. Danev, R. J. Masti, G. O. Karame, and S. Capkun, “Enabling
Secure VM-vTPM Migration in Private Clouds,” in Proc. of the Annual
Computer Security Applications Conference (ACSAC). Association for
Computing Machinery, Dec. 2011, pp. 187–196.

[6] M. Oulaaffart, R. Badonnel, and C. Bianco, “An Automated SMT-based
Security Framework for Supporting Migrations in Cloud Composite Ser-
vices,” in Proc. of the IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2022, pp. 1–9.

[7] C. W. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard Version
2.0,” 2010.

[8] C. L. Paul Lipton. TOSCA Simple Profile in YAML Version 1.3.
[Online]. Available: https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html

[9] Mitre. OVAL Vulnerability Description Repository. [Online]. Available:
https://oval.cisecurity.org/repository

[10] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Proc. of the Interna-
tional Conference on Computer Aided Verification (CAV), ser. Lecture
Notes in Computer Science, vol. 6806. Springer, 2011, pp. 171–177.

[11] H. Barbosa, C. Barrett, F. Bobot, and M. Brain. (2020) About CVC4.
[Online]. Available: https://cvc4.github.io/

[12] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proc.
of the International Conference on Theory and Practice of Software.
Berlin, Heidelberg: Springer-Verlag, 2008, p. 337–340.

[13] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine,
“VeriT: An Open, Trustable and Efficient SMT Solver,” in Automated
Deduction, R. A. Schmidt, Ed. Springer Berlin Heidelberg, 2009.

[14] R. D. Booth, H. and G. Witte. The National Vulnerability Database
(NVD): Overview, ITL Bulletin, National Institute of Standards and
Technology. [Online]. Available: https://tsapps.nist.gov/publication


