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Abstract

Intelligent Tutoring Systems have become critically impor-
tant in future learning environments. Knowledge Tracing
(KT) is a crucial part of that system. It is about inferring the
skill mastery of students and predicting their performance to
adjust the curriculum accordingly. Deep Learning-based KT
models have shown significant predictive performance com-
pared with traditional models. However, it is difficult to ex-
tract psychologically meaningful explanations from the tens
of thousands of parameters in neural networks, that would
relate to cognitive theory. There are several ways to achieve
high accuracy in student performance prediction but diagnos-
tic and prognostic reasoning are more critical in learning sci-
ences. Since KT problem has few observable features (prob-
lem ID and student’s correctness at each practice), we extract
meaningful latent features from students’ response data by
using machine learning and data mining techniques. In this
work, we present Interpretable Knowledge Tracing (IKT),
a simple model that relies on three meaningful latent fea-
tures: individual skill mastery, ability profile (learning trans-
fer across skills) and problem difficulty. IKT’s prediction of
future student performance is made using a Tree-Augmented
Naive Bayes Classifier (TAN), therefore its predictions are
easier to explain than deep learning-based student models.
IKT also shows better student performance prediction than
deep learning-based student models without requiring a huge
amount of parameters. We conduct ablation studies on each
feature to examine their contribution to student performance
prediction. Thus, IKT has great potential for providing adap-
tive and personalized instructions with causal reasoning in
real-world educational systems.

Introduction
Learning with a computer plays an essential role in to-
day’s education. Learning can be personalized with adap-
tive learning instructions to improve individual learning
gains and enhance students’ learning experience. A person-
alized adaptive learning environment is much more efficient
than traditional learning environments like classroom learn-
ing (Bloom 1984). Intelligent tutoring systems need to ad-
dress the huge challenge of large-scale personalization for
the process of real-world human learning. The most suc-
cessful tutoring systems are utilized by tens or hundreds of
thousands of students a year with growing numbers (Baker
2016). To fulfill the requirements of personalization, we

need an efficient method to assess the mastery state of stu-
dents’ skills (knowledge) empirically. Knowledge Tracing
(KT) is used to dynamically assess students’ knowledge
mastery state based on their past test outcomes. It can be
used in the prediction of whether students may or may not
answer the next problems correctly to adjust their person-
alized curriculum. AI techniques have found their way into
the building of adaptive learning environments, in particu-
lar for the problem of knowledge tracing, for modeling stu-
dents’ conceptual or procedural knowledge from their ob-
served performance on tasks (Corbett and Anderson 1994).
The most current and well-known example is Deep Knowl-
edge Tracing (DKT) (Piech et al. 2015) with the use of Re-
current Neural Networks (RNNs). Besides, it shows greater
success in student performance prediction than early student
models (Piech et al. 2015; Minn et al. 2019; Minn 2020).

Bayesian Knowledge Tracing (BKT) is the earliest and
well-known sequential approach to KT with psychologically
meaningful parameters. More specifically, BKT is a Hidden
Markov Model (HMM), consisting of observed and latent
variables that represent the student knowledge state on one
specific skill (i.e., a skill can either be mastered by the stu-
dent or not) and observed variables are assumed to be bi-
nary (the student can answer the associated problem cor-
rectly or not) (Corbett and Anderson 1994). Several exten-
sions of BKT have been introduced by using contextual-
ized guessing and slipping parameters (Baker, Corbett, and
Aleven 2008), estimated transition with the use of help fea-
tures (Baker and Yacef 2009), initial probability that the
student knows the skill (Pardos and Heffernan 2010), item
difficulty (Pardos and Heffernan 2011), clusters of different
student groups (Pardos et al. 2012), student-specific param-
eters (Yudelson, Koedinger, and Gordon 2013). However,
these extensions treat skills independently and are unable to
detect learning transfer across skills.

Deep Knowledge Tracing (DKT) has obtained consid-
erable attention thanks to its significant ability to model
some of the learning transfer occurring across skills, which
BKT cannot deal with. However, because DKT feeds all
of past students’ interactions (binary values with associated
skills) to RNNs, it cannot provide a psychological interpre-
tation (Piech et al. 2015) as the extensions of BKT do. Such
psychological information is concealed in the hidden layer
of RNNs with tens of thousands of parameters (Khajah,



Lindsey, and Mozer 2016). Besides, several deep learning-
based knowledge tracing models have been proposed in re-
cent years: Deep Knowledge Tracing and Dynamic Student
Classification (Minn et al. 2018) enhances DKT with clus-
ters of student ability profiles on skills at each time in-
terval; Prerequisite-Driven Deep Knowledge Tracing (Chen
et al. 2018) augments KT model by integrating prerequi-
site relations between skills; Exercise-Enhanced Recurrent
Neural Network with Attention mechanism (Su et al. 2018)
computes a weighted combination of all previous knowl-
edge states; Sequential Key-Value Memory Networks (Ab-
delrahman and Wang 2019) is a hop-LSTM architecture
that aggregates hidden knowledge states of similar prob-
lems into a new state; Deep hierarchical knowledge trac-
ing (Wang, Ma, and Gao 2019) captures the relations be-
tween questions and skills to get problem representations;
Graph-based Interaction Knowledge Tracing (Yang et al.
2021) utilizes graph convolutional networks to substantially
incorporate question-skill correlations. Deep learning-based
models show better predictive performance than the preced-
ing approaches, in part because they are known to preserve
past information in sequential data, such as student outcome
traces. Nevertheless, those models are less likely to provide
psychologically meaningful explanations for their inference
than predicting the correctness of a given problem.

In this paper1, we are trying to provide meaningful ex-
planations through feature engineering and a simple proba-
bilistic graphical model. Hence, we propose a novel student
model called Interpretable Knowledge Tracing (IKT), by
utilizing three meaningful features: individual skill mastery,
ability profile of students (learning transfer across skills),
and problem difficulty. We first utilize conventional machine
learning techniques, such as hidden Markov models and k-
means clustering, to extract meaningful features, and then
incorporate the extracted features using a Tree Augmented
Naive Bayes classifier for inferring the correctness of a fu-
ture problem. In contrast to the family of DKT, our IKT is
a novel model to provide inference interpretation through
a probabilistic graphical model with meaningful features
while keeping high achieving prediction performance in the
task of student performance prediction. We experimentally
show that IKT outperforms well-known student models for
performance prediction on several well-known knowledge
tracing datasets. Additionally, we also conduct ablation stud-
ies to measure the contribution of each feature, by learning
different tree structures.

Background
In successful learning environments like Cognitive Tutor
and ASSISTments, KT plays as a mechanism for tracing
learners’ knowledge (Desmarais and Baker 2012).

KT can be seen as a supervised sequential learning
problem. The KT model is given student past interactions
with the system that include: skills S = (s1, s2, .., st) ∈
{1, . . . ,M}t along with responses R = (r1, r2, .., rt) ∈
{0, 1}t and predicts the probability of getting a correct an-
swer for the next problem. It mainly depends on the mastery

1This work is available at https://github.com/simon-tan/IKT

of the skill s associated with problems P = (p1, p2, .., pt).
So we can define the probability of getting a correct an-
swer as p(rt = 1|st, X) where X = (x1, x2, .., xt−1) and
xk = (sk, rk) is a tuple containing response rk to skill sk at
time k. Then, we review here the best known KT modeling
methods for estimating student’s performance.

• Item Response Theory (IRT). In standardized tests, stu-
dents’ proficiency is assessed by one static latent vari-
able (Hambleton, Swaminathan, and Rogers 1991). IRT
has a strong theoretical background both in terms of be-
ing grounded in psychometric measurement and relying
on a sound mathematical framework. Wilson et al. (2016)
proposed a Bayesian extension of IRT (BIRT) that shows
competitive performance to DKT in terms of student per-
formance prediction.

• Bayesian Knowledge Tracing (BKT) is the earliest se-
quential approach to model a learner’s changing knowl-
edge state and is arguably the first model to relax the as-
sumption on static knowledge states (Corbett and Ander-
son 1994).

• Performance Factors Analysis (PFA) was adapted from
Learning Factor Analysis (LFA) (Cen, Koedinger, and
Junker 2006) with sensitivity to the indicator of student
learning performance. It allows conjunction by summing
the contributions from all skills needed in a performance
by relaxing the static knowledge assumption and mod-
eling multiple skills simultaneously (Pavlik, Cen, and
Koedinger 2009).

• Deep Knowledge Tracing (DKT) (Piech et al. 2015) uses
a Long Short-Term Memory (LSTM) to represent the la-
tent knowledge space of students along with the number
of practices dynamically. This model compactly encodes
the historical information from previous time steps by us-
ing the input, forget and output gates of a LSTM.

• Dynamic Key-Value Memory Networks (DKVMN) was
proposed as an alternative to DKT that is inspired by
the memory network architecture (Zhang et al. 2017).
It utilizes an external memory neural network module
and uses two memory slots called key memory and value
memory to encode the knowledge state of students. As-
sessments of knowledge state on particular skills are
stored in memory slots and controlled by read and write
operations through additional attention mechanisms.

• Deep Knowledge Tracing and Dynamic Student Classi-
fication (DKT-DSC) was proposed to enhance DKT by
utilizing dynamically evaluated student ability profiles at
each time interval (Minn et al. 2018). It applies k-means
clustering to detect student ability profiles and takes them
into account in student performance prediction.

• Context-Aware Attentive Knowledge Tracing (AKT-R)
was proposed by Ghosh, Heffernan, and Lan (2020) and
uses a monotonic version of the scaled dot-product at-
tention mechanism for the encoding and retrieving of the
knowledge state. It also applies Rasch model for learning
the skill and problem embeddings.



Interpretable Knowledge Tracing
When a student learns with an intelligent tutoring system
(ITS), they practice a specific skill through answering sev-
eral questions, and the ITS checks their mastery of skill ac-
cording to whether they were able to provide correct an-
swers. However, even with a high level of mastery of the
skill associated with some problems, the student may pro-
vide an incorrect answer to those problems. We tend to re-
gard such situations as misunderstanding of the problem,
or failure to utilize the related skill properly in a particular
problem under a new circumstance. So we can assume that
other factors, such as ability profile (learning transfer across
skills) or difficulty of the occurring problem at the current
timestamp, have a direct effect on the situation.

To adopt the aforementioned assumptions into ITS, we
propose a feature extraction procedure consisting of three
data mining techniques. Then, instead of feeding all data to
neural networks in deep learning-based KT models, we pro-
pose a student model called Interpretable Knowledge Trac-
ing (IKT) which can predict a student’s future responses by
relying on three meaningful latent features: individual skill
mastery of a student, ability profile (across skills) and prob-
lem difficulty.

Interpretation through Feature Engineering
Our procedure extracts three meaningful latent features from
students’ response data: skill mastery, ability profile, prob-
lem difficulty. These features tell us about how much a stu-
dent knows about the practicing skill, what kind of ability
that student possesses, and how difficult the occurring prob-
lem is at each timestamp. Instead of taking students’ past
interaction sequence (binary values) and learning all infor-
mation in a hidden state of deep learning-based KT model,
the correctness of the problem is inferred by using these la-
tent features as evidence at each timestamp.

Knowledge Tracing The formulation of skill mastery is
inspired by the assessment of skill mastery (probability
of learning a skill st) in Bayesian Knowledge Tracing
(BKT), which is a well-known knowledge tracing model
with psychologically meaningful parameters based on a Hid-
den Markov Model. BKT infers mastery states, from “not
learned” to “learned” and the probabilities above depend
both on fixed parameters and the state at timestamp t.

For a certain skill s ∈ S, BKT consists of four parameters
representing probabilities:
• P (L0): the probability that a student masters the skill be-

fore attempting the first problem associated with s;
• P (T ): the probability that a student, who does not cur-

rently master the skill, will master the skill after the next
practice opportunity;

• P (G): the probability that a student guesses the cor-
rect answer to a question despite not knowing the skill
(guess);

• and P (S): the probability that a student answers a ques-
tion incorrectly despite knowing the skill (slip).

We apply a brute-force search algorithm to fit BKT. We
have P (L0), P (T ), P (G), P (S) of each skill after fitting
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Figure 1: Skill mastery assessment for skills at each times-
tamp. Modeling of each skill is done independently and they
do not interact with each other.

BKT. BKT is based on skill-specific modeling and can pro-
vide skill mastery of each skill according to the observed
outcome obs that is correct (obs = 1) or incorrect (obs = 0):

P (Lt|1) =
P (Lt)(1− P (S))

P (Lt)(1− P (S)) + (1− P (Lt))P (G)
(1)

P (Lt|0) =
P (Lt)P (S)

P (Lt)P (S) + (1− P (Lt))(1− P (G))
(2)

P (Lt+1) = P (Lt|obs) + (1− P (Lt|obs))P (T ) (3)

By combining these equations, we can define the skill
mastery as:

skill mastery(st) = δ(P (Lt), st) (4)

where δ(P (Lt), st) is a function that maps the skill mastery
of particular skill st at current timestamp in the whole stu-
dent interaction.

Note that skill mastery is the probability of learning skill
st rather than the probability that a student applies the skill
correctly in BKT. A BKT model is trained for each skill, and
the inputs to each skill model are the binary responses of a
student on that single skill. Other interleaved skills during
the whole practice are ignored. Each skill model is indepen-
dent, so there is no consideration of learning transfer across
skills in this component.

Ability Profiling A strong limitation of BKT is that it
treats each skill as an independent skill model, thus it can
not discover or leverage inter-skill similarity. When a stu-
dent is assessed on a new skill, BKT considers the learning
that they have gained from previous skills as irrelevant to
the new skill. Intuitively, learning transfer across skills is
a naturally occurring phenomenon. General domain knowl-
edge accumulates through practice and allows the student to



solve new problems in the same domain with greater suc-
cess, even if that problem involves new and specific skills.
However, BKT and most KT models lack a mechanism to
deal with the learning transfer mechanism, and thus they
cannot trace students’ knowledge under transfer.

Learning transfer implies that students can transfer their
acquired skills to new situations and across problems in-
volving a different skill set. ITS models such as Learning
Factor Analysis (LFA) (Cen, Koedinger, and Junker 2006)
and Performance Factor Analysis (PFA) (Pavlik, Cen, and
Koedinger 2009) aim to capture this learning transfer phe-
nomenon. They introduced a factor that represents the learn-
ing accumulated on all skills through practice and then uti-
lized this factor as a predictor of success in further practice.
These models have outperformed the standard BKT model
without the skill transfer mechanism, and have shed new
light on the importance to consider skill transfer.

When BKT performs the prediction task, it estimates the
skill mastery of a student without considering learning trans-
fer across skills. This independent assumption makes BKT
unable to evaluate any types of learning transfer that students
should achieve at the current time interval in the long-term
learning process. In DKT, an LSTM encodes the temporal
information of student knowledge state with transfer learn-
ing in a single state vector and performs state-to-state transi-
tion globally. It is unable to assess the mastery of skills and
the ability profile of the student to transfer learning.

To detect the regular changes of learning transfer across
skills in the long-term learning process, we are inspired by
the work of DKT-DSC (Minn et al. 2018). We reformulate
the ability profile of a student and simplify it without sac-
rificing its originality and performance. It divides the stu-
dent’s interactions into multiple time intervals, then encodes
student past performance for estimating their ability profile
at the current time interval. The ability profile is encoded
as a cluster ID and computed from the performance vector
(with Equation 6) of length equal to the number of skills,
and updated after each time interval by using all previous
attempts on each skill. The success rates on each skill from
past attempts data are transformed into a performance vec-
tor for clustering student i at time interval 1:z as follows (for
brevity we omit indexing all terms by i in Equation 5):

R(xj)1:z =

z∑
t=1

(xjt)

|Njt|
, (5)

di1:z = (R(x1)1:z, R(x2)1:z, ..., R(xn)1:z), (6)
where
• xjt is the outcome of attempt of skill xj being correctly

answered at time interval t; 1 denotes successful attempts
and 0 denotes unsuccessful attempts;

• |Njt| is the total number of practice attempts of skill xj
up to time interval z;

• n is the total number of skills;
• R(xj)1:z represents the ratios of skill xj being cor-

rectly answered from time interval 1 to current time in-
terval z by student i. This is computed for all skills
(x1, x2, .., xn);
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Figure 2: Detection of student’s ability profile at each time
interval.

• di1:z represents a performance vector of student i on all
skills from time interval 1 until z.

Each student has a different number of total time intervals
in the lifetime of their interactions with the system.

If a student’s time interval has no attempt in the interval
0:z, we assign 0.5 to ratio R(xj)1:z .

Therefore, data contains the encoded vector of the stu-
dent’s past performance and is accumulated and updated af-
ter each time interval. Time interval z and student i are ig-
nored in the training process and only used in the clustering
process later. Then the k-means algorithm is used to eval-
uate the temporal long-term learning ability of students in
both training and testing at each time interval z, by measur-
ing the Euclidean distance with centroids achieved after the
training process as in DKT-DSC (Minn et al. 2018).

After learning the centroids of all clusters, each student i
at each time interval z is assigned to the nearest cluster Cc

by the following equation:

ability profile(abz) = argmin
C

K∑
c=1

∑
di1:z−1∈Cc

||di1:z−1 − µc||2

(7)
where centroid µc is the mean of points for cluster Cc , and
performance vector di1:z−1 is the average performance data
of student i from time interval 1 to z − 1.

Students are assigned to the nearest cluster and the label
of this cluster abz represents the temporal student learning
ability at time interval z. Evaluation is started after the first
20 attempts and then every 20 attempts made by a student.
For the first time interval, all students are assigned with ini-
tial ability profile 1.

By adding this cluster ID abz (ability profile) of what
group the student belongs to, we ensure that these high-level
skill profiles are available to the model for making its pre-
dictions throughout the long-term interaction with the tutor.

Estimating Problem Difficulty The problem difficulty
serves as a distinct feature for predicting predict student per-
formance in previous studies (Minn, Zhu, and Desmarais



2018; Minn et al. 2019). Note that, in this study, we assume
each problem is associated with a single skill, but the diffi-
culty is associated with problems, not with the skills them-
selves. The difficulty of a problem pj is determined on a
scale of 1 to 10. Problem difficulty(Pj) is calculated as:

difficulty level(pj) =
{
δ(pj) if |Nj |≥ 4

5 otherwise
(8)

where:

δ(pj) =

⌊∑|Nj |
i Oi(pj)

|Nj |
· 10

⌋
(9)

and where

• pj represents the jth problem
• Nj is the set of students who attempted problem pj

• Oi(pj) the outcome of the first attempt from student i to
problem pj , 1 if successful, 0 otherwise.

δ(pj) is a function that maps the average success rate of
problem pj onto 10 levels. Unseen problems, those that do
not have any record, and problems with fewer than 4 stu-
dents (|Nj |< 4) in the dataset will have a difficulty of 5.

Interpretable Student Performance Prediction
In order to get an interpretation with diagnostic and prognos-
tic reasoning, we decide to choose the Bayes net paradigm
for future development. So, our approach utilizes a Tree-
Augmented Naive Bayes Method (Friedman, Geiger, and
Goldszmidt 1997). The TAN structure is a simple extension
of the Naive Bayes network. Like Naive Bayes, the root node
is the class node (correctness of the problem), causally con-
nected to evidence nodes (skill ID, skill mastery, ability pro-
file, and problem difficulty). Additionally, the TAN structure
relaxes the assumption of independence between the evi-
dence nodes (Minn, Fu, and Desmarais 2014). It allows most
evidence nodes to have another parent, which can be a re-
lated evidence node. This model inherits the directed acyclic
graph structure (Minn, Fu, and Lv 2016; Minn and Fu 2016)
and produces a tree that captures relationships among the
evidence nodes. The learning of this structure is not as com-
putationally expensive as a general Bayesian network and
much more cost effective than building a neural network for
knowledge tracing in DKT. An example TAN structure is il-
lustrated in Figure 3. The class node is the student’s correct-
ness hypothesis under consideration. The other nodes rep-
resent supporting evidence for the particular student’s per-
formance hypotheses at time t. Dependencies among the ev-
idence nodes are captured as additional causal links in the
TAN structure. Even though the direction of arrows repre-
sents the causal links between two nodes, information can
flow in any direction based on the reasoning process (Pearl
2001).

The structure of TAN can be learned in different ways:

• a greedy search with the constraint that a node having
more than one parent from the evidence nodes is not al-
lowed (Cohen et al. 2004);

Figure 3: Tree Structure of TAN.

• a Minimum Weighted Spanning Tree (MWST) approach
that builds a minimum spanning tree to capture the de-
pendencies among evidence nodes, and then connects
the class node to all of the evidence nodes (Friedman,
Geiger, and Goldszmidt 1997).

The MWST algorithm is applied in this research by using
the data mining toolkit Weka (Hall et al. 2009). Learning the
structure of TAN is done by only using training data.

Our model predicts whether a student will be able to an-
swer the next problem pt based on their current knowl-
edge state skill mastery(st), learning transfer across skills
ability profile(abz) and difficulty level of problem occur-
ring problem difficulty(Pj). Instead of only feeding all stu-
dent previous interactions X = (x1, x2, .., xt) to a neural
network, we propose a novel model called IKT.

IKT performs inference by using three meaningful ex-
tracted features ft: skill mastery, ability profile, and problem
difficulty as evidence at the current timestamp t.

P (correctnesst = y|ft) =
P (y)P (ft|y)∑
y′ P (y

′)P (ft|y′)
(10)

where P (ft|y) =P (st|y)P (ability profile(abz)|y, st)
P (problem difficulty(Pj)|y, st)
P (skill mastery(st)|y, st)

Those are assessed skill mastery(st) of student i on skill
s at time t, the temporal ability profile(abz) of student i
at current time interval z, and problem difficulty(Pj) of
problem Pj at time t (for brevity we omit indexing all
terms by student i, st, abz Pj in Figure 3 and Equation
10). The inference is estimated in the context of discretized
values, i.e. conditional probability tables (Hall et al. 2009).
It doesn’t handle continuous variables. Discretization algo-
rithm bin all features into sets for best discrimination among
classes (Mack et al. 2011).

The class node (correctness) represents the predicted
probability that the student would answer the problem with
the associated skill correctly. Thus the prediction of problem
associated with skill st can be retrieved from correctnesst
as described in Figure 3. We can achieve interpretation via
the conditional probability tables of each node with their
causal links. We can trace back the cause of failure in stu-
dents’ problem-solving by detecting whether there is a defi-
ciency in practicing skills or the problem is too difficult for
individual students with their evidence at each timestamp.



Models Ability profile Problem information Sequential
IRT No Yes No
PFA No No No
BKT No No Yes
DKT No No Yes

DKT-DSC Yes No Yes
DKVMN No No Yes

AKT-R No Yes Yes
IKT Yes Yes Yes

Table 1: Comparison on characteristics of student models.

Experiments

We compare the next problem student performance pre-
diction of our model with well-known KT models men-
tioned above: BIRT (Wilson et al. 2016), BKT (Corbett and
Anderson 1994), PFA (Pavlik, Cen, and Koedinger 2009),
DKT (Piech et al. 2015), DKT-DSC (Minn et al. 2018) and
DKVMN (Zhang et al. 2017). But we do not compare with
other variants, because they are more or less similar and do
not show significant performance differences. Table ?? sum-
marizes the characteristics of compared student models, in
which each model has its significant characteristics.

We implement all NN models with Tensorflow and all
LSTM-based models share the same structure of fully-
connected hidden nodes with an embedding size of 200.
For speeding up the training process, mini-batch stochastic
gradient descent is used to minimize the loss function. The
batch size for our implementation is 32. We train the model
with a learning rate of 0.01 and dropout is also applied for
avoiding overfitting. We set the number of epochs to 100.
All the models are trained and tested on the same sets of
training and testing students. For BKT, we learn models for
each skill and make predictions separately and the results for
each skill are averaged.

In this experiment, we assume 20 attempts made by a
student as a time interval for that student for detecting the
student’s ability profile. The total number of temporal val-
ues for students’ ability profiles used in our experiment is
8 (7 clusters and 1 for initial ability profile before eval-
uation in initial time interval for all students). Five-fold
cross-validation is used to make predictions on all datasets.
Each fold involves splitting into 80% training students and
20% test students of each dataset. We conduct our analy-
sis through Area Under Curve (AUC) as the majority class
(correct) ranges 65-75 % across all datasets, and Root Mean
Squared Error (RMSE) as it is a variant of Brier score
commonly encountered in the knowledge tracing commu-
nity (Gervet et al. 2020; Bergner, Halpin, and Vie 2021). For
the input of DKVMN, values in both key and value memory
are learned in the training process. For other models, one-
hot encoded method is applied. The learned embeddings in
value memory represent pre-trained weights which may con-
tain the difficulty of each skill. For IKT, we learn the tree
structure of TAN by using training data and making infer-
ence in testing data with WEKA (Hall et al. 2009).

Dataset
Number of

Skills Problems Students Records
Algebra 437 15663 574 808,775
ASS-09 123 13002 4,163 278,607
ASS-12 198 41918 28,834 2,506,769

Table 2: Overview of datasets.

Models
Datasets

ASS-09 ASS-12 Algebra Average
BIRT 0.750 0.744 0.812 0.768
PFA 0.701 0.672 0.754 0.709
BKT 0.651 0.623 0.642 0.638
DKT 0.721 0.713 0.784 0.739

DKT-DSC 0.735 0.721 0.792 0.749
DKVMN 0.710 0.707 0.780 0.732
AKT-R 0.767 0.777 0.845 0.796
IKT-3 0.797 0.767 0.851 0.805

Best scores are in bold, second best scores are underlined.

Table 3: AUC result for all tested datasets.

Datasets
In order to validate the proposed model, we tested it on three
public datasets from two distinct tutoring scenarios in which
students interact with a computer-based learning system in
educational settings: 1) ASSISTments2 is an online tutoring
system that was first created in 2004 which engages mid-
dle and high-school students with scaffolded hints in their
math problem. If students working on ASSISTments answer
a problem correctly, they are given a new problem. If they
answer it incorrectly, they are provided with a small tutoring
session where they must answer a few questions that break
the problem down into steps. Datasets are as follows: AS-
SISTments 2009-2010 (skill builder), ASSISTments 2012-
2013 (Feng, Heffernan, and Koedinger 2009). 2) Cogni-
tive Tutor. Algebra 2005-20063 is a development dataset re-
leased in KDD Cup 2010 competition from Carnegie Learn-
ing of PSLC DataShop.

For all datasets, only the first correct attempts to origi-
nal problems are considered in our experiment. We remove
data with missing values for skills and problems with dupli-
cate records. To the best of our knowledge, these are among
the most well known publicly available knowledge tracing
datasets.

Results
The TAN structure results in a student model with better
explanation with causal relations and higher predictive per-
formance. The results in Tables 3 and 4 demonstrate that
IKT outperforms significantly the well-known KT models
in all tested datasets. IKT-3 has superior performance than
any other models tested in our experiments. When we com-
pare IKT-3 with our second best performer AKT-R (scores
are underlined in table 3), the improvement is ranging from

2https://sites.google.com/site/assistmentsdata/
3https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp



Models
Datasets

ASS-09 ASS-12 Algebra Average
BIRT 0.440 0.441 0.374 0.418
PFA 0.454 0.440 0.391 0.428
BKT 0.471 0.510 0.440 0.473
DKT 0.450 0.430 0.380 0.420

DKT-DSC 0.434 0.427 0.373 0.411
DKVMN 0.451 0.430 0.380 0.42
AKT-R 0.423 0.409 0.354 0.395
IKT-3 0.411 0.413 0.354 0.392

Best scores are in bold, second best scores are underlined.

Table 4: RMSE result for all tested datasets.

0.71% to 3.91% in Algebra and ASS-09 datasets in terms
of AUC. When we compare in terms of RMSE, it shows an
improvement up to 2.84% over the second best performer
AKT-R on the ASS-09 dataset. So IKT shows better per-
formance than any other method in both AUC and RMSE
(except AKT-R on the ASS-12 dataset).

Ablation Studies
The results so far suggest there may be a different impact
of each factor on the predictive performance of KT models,
and in particular the impact of item difficulty. This question
is further analyzed in this section.

We compare our IKT model through an ablation study
with the following different features:

• IKT-1: skill ID, skill mastery.
• IKT-2: the features of IKT-1 + ability profile.
• IKT-3: the features of IKT-2 + problem difficulty.

This study helps us understand the contribution of each
feature in student performance prediction. IKT-1 takes only
skill ID and skill mastery into account for student perfor-
mance prediction which achieves higher performance than
original BKT and has a bit lower performance than DKT
(where DKT takes only binary values of student previous
interaction). When IKT-2 takes skill ID, skill mastery and
ability profile of a student, it shows similar (or a bit lower)
performance as DKT and higher performance than BKT,
PFA on two Assistments datasets. Our proposed model IKT-
3 shows better performance than any KT methods compared
in this experiment.

Table 5 reports the results. Ability profile results in a mild
improvement in AUC smaller than 1.4% between IKT-1 to
IKT-2. Results from each model with different combination
of features show us which features provide more information
in student performance prediction among various datasets.
We can also see that the problem difficulty factor is the most
influential factor to student performance prediction. When
we apply problem difficulty to IKT-3, it increases around
11.2% to 15.7% in AUC (e.g. 0.731 AUC in IKT-1 to 0.846
IKT-3 in Algebra) respectively. It also explains why both
BIRT and AKT-R have a better performance in student per-
formance prediction among other models (see Tables 3, 4
and 5).

Models
AUC

ASS-09 ASS-12 Algebra
IKT-1 0.705 0.690 0.731
IKT-2 0.715 0.696 0.734
IKT-3 0.797 0.767 0.846

Models
RMSE

ASS-09 ASS-12 Algebra
IKT-1 0.443 0.437 0.395
IKT-2 0.441 0.435 0.394
IKT-3 0.411 0.413 0.354

Table 5: AUC and RMSE result for ablation study.

Conclusion
We extract three meaningful latent features from students’
behavioral data by using data mining techniques in feature
engineering. The TAN structure with causal relations based
on these features results in a KT model with better perfor-
mance for student performance prediction, that does not re-
quire a huge number of parameters nor a complex structure.
It saves huge computational resources compared to deep
learning models and provides a causal explanation for better
understanding with meaningful features.

We proposed a causal probabilistic student model called
IKT with three extracted meaningful features: student’s
skill mastery (probability of learning a skill), ability pro-
file (learning transfer of a student), and problem difficulty
to predict student performance. Unlike deep learning-based
KT models, which only take students past interaction and
learn all information in a hidden state with a huge amount
of parameters and complex relations in structure, IKT can
predict student performance by utilizing extracted features
from skills, problems and students and gives us meaningful
causal explanations. Experiments with three public datasets
show that the proposed model outperforms well-known KT
models (including deep learning-based models) and requires
less computational power than deep learning-based models.
Feature engineering helps us capture more variance from the
data and Tree-Augmented Naive Bayes plays a critical role
in providing causal explanations. It leads to more accurate
and personalized performance predictions.

Although we focused only on prediction performance,
we are also interested in studying the causal effect of the
meaningful features, aiming to serve adaptive instructions in
personalized learning systems. Meanwhile, a trade-off be-
tween student prediction performance and causal explana-
tion should be found. More experiments will be designed
and conducted to understand more about knowledge acqui-
sition and learning behaviors to optimize human learning in
future educational environments.
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G. N. 2012. Clustered knowledge tracing. In Interna-
tional Conference on Intelligent Tutoring Systems, 405–410.
Springer.
Pavlik, P. I.; Cen, H.; and Koedinger, K. R. 2009. Perfor-
mance Factors Analysis–A New Alternative to Knowledge
Tracing. In 14th International Conference on Artificial In-
telligence in Education.
Pearl, J. 2001. Bayesian networks, causal inference and
knowledge discovery. UCLA Cognitive Systems Laboratory,
Technical Report.



Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.;
Guibas, L. J.; and Sohl-Dickstein, J. 2015. Deep knowledge
tracing. In Advances in neural information processing sys-
tems, 505–513.
Su, Y.; Liu, Q.; Liu, Q.; Huang, Z.; Yin, Y.; Chen, E.; Ding,
C.; Wei, S.; and Hu, G. 2018. Exercise-enhanced sequen-
tial modeling for student performance prediction. In Thirty-
Second AAAI Conference on Artificial Intelligence.
Wang, T.; Ma, F.; and Gao, J. 2019. Deep hierarchical
knowledge tracing. In Proceedings of the 12th International
Conference on Educational Data Mining.
Wilson, K. H.; Karklin, Y.; Han, B.; and Ekanadham, C.
2016. Back to the basics: Bayesian extensions of IRT
outperform neural networks for proficiency estimation. In
Barnes, T.; Chi, M.; and Feng, M., eds., Proceedings of the
9th International Conference on Educational Data Mining,
EDM 2016, Raleigh, North Carolina, USA, June 29 - July 2,
2016, 539–544. International Educational Data Mining So-
ciety (IEDMS).
Yang, Y.; Shen, J.; Qu, Y.; Liu, Y.; Wang, K.; Zhu, Y.;
Zhang, W.; and Yu, Y. 2021. GIKT: A Graph-Based Inter-
action Model for Knowledge Tracing. In Hutter, F.; Kerst-
ing, K.; Lijffijt, J.; and Valera, I., eds., Machine Learning
and Knowledge Discovery in Databases, 299–315. Cham:
Springer International Publishing. ISBN 978-3-030-67658-
2.
Yudelson, M. V.; Koedinger, K. R.; and Gordon, G. J. 2013.
Individualized bayesian knowledge tracing models. In Inter-
national conference on artificial intelligence in education,
171–180. Springer.
Zhang, J.; Shi, X.; King, I.; and Yeung, D.-Y. 2017. Dynamic
key-value memory networks for knowledge tracing. In Pro-
ceedings of the 26th international conference on World Wide
Web, 765–774.


