
HAL Id: hal-03897397
https://hal.inria.fr/hal-03897397

Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-Grained Modeling and Optimization for Intelligent
Resource Management in Big Data Processing

Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, Wei Chen, Li
Ma, Yihui Feng, Yaliang Li, Kai Zeng, et al.

To cite this version:
Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, et al.. Fine-Grained Modeling and
Optimization for Intelligent Resource Management in Big Data Processing. VLDB 2022 - 48th Inter-
national Conference on Very Large Databases, Sep 2022, Sydney, Australia. �hal-03897397�

https://hal.inria.fr/hal-03897397
https://hal.archives-ouvertes.fr

Fine-Grained Modeling and Optimization for Intelligent
Resource Management in Big Data Processing

Chenghao Lyu†, Qi Fan‡, Fei Song‡, Arnab Sinha‡, Yanlei Diao†‡
Wei Chen∗, Li Ma∗, Yihui Feng∗, Yaliang Li∗, Kai Zeng∗, Jingren Zhou∗

† University of Massachusetts, Amherst; ‡ Ecole Polytechnique; ∗ Alibaba Group
chenghao@cs.umass.edu,{qi.fan,fei.song,arnab.sinha,yanlei.diao}@polytechnique.edu

{wickeychen.cw,mali.mali,yihui.feng,yaliang.li,zengkai.zk,jingren.zhou}@alibaba-inc.com

ABSTRACT
Big data processing at the production scale presents a highly com-
plex environment for resource optimization (RO), a problem crucial
for meeting performance goals and budgetary constraints of ana-
lytical users. The RO problem is challenging because it involves a
set of decisions (the partition count, placement of parallel instances
on machines, and resource allocation to each instance), requires
multi-objective optimization (MOO), and is compounded by the
scale and complexity of big data systems while having to meet
stringent time constraints for scheduling. This paper presents a
MaxCompute based integrated system to support multi-objective
resource optimization via �ne-grained instance-level modeling and
optimization. We propose a new architecture that breaks RO into a
series of simpler problems, new �ne-grained predictive models, and
novel optimization methods that exploit these models to make ef-
fective instance-level RO decisions well under a second. Evaluation
using production workloads shows that our new RO system could
reduce 37-72% latency and 43-78% cost at the same time, compared
to the current optimizer and scheduler, while running in 0.02-0.23s.

PVLDB Reference Format:
Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, Wei Chen, Li
Ma, Yihui Feng, Yaliang Li, Kai Zeng, Jingren Zhou. Fine-Grained Modeling
and Optimization for Intelligent Resource Management in Big Data
Processing. PVLDB, 15(11): XXX-XXX, 2022.
doi:XX.XX/XXX.XX

1 INTRODUCTION
While big data query processing has become commonplace in en-
terprise businesses and many platforms have been developed for
this purpose [3, 6, 7, 9, 13, 28, 31, 41, 48, 55, 59, 63, 64], resource
optimization in large clusters [15, 34–36] has received less attention.
However, we observe from real-world experiences of running large
compute clusters in the Alibaba Cloud that resource management
plays a vital role in meeting both performance goals and budgetary
constraints of internal and external analytical users.

Production-scale big data processing presents a highly com-
plex environment for resource optimization. We show an example

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:XX.XX/XXX.XX

through the life cycle of a submitted job in MaxCompute [28], the
big data query processing system at Alibaba, as shown in Fig. 1. A
submitted SQL job is �rst processed by a "Cost-Based Optimizer"
(CBO) to construct a query plan in the form of a Directed Acyclic
Graph (DAG) of operators. These operators are further grouped
into several stages connected with data shu�e (exchanging) depen-
dencies. As shown in Fig. 1, job 1 is composed of stage 1 (operators
1-3), stage 2 (operators 4-8), and stage 3 (operators 9-15), and their
boundaries are data shu�ing operations. To explore data paral-
lelism, each stage runs over multiple machines and each machine
runs an instance of a stage over a partition of the input data. To
enable such parallel execution, a "History-Based Optimizer" (HBO)
recommends a partition count (number of instances) for each stage
and a resource plan (the number of cores and memory needed) for
all instances of the stage based on previous experiences.

During job execution, a Stage Dependency Manager will main-
tain the stage dependencies of a job and pop out all the unblocked
stages to the Fuxi scheduler [63]. The scheduler treats each stage
as a task to be scheduled and maintains tasks in queues. For each
stage, the Fuxi scheduler uses a heuristic-based approach to recom-
mending a placement plan that sends instances to machines. After
an instance is assigned to a machine, it will be executed using the
resource plan that HBO has created for this instance, which is the
same for all instances of the same stage.

Challenges. MaxCompute’s large, complex big data processing
environment poses a number of challenges to resource optimization.

First, resource optimization involves a set of decisions that need
to be made in the life cycle of a big data query: (1) the partition count
of a stage; (2) the placement plan that maps the instances of a stage
to the available machines; (3) the resource plan that determines the
resources assigned to each instance on a given machine. All of these
factors will have a signi�cant impact on the performance of the
job, e.g., its latency and computing cost. Among the three issues,
the partition count is best studied in the literature [15, 18, 34, 35].
But this decision alone is not enough – both decisions 2 and 3
can a�ect the performance a lot. While most of the existing work
neglects the placement problem, due to the use of virtualization or
container technology, a service provider like Alibaba Cloud does
need to solve the placement problem in the physical clusters. As for
the resource plan, it is determined by HBO from past experiences,
without considering the latencies of the current instances in hand.
However, such solutions are far from ideal: if one underestimates
the resource needs, the job can miss its deadline. On the other hand,
overestimation leads to wasted resources and higher costs on (both
internal and external) users. A few systems addressed the placement

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Job2. stage1
RP: (0.8 , 8G)
P: 100

Job1. stage2
RP: (1 core , 4G)
P: 40

Query Job

Query Parser

Resource Plan (RP): [DOP, num of cores, memory size, …]
Placement Plan (PP): […]

Job1.Stage2
RP: [40, 8, 8G, …]
PP: []

Job2.Stage1
RP: [100, 16, 16G]
PP: []

Scheduler …
Task Queue

Executor

Job1.Stage1
RP: [20, 4, 4G, …]
PP: []

Cost-based
Optimizer

(CBO)

History-based
Optimizer

(HBO)

Stage Dependency
Manager

Inst. 1

Inst. 2

Inst. M…
Job1.Stage1

Placement Plan

Placement
Advisor

Jo
b1

.st
ag

e1
(2

0,
 1

 co
re

, 2
G

m
em

)

Job1.stage3
(100 insts,2 cores,
4G mem)

Jo
b1

.st
ag

e2
(4

0,
 1

 co
re

, 2
G

m
em

)

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

Job1 -- Physical Operator Tree (POT)

Query Jobs

SQL Parser

Cost-based
Optimizer

Syntax Tres
Logical Plan

History-based
Optimizer

Physical
Operator

Tree (POT)

PO
T

&

Re
so

ur
ce

 P
la

n
(R

P)
 &

Pa
rti

tio
n

Co
un

t (
P)

…
Job2.stage1

Job1.stage2

Job1.stage1

Placement

Advisor

Execution

B
B

B

(4 cor, 16g mem),
(40%, 50%, …)

(2 cor, 10g mem),
(60%, 70%, …)

Machine
Type1

…

(4 cor, 16g mem),
(40%, 50%, …)

(2 cor, 10g mem),
(60%, 70%, …)

Machine
Type2

(2 cor, 10g mem),
(60%, 70%, …)

(8 cor, 12g mem),
(30%, 60%, …)

(8 cor, 12g mem),
(30%, 60%, …)

(8 cor, 12g mem),
(30%, 60%, …)

(8 cor, 12g mem),
(30%, 60%, …)

Machine
Type3

Cluster Manager
- Capacity Monitor
- System State Monitor

Cluster

…

…

Stage &
RP & P

Cluster Manager

A

Task Queue

Scheduler

Job1. stage1
RP: (0.5 core , 2G)
P: 20

Inst. 1
Inst. 2

Inst. 20

…
A stage with
20 instances

Placement Plan (PP)
maps instances to machines

Resource Plan (RP)
assigns CPU and memory to
an instance on a machine

RP

RP

RP

RP

RP

RP

PP

1

2

3

4

5

Jo
b1

.s
ta

ge
1

(0
.5

 co
re

, 2
G)

, 2
0

Job1.stage3
RP: (1 cores, 4G)
P: 10

Jo
b1

.s
ta

ge
2

(1
 co

re
, 4

G)
, 4

0

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

A job with 3 stages

Stage Dependency Manager

Job 1

Popped: {Stage1, Stage2}

Finished: {}

Blocked: {Stage3}

Job 2

Job 3

Stage1

Stage2
Stage3

Jo
b1

.st
ag
e1

(0
.5

 co
re

, 2
G)

, 2
0

Job1.stage3
RP: (1 cores, 4G)
P: 10

Jo
b1

.st
ag
e2

(1
 co

re
, 4

G)
, 4

0
1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

Figure 1: The lifecycle of a query job in MaxCompute

1 2 4 8 16 32 64
Num. of Stages in a Job

0%

50%

100%

Pro
po

rti
on Workloads

A
B
C

(a) CDF for #stages / job

100 101 102 103 104 105

Num. of Instances in a Stage

0%

50%

100%

Pro
po

rti
on Workloads

A
B
C

(b) CDF for #instances / stage

0 20 40 60 80 100 120
Seconds

0

2000

4000

6000

67
16

 In
sta

nc
es

maximum latency=114s

(c) Timeline of 6716 instances in a stage

Figure 2: Trace overview

problem [15, 18] or the resource problem [36, 46] in isolation and
in simpler system environments. We are not aware of any solution
that can address all three problems in an integrated system.

Second, the scale and complexity of our production clusters
make the above decisions a challenging problem. Most notably, our
clusters can easily extend to tens of thousands of machines, while
all the resource optimization decisions must be made well under
a second. An algorithm for the placement problem with quadratic
complexity [18] may work for a small cluster of 10 machines and a
small number of jobs, as in the original paper, but not for the scale
of 10’s thousands of machines andmillions of jobs. Furthermore, the
optimal solutions to both the placement and resource plans depend
on the workload characteristics of instances, available machines,
and current system states. It is nontrivial to characterize all the data
needed for resource optimization, let alone the question of using
all the data to derive optimal solutions well under a second.

Third, our use cases clearly indicate that resource optimization is
a multi-objective optimization (MOO) problem. A real example we
encountered in production is that after the user changed to allocate
10x more resources (hence paying 10x the cost), the latency of a
job was reduced only by half, which indicates ine�ective use of
resources and a poor tradeo� between latency and cost. Over such
a complex processing system, the user has no insights into how
latency and cost trade-o�. Therefore, there is a growing demand that
the resource optimizer makes the decisions automatically to achieve
the best tradeo� between multiple, often competing, objectives.
Most existing work on resource optimization focuses on a single
objective, i.e., job latency [15, 18, 19, 34, 35, 46, 61]. Only a few recent
systems [36, 40] o�er a multi-objective approach to the resource
optimization problem. Still, their solutions do not suit the complex
structure of big data queries, which we detail below.

Fourth, to enable multi-objective resource optimization, the sys-
tem must have a model for each objective to predict its value
under any possible solution that the optimizer would consider.
Existing models, derived from domain knowledge [17, 18, 34] or
machine learning methods [23, 26, 37, 65], have been used to im-
prove SQL query plans [25, 45] or to improve selectivity estima-
tion [11, 20, 21, 32, 33, 38, 50–54, 56, 57, 66]. But a key observation
made in this work is that existing models do not suit the needs of
resource optimization of big data queries because they perform only

coarse-grained modeling: by capturing only end-to-end query la-
tency or operator latency across parallel instances, these models
may yield highly variable performance as they often involve large
numbers of stages and parallel instances. Running optimization
on highly-variable models gives undesirable results while missing
opportunities for instance-level recommendations.

Example 1. Fig. 2(a) and 2(b) show that in a production trace of
0.62 million jobs, there are 1.9 million stages in total, with up to
64 stages in each job, and 121 million instances, with up to 81430
instances in a stage. For a particular stage with 6716 instances,
Fig. 2(c) shows that the latencies of di�erent instances vary a lot.
If a performance model captures only the overall stage latency,
i.e., the maximum instance latency, when the resource optimizer
is asked to reduce latency, it will assign more resources uniformly
to all the instances (as they are not distinguishable by the model).
The extra resources do not contribute to the stage latency for those
short-running instances, while incurring a higher cost. Instead, an
optimal solution would be only to assign more resources to long-
running instances while reducing resources for short-running ones.
Such decisions require �ne-grained instance-level models as well
as instance-speci�c resource plans.

Contributions. Based on the above discussion, our work aims
to support multi-objective resource optimization via �ne-grained
instance-level modeling and optimization, and devises new system
architecture and algorithms to enable fast resource optimization
decisions, well under a second, in the face of 10’s thousands ofmachines
and 10’s thousands of instances per stage. By way of addressing the
above challenges, our work makes the following contributions.

1. New architecture of a resource optimizer (Section 3). To enable
all the resource optimization (RO) decisions of a stage within a
second, we propose a new architecture that breaks RO into a se-
ries of simpler problems. The solutions to these problems leverage
existing cost-based optimization (CBO) and history-based optimiza-
tion (HBO), while �xing their suboptimal decisions using a new
Intelligent Placement Advisor (IPA) and Resource Assignment Ad-
visor (RAA), both of which exploit �ne-grained predictive models
to enable e�ective instance-level recommendations.

2. Fine-grained models (Section 4). To suit the complexity of our
big data system, our �ne-grained instance-level models capture all
relevant aspects from the outputs of CBO and HBO, the hardware,

and machine states, and embed these heterogenous channels of
information in a number of deep neural network architectures.

3. Optimizing placement and resource plans (Section 5). We design
a new stage optimizer that employs a new IPA module to derive
a placement plan to reduce the stage latency, and a novel RAA
model to derive instance-speci�c resource plans to further reduce
latency and cost in a hierarchical MOO framework. Both methods
are proven to achieve optimality with respect to their own set of
variables, and are optimized to run well under a second.

4. Evaluation (Section 6). Using production workloads of 0.6M
jobs and 1.9M stages and a simulator of the extended MaxCompute
environment, our evaluation shows promising results: (1) Our best
model achieved 7-15% median error and 9-19% weighted mean abso-
lute percentage error. (2) Compared to the HBO and Fuxi scheduler,
IPA reduced the latency by 10-44% and the cloud cost by 3-12%while
running in 0.04s. (3) IPA + RAA further achieved the reduction of
37-72% latency and 43-78% cost while running in 0.02-0.23s.

2 RELATEDWORK
ML-based query performance prediction. Recent work has de-
veloped various Machine Learning (ML) methods to predict query
performance. QPPNet [26] builds separate neural network models
(neural units) for individual query operators and constructs more
extensive neural networks based on the query plan structure. Each
neural unit learns the latency of the subquery rooted in a given
operator. TLSTM [37] constructs a uniform feature representation
for each query operator and feeds the operator representations into
a TreeLSTM to learn the query latency. Both approaches, however,
are tailored only for a singlemachine with an isolated runtime envi-
ronment and �xed resources. Hence, they are not directly applicable
to our RO problem in large-scale complex clusters.

ModelBot2 [23] trains ML models for �ne-grained operating
units decomposed from aDBMS architecture to enable a self-driving
DBMS. However, it is designed for a local DMBS but not big data
systems as in our work. GPredictor [65] predicts the latency of con-
current queries in a single machine with a graph-embedding-based
model. It further improves accuracy by using pro�ling features
such as data-sharing, data-con�ict and resource competition from
the local DBMS. In our work, however, concurrency information
regarding the operators from di�erent queries is unavailable due
to the container technology in large clusters [28, 48, 59, 64].

ML-basedmodels have been used for di�erent purposes. NEO [25]
learns a DNN-based cost model for (sub)queries and uses it to
build a value-based Reinforcement Learning (RL) algorithm for
improving query execution plans. Vaidya et al. [45] train ML mod-
els from query logs to improve query plans for parametric queries.
Phoebe [67] uses MLmodels for improving checkpointing decisions.
Many recent works [11, 20, 21, 32, 33, 38, 50–54, 56, 57, 66] have
applied ML-based approaches to improve cardinality estimation.

A �nal, yet important, comment on the above systems is that
they do not address the RO problem like in our work.

Performance tuning in DBMS and big data systems. Perfor-
mance tuning systems require a dedicated, often iterative, tuning
session for each workload, which can take long to run (e.g., 15-45
minutes [46, 61]). As such, they are not designed for production
workloads that need to be executed on demand. In addition, they

aim to optimize a single objective, e.g., query latency. Among search-
based methods, BestCon�g [69] searches for good con�gurations
by dividing high-dimensional con�guration space into subspaces
based on samples, but it cold-starts each tuning request. Classy-
Tune [68] solves the optimization problem by classi�cation, which
cannot be easily extended to the MOO setting. Among learning-
based methods, Ottertune [46] builds a predictive model for each
query by leveraging similarities to past queries, and runs Gaussian
Process exploration to try other con�gurations to reduce latency.
CDBTune [61] uses Deep RL to predict the reward (a weighted sum
of latency and throughput) of a given con�guration and explores a
series of con�gurations to optimize the reward. ResTune [62] uses
a meta-learning model to learn the accumulated knowledge from
historical workloads to accelerate the tuning process for optimizing
resource utilization without violating SLA constraints.

Task scheduling in big data systems. Fuxi [63] and Yarn [48]
make the scheduling decisions based on locality information, while
Trident [13] improves Yarn by considering the locality in di�erent
storage tiers. However, these systems treat each task as a blackbox
and make scheduling decisions without knowing the task charac-
teristics, such as the query plan structures and performance pre-
dictions. Hence, they cannot �nd optimal solutions to the machine
placement and/or resource allocation problems.

Resource optimization in big data systems. In cluster com-
puting, a resource optimizer (RO) determines the optimal resource
con�guration on demand and with low latency as jobs are submitted.
RO for parallel databases [18] determines the best data partitioning
strategy across di�erent machines to minimize a single objective,
latency. Its time complexity of solving the placement problem is
quadratic to the number of machines (9 machines in [18]), which is
not a�ordable on today’s productive scale (>10K machines). Mor-
pheus [15] codi�es user expectations as SLOs and enforces them
using scheduling methods. However, its optimization focuses on
system utilization and predictability, but not minimizing the cost
and latency of individual jobs as in our work. PerfOrator [34] solves
a single-objective (latency) optimization problem via an exhaustive
search of the solution space while calling its model for predicting
the performance of each solution. WiseDB [24] manages cloud re-
sources based on a decision tree trained on performance and cost
features from minimum-cost schedules of sample workloads, while
such schedules are not available in our case. Li et al. [19] mini-
mize end-to-end tuple processing time using deep RL and requires
de�ning scheduling actions and the associated reward, which is not
available in our problem. Recent work [17] proposes a heuristic-
based model to recommend a cloud instance (e.g., EC2 instance)
that achieves cost optimality for OLAP queries, which is di�erent
from our resource optimization problem.

CLEO [35, 49] learns the end-to-end latency model of query op-
erators, and based on the model, minimizes the latency of a stage
(involving multiple operators) by tuning the partition count. It has
a set of limitations: First, its modeling target concerns the latency
of multiple instances over di�erent machines, which can be highly
variable (e.g., due to uneven data partitions or scheduling delays)
and hard to predict. Second, CLEO’s latency model does not permit
instance-level recommendations for the placement and resource
allocation problems. Third, its optimization supports a single ob-
jective, and determines only the partition count in a stage, but not

other RO decisions. Bag et al. [2] propose a plan-aware resource
allocation approach to save resource usage without impacting the
job latency but not minimize latency and cost like in our work.

UDAO [36, 60] tunes Spark con�gurations to optimize for mul-
tiple objectives. However, it works only on the granularity of an
entire query and neglects its internal structure. Such coarse-grained
modeling of latency is unlikely to be accurate for complex big data
queries, which leads to poor results of optimization. TEMPO [40]
considers multiple Service-Level Objectives (SLOs) of SQL queries
and guarantees max-min fairness when they cannot be all met. But
its MOO works for entire queries, but not �ne-grained MOO that
suits the complex structure of big data systems.

Multi-objective optimization (MOO). MOO for SQL [14, 16,
42–44] �nds Pareto-optimal query plans by e�ciently searching
through a large set of them. The problem is fundamentally di�er-
ent from RO, including machine placement and resource tuning
problems. MOO for work�ow scheduling [16] assigns operators
to containers to minimize total running time and money cost. But
its method is limited to searching through 20 possible numbers of
containers and solving a constrained optimization for each option.

Theoretical MOO solutions su�er from a range of performance
issues when used in a RO:Weighted Sum [27] is known to have poor
coverage of the Pareto frontier [29]. Normalized Constraints [30]
lacks in e�ciency due to repeated recomputation to return more so-
lutions. Evolutionary Methods [8] approximately compute a Pareto
set but su�er from inconsistent solutions. Multi-objective Bayesian
Optimization [5, 12] explores the potential Pareto-optimal points
iteratively by extending the Bayesian approach, but lacks the e�-
ciency due to a long-running time. Progressive frontier [36] is the
�rst MOO solution suitable for RO, o�ering good coverage, e�-
ciency, and consistency. However, none of them consider complex
structures of big data queries and require modeling end-to-end
query latency, which does not permit instance-level optimization.

3 SYSTEM OVERVIEW
In this section, we provide the background on MaxCompute [28],
the big data query processing system at Alibaba, and our proposed
extended architecture for resource optimization.

3.1 Background on MaxCompute
In MaxCompute, a submitted user job is represented hierarchically
using stages and operators, which will then be executed by parallel
instances. As shown in Fig. 1, a job is a Directed Acyclic Graph
(DAG) of stages, where the edges between stages are inter-machine
data exchange (shu�ing) operations. A stage is a DAG of operators,
where edges are intra-machine pipelines without data shu�ing.
The input data of each stage is partitioned over di�erent machines,
where each partition is run as an instance of the stage in a container.

Fig. 1 shows the functionality of query optimizers and the sched-
uler in the lifecycle of a submitted job.

Cost-Based Optimizer (CBO): MaxCompute’s Cost-Based Op-
timizer (CBO) is a variant of the Cascades optimizer [10]. It follows
traditional SQL optimization based on cardinality and cost estima-
tion and generates a Physical Operator Tree (POT), which is a DAG
of stages where each stage is a DAG of operators.

History-Based Optimizer (HBO): To facilitate resource opti-
mization, a History-Based Optimizer (HBO) gives an initial attempt

to recommend a partition count (number of instances) for each
stage and a resource plan (the number of cores and memory needed)
for all instances of the stage based on previous experiences. This
history-based approach is known to be suboptimal because it does
not consider the machines to run these queries and their current
states. Both hardware characteristics and system states a�ect the
latencies of instances, and an optimal solution should try to mini-
mize the maximum latency of parallel instances, in addition to cost
objectives. Moreover, HBO needs expensive engineering e�orts,
especially when workloads change and the system upgrades. We
will address these issues in our new system design.

Scheduler: During job execution, the granularity of scheduling
is a stage: a stage that has all dependencies met is handed over
to the Fuxi scheduler [63]. Fuxi uses a heuristic approach to rec-
ommending a placement plan that sends instances to machines,
and each instance is assigned to a container on a machine with a
previously-determined resource plan for CPU and memory. These
decisions, however, are made without being aware of the latency of
each instance. As such, an instance with a potential longer running
time (e.g., due to larger input size) may be sent to a heavily loaded
machine while another instance with less data may be sent to an
idle machine, leading to overall poor stage latency (the maximum
of instance latencies). A detailed example is given later in Fig. 6.

Workload and Cluster complexity. Production clusters take
workloads with a vast variety of characteristics. Workload A from
an internal department includes 1 - 64 stages in each job. A stage
may involve 2 - 249 operators and be executed by 1 - 42K instances,
where an instance could take sub-seconds up to 1.4 hours to run.
Further, production clusters consist of heterogeneous machines. For
example, we observed 5 di�erent hardware types when executing
workload A, where each hardware type includes 30 - 7K machines.
Moreover, the system states in each machine vary over time. Take
CPU utilization for example. The average CPU utilization varies
from 32%-83%, and the standard deviation ranges from 6%-23%.
Finally, eachmachine could runmultiple containers, and a container
runs an instance with a quota of CPU and memory based on a
resource plan. For workload A, we observed 17 di�erent resource
plans for containers. Since there is no perfect isolation between
containers and the host OS [47], containers with the same resource
plan could perform di�erently on machines with di�erent hardware
or system states, making the running environment more complex.

3.2 System Design for Resource Optimization
We next show our design for resource optimization by extending
the MaxCompute architecture. Our work aims to support multi-
objective resource optimization (MORO). Here, we can support any
user objectives (as long as we can obtain training data for them). For
ease of composition, our discussion below focuses on minimizing
both the stage latency (maximum latency among its instances) and
the cloud cost (a weighted sum of CPU-hour and memory-hour),
the two common objectives of our users.

To achieve MORO, the resource optimizer needs to make three
decisions: (1) the partition count of a stage; (2) the placement plan
(PP) that maps the instances of a stage to the available machines;
(3) the resource plan (RP) that determines the resources (the number
of cores and memory size) assigned to each instance on a given
machine. Our design is guided by two principles:

Query Jobs

SQL Parser

Cost-based
Optimizer

Syntax Tres
Logical Plan

History-based
Optimizer

PO
T

&
De

fa
ul

t R
P

&
P

Stage &
RP & P

1

2 3

Periodical Path

A B C

Offline Path

10 11

Online Path

… 91 D

Scheduler
- Task Queue (a queue of stages)

…
Job2.stage1
Job1.stage2
Job1.stage1

Stage-level

Optimizer

Trace
Collector

Execution

Feature Extractor

Placement Advisor

Instance Latency

Predictor

IPA

B
B

B

(4 cor, 16G mem),
(40%, 50%, …)

(2 cor, 10G mem),
(60%, 70%, …)

Machine
Type1

…

(4 cor, 16G mem),
(40%, 50%, …)

(2 cor, 10G mem),
(60%, 70%, …)

Machine
Type2

(2 cor, 10G mem),
(60%, 70%, …)

(8 cor, 12G mem),
(30%, 60%, …)

(8 cor, 12G mem),
(30%, 60%, …)

(8 cor, 12G mem),
(30%, 60%, …)

(8 cor, 12G mem),
(30%, 60%, …)

Machine
Type3

Cluster Manager
- Capacity Monitor
- System State Monitor

Cluster

…

…

PP & Tuned RP

4
Stage &

Default RP &

P &
Capacity Matrix

System State Matrix
5

678

Cluster Manager
- Capacity Monitor
- System State Monitor

A

C

10

11 D

IPA: Intelligent Placement Advisor
RAA: Resource Assignment Advisor

Instance-level

MOO Solver

Stage-level

MOO Optimizer

RAA

Placement Plan (PP)

Resource Plan

Advisor

9

Stage Optimizer (SO)

Architecture (v9
20220701)

Model Server
- Data preparation
- MCI-based modeling
- Periodical model retraining

Jo
b1

.st
ag
e1

(0
.5

 co
re

, 2
G)

, 2
0

Job1.stage3
RP: (1 cores, 4G)
P: 10

Jo
b1

.st
ag
e2

(1
 c

or
e,

 4G
),

40

1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

A job with 3 stages

A job with 3 stages

Stage Dependency Manager

Job 1

Popped: {Stage1, Stage2}

Finished: {}

Blocked: {Stage3}

Job 2

Job 3

Stage1

Stage2
Stage3

Jo
b1

.st
ag
e1

(0
.5

 co
re

, 2
G)

, 2
0

Job1.stage3
RP: (1 cores, 4G)
P: 10

Jo
b1

.st
ag
e2

(1
 co

re
, 4

G)
, 4

0
1

2

3

4

5

6

7

8

9 10

11

12

13

14

15

Figure 3: Extended system architecture for resource optimization

Simplicity and E�ciency. An optimal solution to MORO may
require examining all possibilities of dividing the input data intom
instances and arranging them to run on some of the n machines,
each using one of the r possible resource con�gurations. In pro-
duction clusters, bothm and n could be 10’s of thousands, while all
the RO decisions must be made well under a second. Hence, it is
infeasible to run an exhaustive search for optimal solutions.

Our design principle is to break MORO into a series of sim-
pler problems, each of which can run very fast. First, we keep the
History-Based Optimizer (HBO) that uses past experiences to rec-
ommend a partition count for a stage and an initial resource plan
for its instances. There is a merit of learning such con�gurations
from past best-performing runs of recurring jobs (which dominate
production workloads). While the recommendations may not be
optimal, they serve as a good initial solution. Second, given the out-
put of HBO, we design an Intelligent Placement Advisor (IPA)
that determines the placement plan (PP), mapping the instances to
machines, by predicting latencies of individual instances. Third, our
Resource Assignment Advisor (RAA) will �ne-tune the resource
plan (RP) for each instance, after it is assigned to a speci�c machine,
to achieve the best tradeo� between stage latency and cost. We give
a theoretical justifcation of our approach in Section 5.

Fine-grainedModeling andHierarchicalMOO.As discussed
earlier, instance-level recommendations for PP and RP are key to
minimizing latency and cost. To do so, we design a �ne-grained
model that predicts the latency of each instance based on the work-
load characteristics, hardware, machine states, and resource plan
in use. The model will be used in IPA to develop the PP that min-
imizes the maximum instance latency (while using the same RP
for all instances). The instance-level model will be further used in
RAA to improve the RP by solving a hierarchical MOO problem:
We �rst compute the instance-level MOO solutions that minimize
the latency and cost of each individual instance. We then combine
the instance-level MOO solutions into stage-level MOO solutions,
and recommend one of them that determines the instance-speci�c
resources with the best tradeo� between stage latency and cost.

Fig. 3 presents the detailed architecture that extends MaxCom-
pute with three new components (colored in purple): The trace
collector collects runtime traces, including the query traces (the
query plan and operator features such as cardinality), instance-
level traces (input row number and data size of an instance, and the
resource plan assigned to it), and machine-level traces (machine
system states and hardware type). The model server featurizes

the collected traces and internally learns an instance-level latency
model. The internal model gets updated periodically by retraining
or �ne-tuning when the new traces are ready. It will serve as an
instance-level latency predictor for resource optimization of on-
line queries. The Stage-level Optimizer (SO) consists of the IPA
and RAA, as described above. For a stage to be scheduled, it calls
the predictive model to estimate the latency of each instance on
any available machine, and determines the PP by minimizing stage
latency and then the RP by minimizing both stage latency and cost.

4 FINE-GRAINED MODELING
In this section, we present how to build �ne-grained instance-level
models that can be used to minimize both latency and cost of each
stage. To suit the complexity of big data systems, ourmodels capture
all relevant systems aspects to support the resource optimizer to
make e�ective recommendations.

4.1 Multi-Channel Coverage
It is nontrivial to predict the latency of a single instance due to many
factors in big data systems. Those factors include the characteristics
of the (sub)query plan running in the instance, data characteristics,
resources in use, current system states, and hardware properties.
Each factor alone could a�ect the latency of an instance, and the
coe�ects of multiple factors can make the latency pattern more
complex. Therefore, we propose the idea of multi-channel inputs
(MCI) to capture all of the above factors in our model.

Multi-channel Inputs. For a given stage, we extract features
from all available runtime traces including the query plan, resource
plan, instance-level metrics, hardware pro�le, and system states.
We design multi-channel inputs (MCI) to group the features into
�ve channels that characterize di�erent factors. Fig. 4 shows the
overview of the MCI design for the instances of a stage.

Channel 1: Stage-oriented features (query plan). Channel 1 intro-
duces the stage-oriented features that are shared among instances
in a stage. It captures the operator characteristics in an operator
feature matrix (see Fig. 4) and operator dependencies in a DAG
structure (Fig. 5). The characteristics of each operator are featur-
ized by three common feature types (CT1-CT3) and the customized
features (CFs). CT1 identi�es the operator type and is represented
as a categorical variable. CT2 captures the statistics from CBO
and HBO, including the cardinality, selectivity, average row size,
partition count, and cost estimation. CT3 captures the IO-related

9 10

11

12

13

14

15

ID Name Operator Feat.
9 StreamlineRead1 (CT1, CT2, CT3, CF)9

10 StreamlineRead2 (CT1, CT2, CT3, CT)10
11 SortedAgg1 (CT1, CT2, CT3, CT)11
12 Filter2 (CT1, CT2, CT3, CT)12
13 MergeJoin1 (CT1, CT2, CT3, CT)13
14 HashAgg1 (CT1, CT2, CT3, CT)14
15 TableSink1 (CT1, CT2, CT3, CT)15

Instance id 1 2 … m
Input num. 510K 514K … 1.2M

Input size (MB) 394 398 … 796
Planned CPU 1 1 … 1

Planned Mem 4G 4G … 4G
Machine Cpu utils 93% 88% … 81%

Machine Mem utils 64% 58% … 47%
Machine IO bytes/s .82G .64G … 1.01G
Machine IO reqs/s 71K 61K … 79K

Machine Type F53 F53 … F53

Ch2: Instance Meta

Ch3: Resource Plan

Ch4: Machine
System States

Ch5: Hardware Type

DAG Structure

Operator
Feature Matrix

Ch1: Query Plan

Stage-oriented

Instance-oriented

Feat. Description

OperatorType The type of the operator
InputCard The total input cardinality from children operators

OutputCard The output cardinality of the operator
AvgRowSize The size (in bytes) of each tuple
Selectivity The estimated selectivity of the operator

Partition Count A guessed partition count by CBO
CostCPU The estimated CPU cost of the operator

CostMem The estimated memory cost of the operator
CostNetwork The estimated network cost of the operator

CostDisk The estimated disk cost of the operator
Cost The weighted cost of above four costs

DataReadMode The media(s) of data source of the operator
ShuffleReadAlgo The algorithms for shuffle read till the operator
DataWriteMode The media(s) of data sink of the operator
ShuffleWriteAlgo The algorithms for shuffle write till the operator

SR.limit The limit used by the operator “StremlineRead”
SR.offset The offset used by the operator “StremlineRead”

… …

CT1

CT2

CT3

CFs

Check the full list of Customized Features (CFs) in the appendix of our tech report

CT1|CT2|CT3 stands for Common feature Type 1/2/3, used by all operators
CF stands for Customized Features, each belonging to one specific operator.

Job1.stage3
AIM: Additional Instance Meta
Instance-level: [InputCard, outputCard, CostCPU, CostMem, CostNetwork, CostDisk, Cost]

(CT1, CT2, AIM, CT3, CF)9 (CT1, CT2, AIM, CT3, CF)10

Ch1: Query plan

Plan Embedder
(GTN)

plan embedding

Latency Predictor (MLP)

latency

enc enc enc enc

Ch2 Ch3 Ch4 Ch5

(CT1, CT2, AIM, CT3, CF)11

(CT1, CT2, AIM, CT3, CF)12
(CT1, CT2, AIM, CT3, CF)13

(CT1, CT2, AIM, CT3, CF)14

(CT1, CT2, AIM, CT3, CF)15

Figure 4: The multi-channel coverage from basic features

9 10

11

12

13

14

15

ID Name Operator Feat.
9 StreamlineRead1 (CT1, CT2, CT3, CF)9

10 StreamlineRead2 (CT1, CT2, CT3, CT)10
11 SortedAgg1 (CT1, CT2, CT3, CT)11
12 Filter2 (CT1, CT2, CT3, CT)12
13 MergeJoin1 (CT1, CT2, CT3, CT)13
14 HashAgg1 (CT1, CT2, CT3, CT)14
15 TableSink1 (CT1, CT2, CT3, CT)15

Instance id 1 2 … m
Input num. 510K 514K … 1.2M

Input size (MB) 394 398 … 796
Planned CPU 1 1 … 1

Planned Mem 4G 4G … 4G
Machine Cpu utils 93% 88% … 81%

Machine Mem utils 64% 58% … 47%
Machine IO bytes/s .82G .64G … 1.01G
Machine IO reqs/s 71K 61K … 79K

Machine Type F53 F53 … F53

Ch2: Instance Meta

Ch3: Resource Plan

Ch4: Machine
System States

Ch5: Hardware Type

DAG Structure

Operator
Feature Matrix

Ch1: Query Plan

Stage-oriented

Instance-oriented

Feat. Description

OperatorType The type of the operator
InputCard The total input cardinality from children operators

OutputCard The output cardinality of the operator
AvgRowSize The size (in bytes) of each tuple
Selectivity The estimated selectivity of the operator

Partition Count A guessed partition count by CBO
CostCPU The estimated CPU cost of the operator

CostMem The estimated memory cost of the operator
CostNetwork The estimated network cost of the operator

CostDisk The estimated disk cost of the operator
Cost The weighted cost of above four costs

DataReadMode The media(s) of data source of the operator
ShuffleReadAlgo The algorithms for shuffle read till the operator
DataWriteMode The media(s) of data sink of the operator
ShuffleWriteAlgo The algorithms for shuffle write till the operator

SR.limit The limit used by the operator “StremlineRead”
SR.offset The offset used by the operator “StremlineRead”

… …

CT1

CT2

CT3

CFs

Check the full list of Customized Features (CFs) in the appendix

CT1|CT2|CT3 stands for Common feature Type 1/2/3, used by all operators
CF stands for Customized Features, each belonging to one specific operator.

Job1.stage3
AIM: Additional Instance Meta
Instance-level: [InputCard, outputCard, CostCPU, CostMem, CostNetwork, CostDisk, Cost]

(CT1, CT2, AIM, CT3, CF)9 (CT1, CT2, AIM, CT3, CF)10

Ch1: Query plan

Plan Embedder
(GTN)

plan embedding

Latency Predictor (MLP)

latency

enc enc enc enc

Ch2 Ch3 Ch4 Ch5

(CT1, CT2, AIM, CT3, CF)11

(CT1, CT2, AIM, CT3, CF)12
(CT1, CT2, AIM, CT3, CF)13

(CT1, CT2, AIM, CT3, CF)14

(CT1, CT2, AIM, CT3, CF)15

Figure 5: MCI-based model-
ing framework

properties, including the location of data (local disk or network) and
strategies for shu�ing. CFs are tailored for the unique properties
of operators, and each feature belongs to one particular operator.

Channels 2-5: Instance-oriented features. Channel 2-5 character-
izes individual instances (Fig. 4). Channel 2, instance meta, includes
an instance’s input row number and input size captured from the
underlying storage system after the data partition is determined.
Channel 3, resource plan, featurizes properties of the container that
runs an instance, in terms of the CPU cores and memory size. Chan-
nel 4, machine system states, records the CPU utilization, memory
utilization, and IO activities of a machine to capture its running
states. Since the system states represented by count-based measure-
ments could be in�nite, we discretize the system states to reduce
the computation complexity. Channel 5, hardware type, uses the
machine model to distinguish a set of hardware types.

Augmented Channel 1: Additional Instance Meta (AIM). In big
data systems, CBO produces the query plan without considering
the characteristics of individual instances. Therefore, instances in a
stage share the same query plan features (Ch1), even though their
input row numbers can di�er signi�cantly. A model built on such
features may have di�culty distinguishing those instance latencies.

To address this issue, for each instance, we seek to enrich its
query plan features with instance-level characteristics. More specif-
ically, we augment the query plan channel of an instance by adding
additional instance meta (AIM) features for each operator. AIM con-
sists of the estimated operator input/output cardinality and costs of
an individual instance. It is derived using the stage-level selectivity
(Ch1), the instance meta (Ch2), and the cost model in CBO.

Take job1.stage3 in Fig. 4 for example. We �rst get the instance-
level input cardinality of operators 9 and 10 from Ch2, and calculate
their output cardinality accordingly with the operator selectivity.
Then, we derive the instance-level cardinality of the remaining oper-
ators according to the operator dependency. Finally, we calculate the
instance-level operator costs by reusing CBO’s cost model. Specif-
ically, we substitute the stage-level cardinality with the instance-
level cardinality, set the partition count to one, and call the CBO’s
cost model to derive the operator costs for an instance.

Note that the above approach assumes that instances in a stage
share the same selectivities. Although it may not always be true, our
evaluation results show that the model built under this assumption
could approximate the best performance in a realistic setting.

Finally, recent ML models of DBMSs [26, 39] also learn data char-
acteristics by encoding/embedding tables. In a production system,
however, many tables are not reachable due to access control for
security reasons, and the overhead of representing a distributed ta-
ble is much higher than in a single machine. Therefore, we assume
the data characteristics are already digested by CBO in our work.

4.2 MCI-based Models
Now we propose our MCI-based models to learn instance latency.
MCI-based Modeling Framework. In the output of MCI, fea-
tures in the query plan channel are represented as a DAG (Fig. 5),
while the instance-oriented features are in the tabular form. To
incorporate these heterogeneous data structures in model building,
we design two model components, as shown in Fig. 5. The plan
embedder constructs a plan embedding of the plan features in the
form of an arbitrary DAG structure. It �rst encodes the operators
into a uniform feature space by padding zeros for the unmatched
customized features. To embed the query plan, it then applies a
Graph Transformer Networks (GTN) [58] due to its ability to learn
the DAG context in heterogeneous graphs with di�erent types of
nodes. The latency predictor is a downstream model that concate-
nates the plan embedding with other instance-oriented features
(channels 2-5) into a big vector, and feeds the vector to a Multilayer
Perceptron (MLP) to predict the instance-level latency.
Modeling Tools in Our Framework. Besides GTN, our modeling
framework can accommodate other models designed for DBMSs,
with necessary extensions to our graph-based MCIs. Thus, we can
leverage di�erent models and examine their pros and cons in our
system. Due to space limitations, our extensions of QPPNet [26]
and TLSTM [37] are deferred to [22] .

5 STAGE-LEVEL OPTIMIZATION
In this section, we present our Stage-level Optimizer (SO) that mini-
mizes both stage latency and cost based on instance-level models.

During execution, once a stage is handed to the scheduler, two
decisions are made: the placement plan (PP) that maps instances to
machines, and the resource plan (RP) that determines the CPU and
memory resources of each instance on its assigned machine. The
current Fuxi scheduler [63] decides a PP form instances as follows:
(1) Identify the key resource (bottleneck) in the current cluster,

L
!!
CPU: 40%

IO: busy

!"
CPU: 60%

IO: busy

!#
CPU: 80%

IO: idle

"! (100 rows) 8s (#$) 12s 10s (#$)

"" (200 rows) 16s (#%) 24s (#%) 20s

Fuxi => Stage latency = 24s
1) Key resource type: CPU

2) Pick machines: $$, $%
3) Assign instances: #$ → $$, #% → $%

IPA => Stage latency = 16s
1) Predict the L matrix

2) Compute the BPL list: #$ = 8), #% = 16)
3) Assign the instance with the largest BPL: #% → $$
4) Update the BPL list: #$ = 10)
5) continue 3 until BPL list is empty: #$ → $&

RP Lat Cost
-## 150 5

-#) 55 20

RP Lat Cost
-)# 300 4

-)) 100 5

'! = '!
"!! , '!

"!"

'!
"!! = !*+, *
'!
"!" = **, "+

'# = '#
""! , '#

"""

'#
""! = #++, ,

'#
""" = !++ , *

Inst1-MOO Inst2-MOO

Θ! = -!", -#" Θ# = -!!, -#" Θ$ = -!!, -#%

0&3 = (100,25) 0&4 = (150,10) 0&5 = (300,9)

Θ# = -!!, -#"
0&4 = (150,10)

RAA1) Get Inst-MOO solutions

2) Get Stage-MOO solutions

3) WUN Recommendation:

Θ' = -!#, -#%
0&6 = (300,24)

Random Choice:
Recommended

Random
Choice

Dominates

Figure 6: Example of IPA

A* RP Lat Cost
B)# -)# 300 4

B)) -)) 100 5

B)+ -)+ 80 10

B). -). 75 20

A, RP Lat Cost
B## -## 150 5

B#) -#) 55 20

A0 RP Lat Cost
B+# -+# 80 5

B+) -+) 70 8

B++ -++ 50 10

-$

[;<=]

Θ/ = -##, -)#, -+#

0-7 = 300,14

Θ/ = -##, -)), -+#

0-7 = 150, 15

Θ/ = -#), -)), -+#

0-7 = 100, 30

Θ/ = -#), -)+, -+#

0-7 = 80, 35

Θ/ = -#), -)., -+#

0-7 = 80, 45

Θ/ = -#), -)., -+*

0-7 = 75, 48

RAA Path

-%

-% -&

-%

12

3

5

6
4

1 2
3

4 5

A, RP Lat Cost
B## -## 150 5

B#) -#) 55 20

A* RP Lat Cost
B)# -)# 300 4

B)) -)) 100 5

Inst1-MOO Inst2-MOO

Θ) = -##, -)*
0-4 = 150,10

RAA => Stage latency = 150s, Cost = 10

1) Get the Instance-level

MOO solutions

Θ. = -#), -),
0-6 = 300,24

Random Choice:

Recommended

Random Choice
Dominates

Inst1-MOO Inst2-MOO Inst3-MOO

2) Get the stage-level

MOO solutions

3) WUN Recommendation:

C1 D Stage Latency Stage Cost

0-3 [-#), -))] 100 25

0-4 -##, -)) 150 10

0-5 -##, -)# 300 9

Figure 7: Example of RAA

A* RP Lat Cost
B)# -)# 300 4

B)) -)) 100 5

B)+ -)+ 80 10

B). -). 75 20

A, RP Lat Cost
B## -## 150 5

B#) -#) 55 20

A0 RP Lat Cost
B+# -+# 80 5

B+) -+) 70 8

B++ -++ 50 10

-$

[;<=]

C1 = D,,, D*,, D0,

0-7 = 300,14

C1 = D,,, D**, D0,

0-7 = 150, 15

C1 = D,*, D**, D0,

0-7 = 100, 30

C1 = D,*, D*0, D0,

0-7 = 80, 35

C1 = D,*, D*2, D0,

0-7 = 80, 45

C1 = D,*, D*2, D0*

0-7 = 75, 48

RAA Path

-%

-% -&

-%

12

3

5

6
4

1 2
3

4 5

A, RP Lat Cost
B## -## 150 5

B#) -#) 55 20

A* RP Lat Cost
B)# -)# 300 4

B)) -)) 100 5

Inst1-MOO Inst2-MOO

Θ) = -##, -)*
0-4 = 150,10

RAA => Stage latency = 150s, Cost = 10

1) Get the Instance-level

MOO solutions

Θ. = -#), -),
0-6 = 300,24

Random Choice:

Recommended

Random Choice
Dominates

Inst1-MOO Inst2-MOO Inst3-MOO

2) Get the stage-level

MOO solutions

3) WUN Recommendation:

E3 C Stage Latency Stage Cost

0-3 [-#), -))] 100 25

0-4 -##, -)) 150 10

0-5 -##, -)# 300 9

Figure 8: Example of RAA path

e.g., CPU or IO. (2) Pickm machines with top-m lowest resource
watermarks. (3) Assign instances, in order of their instance id, to
them machines, and use the same resource plan for each instance
as suggested by HBO. However, its negligence of latency variance
among instances leads to suboptimal decisions for PP and RP:

Example 2. Figure 6 shows how Fuxi gets a suboptimal placement
plan in a toy example of sending a stage of 2 instances (i1, i2) to
a cluster of 3 available machines (m1, m2, m3). Assume that the
instance latency is proportional to its input row number on the
samemachine, and the current key resource in the cluster is the CPU.
In this example, Fuxi �rst picksm1 andm2 as machines with the
top-2 lowest CPU utilization (watermarks) and assigns i1 tom1 and
i2 tom2 respectively. The stage latency, i.e., the maximum instance
latency, is 24s. However, the optimal placement plan could achieve
a 16s stage latency by assigning i1 to m3 and i2 to m1. Further,
using the same resources for i1 and i2 is not ideal. Instead, an
optimal resource plan would be adding resources to i2 and reducing
resources for i1 so as to reduce both latency and cost, indicating
the need for instance-speci�c resource allocation.

5.1 MOO Problem and Our Approach
To derive the optimal placement and resource plans, we begin by
providing the mathematical de�nition of multi-objective optimiza-
tion (MOO) and present an overview of our approach.
Instance-level MOO. First, consider a given instance to be run on
a speci�c machine. We use f1, ..., fk to denote the set of predictive
models of the k objectives and θ to denote a resource con�gura-
tion available on that machine. Then the instance-level multiple-
objective optimization (MOO) problem is de�ned as:

De�nition 5.1. Multi-Objective Optimization (MOO).

argmin
θ

f θ = f (θ) =


f1(θ)
...

fk (θ)


s .t . θ ∈ Σ ⊆ Rd

where Σ denotes the set of all possible resource con�gurations.
A point f ′ ∈ Rk Pareto-dominates another point f ′′ i� ∀i ∈

[1,k], f ′i ≤ f ′′i and ∃j ∈ [1,k], f ′j < f ′′j . A point f ∗ is Pareto Opti-
mal i� there does not exist another point f ′ that Pareto-dominates
it. Then, the Pareto Set f = [f θ

1
, f θ

2
, ...] includes all the Pareto

optimal points in the objective space Φ ⊆ Rk , under the con�gura-
tions [θ1,θ2, . . .], and is the solution to the MOO problem.

Stage-level MOO.We next consider the stage-level MOO problem
over multiple instances. Consider m instances, (x1, ...,xm), and
n machines, (y1, ..., yn). We use x̃i to denote the characteristics
of xi based on its features of Ch1 and Ch2 in its multi-channel
representation, and ỹj to denote the features of Ch4 and Ch5 of
machine yj . Then consider two sets of variables, B and Θ:

(1) B ∈ Rm×n is the binary assignment matrix, where Bi, j = 1
when xi is assigned to yj , and

∑
j Bi, j = 1, ∀i = 1...m.

(2) Θ = [Θ1,Θ2, ...,Θm], denotes the collection of resource con-
�gurations ofm instances, where ∀i ∈ [1, . . . ,m],Θi ∈ Σ∗i ⊆

Rd , and Σ∗i is set of possible con�gurations of d resources
(e.g., d = 2 for CPU and memory resources) for instance i .

Given these variables, suppose that f is the instance-level latency
prediction model, i.e., f (x̃i ,Θi , ỹj) gives the latency when xi is run-
ning onyj using the resource con�gurationΘi . Then the stage-level
latency can be written as, Lstaдe = maxi, j Bi, j f (x̃i ,Θi , ỹj). The
stage cost is the weighted sum of cpu-hour and memory-hour and
can be written as,Cstaдe =

∑
i, j Bi, j f (x̃i ,Θi , ỹj)(w ·ΘTi), wherew

is the weight vector over d resources and w · ΘTi is the dot product
between w and Θi . Other objectives can be written in a similar
fashion. Then we have the Stage-level MOO Problem:

De�nition 5.2. Stage-Level MOO Problem.

argmin
B,Θ


L(B,Θ) = maxi, j Bi, j f (x̃i ,Θi , ỹj)

C(B,Θ) =
∑
i, j Bi, j f (x̃i ,Θi , ỹj)(w · ΘTi)

...


s .t .

Bi, j ∈ {0, 1}, ∀i = 1...m,∀j = 1...n∑
j Bi, j = 1, ∀i = 1...m∑
i Bi, jΘ

1
i ≤ U 1

j , . . . ,
∑
i Bi, jΘ

d
i ≤ U d

j ,∀j = 1...n

whereUj ∈ R
d is the d-dim resource capacities on machine yj .

Existing MOO Approaches. Given the above de�nition of stage-
level MOO, one approach is to call existing MOOmethods [8, 27, 30,
36] to solve it directly. However, this approach is facing a host of
issues: (1) The parameter space is too large. In our problem setting,
bothm and n can reach 10’s of thousands. Hence, both B ∈ Rm×n

and Θ = [Θ1,Θ2, ...,Θm], ∀i,Θi ∈ R
d , involve O(mn) and O(md)

variables, respectively, which challenge all MOOmethods. (2) There
are also constraints speci�ed in Def. 5.2. Most MOOmethods do not
handle such complex constraints and hence may often fail to return
feasible solutions. We will demonstrate the performance issues of
this approach in our experimental study.

OurMOOApproach. To solve the complex stage-level MOO prob-
lem while meeting stringent time constraints, we devise a novel
MOO approach that proceeds in two steps:
Step 1 (IPA): Take the resource con�guration Θ0 returned from
the HBO optimizer as the default and assign it uniformly to all
instances,Θi = Θ0, ∀i ∈ [1, ...,m]. Then minimize over B in Def. 5.2
by treating Θ0 as a constant.
Step 2 (RAA):Given the solution from step 1,B∗, we nowminimize
over the variables Θ in Def. 5.2 by treating B∗ as a constant.

The intuition behind our approach is that if we start with a decent
choice of Θ0, as returned by HBO, we hope that step 1 will reduce
stage latency via a good assignment of instances to machines by
considering machine capacities and instance latencies. Then step 2
will �ne-tune the resources assigned to each instance on a speci�c
machine to reduce stage latency, cost, as well as other objectives.We
next present our IPA and RAA methods that implement the above
steps, respectively, prove their optimality based on their respective
de�nitions, and optimize them to run well under a second.

5.2 Intelligent Placement Advisor (IPA)

Problem Setup. IPA determines the placement plan (PP) by way
of minimizing the stage latency. We assume that the total available
resources in a cluster are more than a stage’s need – this assumption
is likely to be met in a production system with 10’s of thousands of
machines1. We further suppose that all the instances of a stage can
start running simultaneously and hence the stage latency equals
the maximum instance latency.

IPA begins by feeding the MCI features of the stage to the la-
tency model and builds a latency matrix, L ∈ Rm×n , to include the
predictions of running the instances on all available machines, i.e.,
Li, j is the latency of running instance xi on machine yj . By setting
Li, j = f (x̃i ,Θ0, ỹj), ignoring the constant Θ0, and focusing on the
stage latency objective in Def. 5.2, we obtain:

argmin
B

[
L(B) = maxi, j Bi, jLi, j

]
(3)

s.t.
∑
j
Bi, j = 1,∀i and

∑
i
Bi, j ≤ βj ,∀j

Here, we add the constraint
∑
i Bi, j ≤ βj to meet the resource ca-

pacity constraint of each machine and a diverse placement preference
(soft constraint) of sending instances to di�erent machines to re-
duce resource contention. Let βj denote the maximum number of
instances a machine yj can take based on its capacity constraint
(Uj ∈ R

d) and diversity preference. We have

βj = min{bU 1
j /Θ

1
0c, bU

2
j /Θ

2
0c, ..., bU

d
j /Θ

d
0 c,α }

where α is a parameter that de�nes the maximum number of in-
stances each machine can take based on the diverse placement
preference. Basically, a smaller α shows a stronger preference of
the diverse placement for a stage and we have α >= dm/ne.

From Eq. (3), given that the variable B is a binary matrix, it is an
NP-hard Integer Linear Programming (ILP) problem [4].
IPA Method. We design a new solution to IPA based on the fol-
lowing intuition: Since the stage latency is the maximum instance

1Otherwise, there is a scheduling delay for the stage with the admission control.

Algorithm 1: IPA Approach
1: L = cal_latency(model, X, Y), S = cal_max_num_inst().
2: Y ∗ = Y , X ∗ = X , and P = {}. // Init
3: BPLl ist = cal_bpl(L, X ∗, Y ∗).
4: repeat
5: it , jt = argmax(BPLl ist)
6: // get the instance and machine index pairs of the largest BPL
7: P = P

⋃
{xit → yjt }, X ∗ = X ∗ − {xit }, Sjt = Sjt − 1.

8: if Y ∗ is ∅ and X ∗ is not ∅ then
9: return {} // No solution found
10: end if
11: if Sjt == 0 then Y ∗ = Y ∗ − {yjt }, Recalculate the BPLl ist .
12: end if
13: until X ∗ is empty
14: return P

latency, intuitively, the placement plan wants to reduce the latency
of the longer-running instances by sending them to the machines
where they can run faster, potentially at the cost of compromising
the latency of other short-running instances.

Our IPA method works as follows: We �rst prioritize the in-
stances by their best possible latency (BPL), where BPL is de�ned as
the minimum latency that an instance can achieve among all avail-
able machines. Then we keep sending the instance of the largest
BPL to its matched machine and updating the BPL for instances
when a machine cannot take more instances. The full procedure is
given in Algorithm 1. The time complexity isO(m(m+n)+d) using
parallelism and vectorized computations in the implementation.
Optimality Result. Our proof of the IPA result is based on the fol-
lowing column-order assumption about the latency matrix L: For a
given column (machine), when we visit the cells in increasing order
of latency, let s1, . . . , sm denote the indexes of the cells retrieved
this way. Then the column-order assumption is that all columns of
the Lmatrix share the same order, s1, . . . , sm . See Fig. 6 for an exam-
ple of Lmatrix. This assumption is likely to hold because, in the IPA
step, all machines use the same amount of resources, Θ0, to process
each instance. Hence, the order of latency across di�erent instances
is strongly correlated with the size of input tuples (or tuples that
pass the �lter) in those instances, which is independent of the ma-
chine used. Empirically, we veri�ed that this assumption holds over
88-96% stages across three large production workloads, where the
violations largely arise from the uncertainty of the learned model
used to generate the L matrix.

Below is our main optimality result of IPA. All proofs in this
paper are left to [22] due to space limitations.

Theorem 5.1. IPA achieves the single-objective stage-latency op-
timality under the column-order assumption.

Boosting IPA with clustering. A remaining issue is that a stage
can be up to 80K instances in a production workload, and the num-
ber of machines can also be tens of thousands. To further reduce the
time cost, we exploit the idea that groups of machines or instances
may behave similarly in the placement problem. Therefore, we
boost the IPA e�ciency by clustering both machines and instances
without losing much stage latency performance.

While there exist many clustering methods [1], running them
on many instances with large MCI features is still an expensive
operation for a scheduler. This motivates us to design a customized
clusteringmethod based onMCI properties. An instance in a stage is
characterized by its query plan (Ch1), instance meta (Ch2), resource
plan (Ch3) and additional instance meta (AIM), where Ch1 and Ch3
are the same for all instances, hence not needed in clustering, and
AIM fully depends on Ch1 and Ch2. So the key factors lie in Ch2,
where the input row number and input size are correlated. Thus,
we approximately characterize an instance only by its input row
number and apply 1D density-based clustering [1]. To represent a
cluster, we choose the instance with the largest input row number
to avoid latency underestimation. A machine in the cluster is
characterized by its system states (Ch4) and hardware type (Ch5).
We cluster them based on discretized values of Ch4 and Ch5.

Suppose that clustering yieldsm′ instance clusters and n′ ma-
chine clusters. Then the time complexity of IPA is O(m logm +
n logn +m′(m′ + n′) + d), where a sorting-based method is used
for clustering both instances and machines. Sincem′ �m,n′ � n,
the complexity reduces to O(m logm + n logn). Compared to other
packing algorithms [18] that solve linear programming problems
with quadratic complexity, the complexity of our algorithm is lower.

5.3 Resource Assignment Advisor (RAA)
After IPA determines the placement plan of a stage, each of its in-
stances is scheduled to run on a speci�c machine. Then we propose
a Resource Assignment Advisor (RAA) to tune the resource plan of
each instance to solve a MOO problem, e.g., minimizing the stage
latency, cloud cost, as well as other objectives.
Stage-level MOO. Consider the stage-level MOO problem de�ned
in Def. 5.2. By ignoring the constant B, we can rewrite it in the
following abstract form using aggregators (д1, ...,дk), each for one
objective, to be applied tom instances:

argmin
Θ

FΘ = F (Θ) =


F1(Θ) = д1(f1(Θ1), ..., f1(Θm))

...

Fk (Θ) = дk (fk (Θ1), ..., fk (Θm))

(4)
where Θ = [Θ1,Θ2, ...,Θm] = [θ l11 ,θ

l2
2 , ...θ

lm
m], θ lii denotes the li -th

resource con�guration of the i-th instance (i ∈ {1, ...,m}), and the
aggregator дj (j=1,...,k) is either a sum or max.

As in the instance-level, we de�ne the stage-level resource
con�guration as Θ = [θ l11 ,θ

l2
2 , ...θ

lm
m], with its corresponding FΘ

in the objective space Φ ⊆ Rk . Then we can de�ne stage-level
Pareto Optimality and the Pareto Set similarly as before.

Note that we are particularly interested in two aggregators. The
�rst is max: the stage-level value of one objective is the maximum
of instance-level objective values over all instances, e.g., latency.
The second is sum: the stage-level value of one objective is the sum
of instance-level objective values, e.g., cost.

Example. In Figure 7, we have f1 as the predictive model for
latency (д1 = max) and f2 for cost (д2 = sum). Suppose Θ = [θ11 ,θ

2
2]

as the stage-level resource con�guration. Then we have the stage-
level latency as F1(Θ) = max(150, 100) = 150, the stage-level cost as
F2(Θ) = sum(5, 5) = 10, and the stage-level solution FΘ is [150, 10].

While one may consider using existing MOO methods to solve
Eq. (4), it is still subject to a large number (O(md)) of variables. To

Algorithm 2: General Hierarchical MOO

Require: f ji , i ∈ [1,m], j ∈ [1, pi], where pi is the number of
Pareto-optimal solutions in i-th instance and [θ 1

i , ..., θ
pi
i]

1: POΘ = [], POF = []

2: minMList, maxMList = �nd_range(f)
3: k1Combs = �nd_all_possible_values(f , minMList, maxMList)
4: for c in k1Combs do
5: for i inm do
6: optimal_solution, index = �nd_optimal(c , [f 1i , ...f

pi
i])

7: Θi = θ indexi
8: end for
9: POΘ .append (Θ), POF .append (F (Θ))
10: end for
11: POF , POΘ = �lter_dominated(POF , POΘ)
12: return POF , POΘ

enable a fast algorithm, we next introduce our Hierarchical MOO
approach developed in the divide-and-conquer paradigm.

De�nition 5.3. Hierarchical MOO.We solve the instance-level
MOO problem for each of the m instances of a stage separately,
for which we can use any existing MOO method (in practice, the
Progressive Frontier (PF) algorithm [36] since it is shown to be
the fastest). Suppose that there are k stage-level objectives, each
with its max or sum aggregator to be applied tom instances. Our
goal is to e�ciently �nd the stage-level MOO solutions from the
instance-level MOO solutions, for which we use f

j
i to denote the

j-th Pareto-optimal solution in the i-th instance by using θ ji .
General hierarchical MOO solution. Suppose that there are k
user objectives, where k1 objectives use the max and k2 objectives
use sum, k1 + k2 = k . We are also given instance-level Pareto sets.
Then we want to select a solution for each instance such that the
corresponding stage-level solution is Pareto optimal. Algorithm 2
gives the full description. After initialization, line 2 obtains the
lower and upper bounds for each of the k1 max objectives. In line 3
(f ind_all_possible_values), we �rst �nd for each max objective all
the possible values as one list, and then use the Cartesian product
of these lists as the candidates for the k1 max objectives. In lines 4
to 10, given one candidate, we try to �nd the corresponding Pareto-
optimal solution for the k2 sum objectives. For the k2 objectives
using sum, due to the complexity of the sum operation, we can not
a�ord the enumeration, which grows exponentially in the number
of instances, O(pmmax) where pmax is the maximum number of
instance-level Pareto points among m instances. To reduce the
complexity, we resort to any existing MOO method, denoted by
the function �nd_optimal, that (in line 6) for each instance selects
one Pareto-optimal solution for the k2 objectives. At the end of the
procedure, we add a �lter to remove the non-optimal solutions.

Example. In Figure 7, we calculate the lower and upper bounds
of the stage-level latency as max(55, 100) = 100 and max(150, 300)
= 300 respectively. Then we enumerate all the possible stage-level
latency values within the bounds (100, 150, 300) to collect potential
Pareto-optimal solutions. For latency=100, there is only one feasible
Θ choice (Θ = [θ21 ,θ

2
2]) and hence the only solution is [100, 25].

Similarly for latency=150, we get another solution [150, 10]. When
latency=300, there are two solutions: [300, 24] with Θ = [θ21 ,θ

1
2]

Algorithm 3: RAA Path policy to construct POΘ and POF

Require: pi , θ
j
i , f

j
i , ∀i ∈ [1,m], j ∈ [1, pi], where we pre-sort f

j
i and

θ ji in the descending order of latency for each instance.
1: u ji = lat (f

j
i), ∀i ∈ [1,m], j ∈ [1, pi].

2: POΘ = [], POF = [], λ = [1, 1, ..., 1], smax=inf
3: Build the max heap Q with data points [(u1

i , i)], ∀i ∈ [1,m].
4: repeat
5: qmax, i = Q .pop()
6: if qmax < smax then
7: POΘ .append (Θλ), POF .append (F (Θλ)), smax = qmax
8: end if
9: λ = πi (λ)
10: if λi > pi then return POΘ, POF
11: end if
12: Q .push((uλii , i))
13: until True

and [300, 9] with Θ = [θ11 ,θ
1
2]. The �rst one will be �ltered because

it is dominated by the latter one (line 6). Finally, we further �lter
solutions being dominated in the chosen set (line 11) and get the
stage-level MOO solutions as [[100, 25], [150, 10], [300, 9]].

Proposition 5.1. For a stage-level MOO problem, Algorithm 2
guarantees to �nd a subset of stage-level Pareto optimal points.
Fast hierarchical MOO solution: RAA Path. In the case that
there are only two objectives, whose aggregators are max and sum,
respectively, we provide another algorithm that can resolve the
Hierarchical MOO e�ciently. The key idea here is that the two ob-
jectives are indeed making tradeo�s. The increase in one objective
often leads to a decrease in the other. With this observation, we
design a new approach called "RAA path".

Example. Figure 8 shows an example of the Pareto sets of 3
instances in a stage, where each instance has 2, 4, 3 Pareto-optimal
solutions, and each solution is sorted by latency in descending order.
We start the procedure by selecting the �rst Pareto solution for
each instance, this leads to Θλ = [θ11 ,θ

1
2 ,θ

1
3] and Fλ = [300, 14].

Notice that 300 is corresponding to θ12 , so we replace θ
1
2 by the entry

below it in the same Pareto set. Now we have the second solution
as Θλ = [θ11 ,θ

2
2 ,θ

1
3] and Fλ = [150, 15]. Continue in this manner;

each time, select the θ corresponding to the instance of the max
latency and replace it with the item below it in the same Pareto set.
It terminates until there is no entry below the current θ .

For a formal description, we use the following notation: (1) λ =
[λ1, λ2, ..., λm] as a state, where λi is the index of the Pareto point in
instance i with the λi -largest latency; (2) Θλ = [θλ11 ,θ

λ2
2 , ...,θ

λm
m];

(3) πi : λ → λ′ is a step such that the ith dimension in state λ is
increased by 1. (4)pi is the number of instance-level Pareto solutions
for instance i . Then Algorithm 3 gives the RAA Path algorithm.

Proposition 5.2. For a stage-level MOO problem with two objec-
tives using max and sum, respectively, RAA path guarantees to �nd
the full set of stage-level Pareto optimal points at the complexity
of O(m · pmax log(m · pmax)).
RAA with Clustering. For e�ciency, we run both the General hi-
erarchical MOO and RAA Path methods by clustering the instances
and machines, wherem is replaced bym′ << m in the complexity.

WL Num.
Jobs

Num.
stages

Num.
Inst

#stages
/job

#insts
/stage

#ops
/stage

Avg Job
Lat(s)

Avg Stage
Lat(s)

Avg Inst
Lat(s)

A 405K 970K 34M 2.40 35.45 3.71 30.97 14.64 16.85
B 173K 858K 36M 4.95 42.02 6.27 120.15 39.72 15.63
C 41K 100K 50M 2.42 505.51 5.31 376.83 181.88 71.08

Table 1: Workload statistics for 3 workload over 5 days

Resource plan recommendation. After getting the stage-level
Pareto set, we reuse UDAO’s Weighted Utopia Nearest (WUN) strat-
egy to recommend the resource plan, which includes a con�guration
for each instance of the stage. It recommends the resource plan
whose objectives could achieve the smallest distance to the Utopia
point, which is the hypothetical optimal in all objectives.

6 EXPERIMENTS
This section presents the evaluation of our models and stage opti-
mizer. Using production traces from MaxCompute, we �rst analyze
our models and compare them to state-of-the-art modeling tech-
niques. We then report the end-to-end performance of our stage
optimizer using a simulator of the extended MaxCompute environ-
ment (detailed in [22]) by replaying the production traces.

Workload Characteristics. See Table 1 for descriptions of pro-
duction workloads A-C. We give additional details in [22].

6.1 Model Evaluation
To train models, we partition the traces of workloads A-C into
training, validation, and test sets, and tune the hyperparameters
of all models using the validation set. As the default, we train
MCI+GTN over all channels augmented by AIM for the instance
latency prediction. More details about training are given in [22].

We report model accuray on 5 metrics: (1) weighted mean abso-
lute percentage error (WMAPE), (2) median error (MdErr), (3) 95 per-
centile Error (95%Err), (4) Pearson correlation (Corr), and (5) error
of the cloud cost (GlbErr). We choose WMAPE as the primary, also
the hardest, metric because it assigns more weights to long-running
instances, which are of more importance in resource optimization.

Expt 1: Performance Pro�ling. We report the performance of our
best models for each workload in Table 3. First, our best model
achieves 9-19% WMAPEs and 7-15% MdErrs over the three work-
loads with our MCI features (Ch1-Ch5 plus AIM). Second, WMAPE
is a more challenging metric than MdErr. The distribution of the
instance latency in production workloads is highly skewed to short-
and median-running instances. Therefore, MdErr is determined
by the majority of the instances but does not capture well those
long-running ones. Third, the error rate of the total cloud cost is
3-4.5x smaller thanWMAPEs, because individual errors of single in-
stances could have a canceling e�ect on the global resource metric,
hence better model performance on the global metric.

Our breakdown analyses further show that IO-intensive opera-
tors and the dynamics of system states are the two main sources of
model errors. First, by training a separate model for the instance-
level operator latency and calculating the error contribution of
each operator type, we �nd the top-3 most inaccurate operators as
StreamLineWrite, TableScan, and MergeJoin, all involving fre-
quent IO activities. It is likely that current traces in MaxCompute
miss the features to fully characterize IO operations. As for the
system dynamics, we train a separate model by augmenting system

A B C
Workloads

5%

10%

15%

20%

25%

W
M

AP
E

8.6%

18.9%

15.1%

8.6%

19.5%

15.2%

8.9%

19.6%

16.3%

9.0%

19.3%

15.2%

10.8%

21.1%

17.1%

12.9%

22.5%

19.1%

14.2%

24.3%

18.0%

all_on+calib
all_on
ch5_off
ch3_off
ch4_off
ch1_off
ch2_off

(a) MCI pro�ling

A B C
Workloads

5%

8%

10%

12%

15%

18%

20%

23%

W
M

AP
E

8.6%

18.9%

15.1%

8.5%

18.9%

14.9%

8.2%

18.9%

14.7%

all_on+calib
all_on+simu1
all_on+simu2

(b) Comparison among di�erent cardinality choices

A B C
Workloads

10%

20%

30%

40%

W
M

AP
E

22.2%

35.7%

27.9%

15.4%

30.6%

20.9%

9.9%

20.7%

15.7%

9.0%

18.6%

15.0%

8.6%

18.9%

15.1%

QPPNet
TLSTM

QPPNet_AUG
TLSTM_AUG

Ours

(c) Comparison with single-machine SOTAs

Figure 9: Performance of our instance-level models, compared to the state-of-the-art (SOTA) methods

24 48 72 96 120
time (h)

20%
40%
60%
80%

ho
ur

ly
W

MA
PE static retrain retrain+finetune

Figure 10: WMAPEs over time (workload C)

states with the average system metrics during the lifetime of an
instance (which is not realistic to get before running an instance).
But this allows us to show that the model further reduces WMAPE
and MdErr to 6-12% and 5-10%, pointing the error source to the
system dynamics. The comprehensive results are shown in [22].

Expt 2:Multi-channel Inputs. We now investigate the importance
of each channel to model performance. We train separate models
with di�erent input channel choices, including (1) the leave-one-
out choices for a channel x (Chx_off), (2) the �ve basic channels
all_on, and (3) the �ve basic channels and the AIM all_on+calib.

Fig. 9(a) shows our results. The top-3 important features are the
instance meta (Ch2), the query plan (Ch1), and the system states
(Ch4). By turning o� each, WMAPE gets worse by 18-66%, 16-50%,
and 9-27%, respectively, compared to all_on. The e�ect of the
hardware type (Ch5) is not signi�cant, likely because the hardware
types used are all high-performance ones. The e�ect of the resource
plan (Ch3) is small here due to its sparsity in the feature space; e.g.,
only 26 di�erent resource plans are observed in workload B. But
their e�ects will be di�erent once they are tuned widely in MOO.

Expt 3: Impact of Cardinality. We train separate models by de-
riving AIMs from di�erent cardinalities: (1) all_on+calib rep-
resents the stage-oriented cardinality from MaxCompute’s CBO;
(2) all_on+simu1 applies the ground-truth stage-level cardinalities
while assuming operators in di�erent instances share the stage
selectivities; (3) all_on+simu2 applies the ground-truth instance-
level cardinalities for operators. Fig. 9(b) shows at most a 0.2%
and 0.4% WAMPE can be reduced by using all_on+simu1 and
all_on+simu2, respectively. This means that improving cardinal-
ity estimation alone cannot improve much latency prediction in big
data systems, which is consistent with CLEO’s observation [35].

Expt 4: Comparison with QPPNet [26] and TLSTM [37]. We next
compare di�erent modeling tools, including (1) original QPPNet,
(2) original TLSTM, (3) our extension, MCI-based QPPNet, (4) MCI-
based TLSTM, and (5)MCI+GTN (our new graph embedder). Fig. 9(c)
shows our results. First, QPPNet and TLSTM achieve 22-36% and
15-31% WMAPE, respectively, 2-3x larger than our best model,
MCI+GTN. Second, using our MCI, MCI+QPPNet and MCI+TLSTM
can improve WMAPE by 12-15% and 6-12%, respectively, while

MCI+TLSTM and MCI+GTN achieve close performance. Thus, our
MCI framework o�ers both good modeling performance and exten-
sibility to adapt SOTAs from a single machine to big data systems.

Expt 5: Training Overhead and Model Adaptivity. We next report
on the training overhead: The data preparation stage costs ∼2 min-
utes every day to collect new traces from each department using
MaxCompute jobs (with a parallelism of 219). We collected 5-day
traces from three internal departments, totaling 0.62M jobs, 2M
stages, and 407G bytes. In the training stage, we run 24h periodic
retraining (retrain) at midnight of each day when the workloads are
light, which takes 3.5 hours on average over 16 GPUs (including
hyperparameter tuning). Optionally, we run �ne-tuning every 6
hours (retrain+�netune), at the average cost of 0.9h each.

To study model adaptivity, we design two settings of workload
drifts: (a) a realistic setting where queries from 5 days are injected in
temporal order; (b) a hypothetical worst case where queries are in-
jected in decreasing order of latency. In both settings, we compare a
static method that trains the model using the data from �rst 6 hours
and never updates it afterward, with our retrain and retrain+�netune
methods. Our results, as shown in Fig. 10 for workload C, include:
(1) The static approach can reach up to 72% WMAPE in some hours
of a day, demonstrating the presence of workload drifts. (2) retrain
and retrain+�netune adapt better to the workload drifts, keeping
errors mostly in the range of 15-25% after days of training, while
having tradeo�s between them: If the workload patterns in 24h
windows are highly regular, retrain works slightly better than re-
train+�netune by avoiding over�tting to insigni�cant local changes
(workload A). Otherwise, retrain+�netune works better by adapting
to signi�cant local changes (workload B). More discussion is in [22].

6.2 Resource Optimization (RO) Evaluation
We next evaluate the end-to-end performance of our Stage Opti-
mizer (SO) against the current HBO and Fuxi scheduler [63], as
well as other MOO methods using production workloads A-C. As
we cannot run experiments directly in the production clusters, we
developed a simulator of the extended MaxCompute and replayed
the query traces to conduct our experiments (detailed in [22]).

We consider the following metrics in resource optimization (RO):
(1) coverage, the ratio of stages that receive feasible solutions within
60s; (2) Lat (in)s , the average stage latency that includes the RO time;
(3) Costs , the average cloud cost of all stages in a workload; (4) Ts ,
the RO time cost. Below, we �rst present a microbenchmark of our
methods and other MOOmethods using 29 subworkloads in Table 2,
and then report our net bene�t over the full dataset in Table 4.

Coverage Lat (in)s ↓ Costs ↓ avд(Ts) (ms) / max(Ts) (ms)
SO choice A B C A B C A B C A B C
IPA(Org) 100% 100% 100% 11% 20% 51% 5% 9% 15% 280 / 2.0K 17 / 18 1.4K / 1.8K

IPA(Cluster) 100% 100% 100% 12% 17% 50% 4% 7% 14% 15 / 24 10 / 10 33 / 36
IPA+RAA(W/O_C) 100% 100% 100% 8% 79% 58% 31% 76% 75% 2.5K / 19K 177 / 220 3.5K / 6.3K

IPA+RAA(DBSCAN) 100% 100% 100% 27% 69% 67% 21% 64% 74% 223 / 937 132 / 136 258 / 452
IPA+RAA(General) 100% 100% 100% 36% 80% 76% 29% 75% 75% 100 / 241 20 / 23 167 / 229

IPA+RAA(Path) 100% 100% 100% 36% 80% 76% 29% 75% 75% 98 / 226 17 / 18 156 / 224
EVO 0% 82% 0% –% -36% –% –% 66% –% – / – 21K / 24K – / –

WS(Sample) 90% 85% 82% -140% 48% -74% -107% 49% -52% 7.4K / 22K 465 / 753 9.8K / 12K
PF(MOGD) 99% 100% 98% -15% 49% 65% 24% 56% 75% 2.7K / 4.0K 2.1K / 2.5K 1.5K / 2.3K
IPA+EVO 98% 100% 98% -27% 69% 43% 22% 75% 71% 3.0K / 7.3K 2.4K / 2.6K 5.0K / 5.9K

IPA+WS(Sample) 100% 100% 100% -36% 76% -1% -19% 72% 32% 3.5K / 10K 517 / 741 12K / 18K
IPA+PF(MOGD) 100% 100% 100% -0.4% 51% 69% 26% 56% 75% 1.6K / 2.5K 1.2K / 1.6K 1.2K / 2.2K

Table 2: Average Reduction Rate (RR) against Fuxi in 29 subworkloads within 60s

WL WMAPE MdErr 95%Err Corr GlbErr
A 8.6% 7.4% 62.4% 96.6% 1.9%
B 19.0% 15.1% 71.5% 96.4% 5.4%
C 15.1% 12.7% 97.3% 98.4% 5.1%

Table 3: Modeling Performance

SO scenario Stage Lat (in): Cost:
IPA (noise-free) 10%, 15%, 44% 3%, 7%, 12%
IPA (noisy) 9%, 10%, 42% 3%, 6%, 12%
IPA+RAA (noise-free) 37%, 58%, 72% 43%, 56%, 78%
IPA+RAA (noisy) 37%, 55%, 72% 42%, 56%, 78%

Bootstrap Model Stage Lat (in): Cost:
GTN+MCI 34%,49%,68% 48%,41%,71%
TLSTM 17%,2%,65% 43%,31%,70%
QPPNet 34%,1%,63% 46%,30%,68%

Table 4: Average RR over 2M stages

Expt 6: IPA Only. We �rst turn on only the IPA module in the
stage optimizer (no RAA) and compare the two options of IPA to
the Fuxi scheduler over the 29 subworkloads. As shown in Tab. 2,
the clustered version IPA(Cluster) reduces the stage latency (in-
cluding the solving time) by 12-50% and cost by 4-14%, with the av-
erage time cost between 10-33 msec. Without clustering, IPA(Org)
achieves comparable reduction rates as IPA(Cluster) but costs
2-83x more time for solving.

Expt 7: IPA+RAA. We now run IPA(Cluster) with RAA of four
choices. IPA+RAA(Path) solves the resource plan by applying RAA
Path over instance and machine clusters and achieves the best per-
formance. It reduces the stage latency by 36-80% and cloud cost by
29-75%, with an average time cost between 17-156ms (including
IPA). IPA+RAA(W/O_C) does RAA without clustering and su�ers
high overhead (up to 19s for a stage). IPA+RAA(DBSCAN) applies
DBSCAN for the instance clustering, which incurs up to 937 msec
for a stage, hence ine�cient for production use. IPA+RAA(General)
shows the performance of our general hierarchical MOO approach,
which is slightly worse than IPA+RAA(Path) (in this 2D MOO prob-
lem) in running time while o�ering a similar reduction of latency
and cost. Details of the four choices are in [22].

Expt 8: MOO baselines. We next compare to SOTA MOO solu-
tions, EVO [8], WS(Sample) [27], and PF(MOGD) [36], using Def. 5.2.
See [22] for their implementation details. As shown in the 3 red
rows of Table 2, (1) over 29 sub-workloads, none of them guarantees
to return all results within 60s; (2) their latency and cost reduction
rates are all dominated by IPA+RAA(Path), and even lose to the
Fuxi scheduler on some workloads; (3) their solving time is 1-2
magnitude higher than our approach, making them infeasible to be
used by a cloud scheduler. As an alternative, we apply IPA to solve
the B variables and these MOO methods to solve only Θ based on
Eq. (4). As shown in the last 3 blue rows in Table 2, they are still
inferior to IPA+RAA(Path) in both latency and cost reduction and
in running time (mostly taking 1-6 sec to complete).

Expt 9: Net Bene�ts.We next compare our SO (IPA+RAA) against
Fuxi’s scheduling results by considering the model e�ects: the noise-
free case means that the predicted latency is the true latency, while
the noisy case captures the fact that the true latency is di�erent from
the predicted one. We run the entire 2M stages over 3 departments
in both noisy and noise-free cases. For the noisy case, we turn on the
actual latency simulator (GPR model) to simulate the actual latency.
Speci�cally, given a predicted instance latency, GPR generates a
Gaussian distribution (N (µ,σ)) of the actual latency, and samples

from the distribution within µ ± 3σ . Table 4 shows that in both
noise-free and noisy settings, SO (IPA+RAA) signi�cantly reduces
stage latency and cloud cost compared to Fuxi, with the �ne-grained
MCI+GTN model for latency prediction.

Expt 10: Impact of Model Accuracy. Finally, to quantify the impact
of model accuracy on resource optimization, we use GPR models
pre-trained over three bootstrap models (MCI+GTN, TLSTM, QPP-
Net). Note that in terms of model accuracy, we have (MCI+GTN >
TLSTM > QPPNet), as shown in Fig. 9(c). We borrow Fuxi’s ground-
truth placement plan and ask RAA for resource plans of each stage
under the same condition of the system states as Fuxi. To be fair
in the comparison, we dropped the scheduling delays for all stages
and set the stage latency as the maximum instance latency. Table 4
compares the RAA’s reduction rate (RR) among di�erent bootstrap
models. These results show that indeed, better reduction rates are
achieved by using a more accurate model, which validates the im-
portance of having a �ne-grained accurate prediction model.

7 CONCLUSIONS
We presented a MaxCompute [28] based big data system that sup-
portsmulti-objective resource optimization via �ne-grained instance-
level modeling and optimization. To suit the complexity of our sys-
tem, we developed �ne-grained instance-level models that encode
all relevant information as multi-channel inputs to deep neural
networks. By exploiting these models, our stage optimizer employs
a new IPA module to derive a latency-aware placement plan to
reduce the stage latency, and a novel RAA model to derive instance-
speci�c resource plans to further reduce stage latency and cost
in a hierarchical MOO framework. Evaluation using production
workloads shows that (1) our best model achieved 7-15% median
error and 9-19% weighted mean absolute percentage error; (2) com-
pared to the Fuxi scheduler [63], IPA+RAA achieved the reduction
of 37-72% latency and 43-78% cost while running in 0.02-0.23s.

ACKNOWLEDGMENTS
This work was partially supported by the European Research Coun-
cil (ERC) Horizon 2020 research and innovation programme (grant
n725561), Alibaba Group through Alibaba Innovative Research
Program, and China Scholarship Council (CSC). We also thank
Yongfeng Chai, Daoyuan Chen, Xiaozong Cui, Botong Huang, Xi-
aofeng Zhang, and Yang Zhang from the Alibaba Group for the
discussion and help throughout the project.

REFERENCES
[1] Charu C. Aggarwal and Chandan K. Reddy (Eds.). 2014. Data Clustering: Algo-

rithms and Applications. CRC Press. http://www.crcpress.com/product/isbn/
9781466558212

[2] Malay Bag, Alekh Jindal, and Hiren Patel. 2020. Towards Plan-aware Resource
Allocation in Serverless Query Processing. In 12th USENIXWorkshop on Hot Topics
in Cloud Computing, HotCloud 2020, July 13-14, 2020, Amar Phanishayee and
Ryan Stutsman (Eds.). USENIX Association. https://www.usenix.org/conference/
hotcloud20/presentation/bag

[3] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. 2011. Hyracks: A �exible and extensible foundation for data-intensive
computing. In ICDE. 1151–1162.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[5] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Di�erentiable
Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Opti-
mization. CoRR abs/2006.05078 (2020). arXiv:2006.05078 https://arxiv.org/abs/
2006.05078

[6] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: simpli�ed data processing
on large clusters. In OSDI’04: Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation (San Francisco, CA). USENIX
Association, Berkeley, CA, USA, 10–10.

[7] Sergey Dudoladov, Chen Xu, Sebastian Schelter, Asterios Katsifodimos, Stephan
Ewen, Kostas Tzoumas, and Volker Markl. 2015. Optimistic Recovery for Itera-
tive Data�ows in Action. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. 1439–1443. https://doi.org/10.1145/2723372.2735372

[8] Michael T. Emmerich and André H. Deutz. 2018. A Tutorial on Multiobjective
Optimization: Fundamentals and Evolutionary Methods. Natural Computing: an
international journal 17, 3 (Sept. 2018), 585–609. https://doi.org/10.1007/s11047-
018-9685-y

[9] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan
Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and
Utkarsh Srivastava. 2009. Building a HighLevel Data�ow System on top of
MapReduce: The Pig Experience. PVLDB 2, 2 (2009), 1414–1425.

[10] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data
Eng. Bull. 18, 3 (1995), 19–29. http://sites.computer.org/debull/95SEP-CD.pdf

[11] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1035–1050. https:
//doi.org/10.1145/3318464.3389741

[12] Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Amar Shah, and
Ryan P. Adams. 2016. Predictive Entropy Search for Multi-objective Bayesian
Optimization. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Work-
shop and Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger
(Eds.), Vol. 48. JMLR.org, 1492–1501. http://proceedings.mlr.press/v48/hernandez-
lobatoa16.html

[13] Herodotos Herodotou and Elena Kakoulli. 2021. Trident: Task Scheduling over
Tiered Storage Systems in Big Data Platforms. Proc. VLDB Endow. 14, 9 (2021),
1570–1582. http://www.vldb.org/pvldb/vol14/p1570-herodotou.pdf

[14] Arvind Hulgeri and S. Sudarshan. 2002. Parametric Query Optimization for Linear
and Piecewise Linear Cost Functions. In Proceedings of the 28th International
Conference on Very Large Data Bases (Hong Kong, China) (VLDB ’02). VLDB
Endowment, 167–178. http://dl.acm.org/citation.cfm?id=1287369.1287385

[15] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Iñigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Au-
tomated SLOs for Enterprise Clusters. In 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, Novem-
ber 2-4, 2016. 117–134. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/jyothi

[16] Herald Kllapi, Eva Sitaridi, Manolis M. Tsangaris, and Yannis Ioannidis. 2011.
Schedule Optimization for Data Processing Flows on the Cloud. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD ’11). ACM, New York, NY, USA, 289–300. https://doi.org/10.
1145/1989323.1989355

[17] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query
Processing in the Cloud. Proc. VLDB Endow. 14, 9 (2021), 1606–1612. http:
//www.vldb.org/pvldb/vol14/p1606-leis.pdf

[18] Jiexing Li, Je�rey F. Naughton, and Rimma V. Nehme. 2014. Resource Bricolage
for Parallel Database Systems. PVLDB 8, 1 (2014), 25–36. http://www.vldb.org/
pvldb/vol8/p25-Li.pdf

[19] Teng Li, Zhiyuan Xu, Jian Tang, and Yanzhi Wang. 2018. Model-free Control for
Distributed Stream Data Processing Using Deep Reinforcement Learning. Proc.
VLDB Endow. 11, 6 (Feb. 2018), 705–718. https://doi.org/10.14778/3184470.3184474

[20] Jie Liu, Wenqian Dong, Dong Li, and Qingqing Zhou. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (2021), 1950–1963. http://www.vldb.org/pvldb/vol14/p1950-
liu.pdf

[21] Yao Lu, Srikanth Kandula, Arnd Christian König, and Surajit Chaudhuri. 2021. Pre-
training Summarization Models of Structured Datasets for Cardinality Estimation.
Proc. VLDB Endow. 15, 3 (2021), 414–426. http://www.vldb.org/pvldb/vol15/p414-
lu.pdf

[22] Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, Wei Chen, Li Ma,
Yihui Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling
and Optimization for Intelligent Resource Management in Big Data Processing.
https://doi.org/10.48550/ARXIV.2207.02026

[23] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behavior
Modeling for Self-Driving Database Management Systems. In SIGMOD ’21: In-
ternational Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
1248–1261. https://doi.org/10.1145/3448016.3457276

[24] Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based Work-
load Management Advisor for Cloud Databases. PVLDB 9, 10 (2016), 780–791.
http://www.vldb.org/pvldb/vol9/p780-marcus.pdf

[25] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718. https://doi.org/
10.14778/3342263.3342644

[26] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[27] Regina Marler and J S Arora. 2004. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization 26, 6
(2004), 369–395.

[28] MaxCompute [n.d.]. Open Data Processing Service. https://www.alibabacloud.
com/product/maxcompute.

[29] Achille Messac. 2012. From Dubious Construction of Objective Functions to the
Application of Physical Programming. AIAA Journal 38, 1 (2012), 155–163.

[30] Achille Messac, Amir Ismailyahaya, and Christopher A Mattson. 2003. The nor-
malized normal constraint method for generating the Pareto frontier. Structural
and Multidisciplinary Optimization 25, 2 (2003), 86–98.

[31] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Data�ow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). ACM, New York, NY, USA, 439–455. https://doi.org/
10.1145/2517349.2522738

[32] Parimarjan Negi, Ryan C. Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (2021), 2019–2032. http:
//www.vldb.org/pvldb/vol14/p2019-negi.pdf

[33] Yuan Qiu, YileiWang, Ke Yi, Feifei Li, BinWu, and Chaoqun Zhan. 2021. Weighted
Distinct Sampling: Cardinality Estimation for SPJ Queries. In SIGMOD ’21: In-
ternational Conference on Management of Data, Virtual Event, China, June 20-25,
2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM,
1465–1477. https://doi.org/10.1145/3448016.3452821

[34] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016.
PerfOrator: eloquent performance models for Resource Optimization. In Proceed-
ings of the Seventh ACM Symposium on Cloud Computing, Santa Clara, CA, USA,
October 5-7, 2016. 415–427. https://doi.org/10.1145/2987550.2987566

[35] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retro�tting, and Our
Findings. In Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19,
2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam
Alawini, and Hung Q. Ngo (Eds.). ACM, 99–113. https://doi.org/10.1145/3318464.
3380584

[36] Fei Song, Khaled Zaouk, Chenghao Lyu, Arnab Sinha, Qi Fan, Yanlei Diao,
and Prashant J. Shenoy. 2021. Spark-based Cloud Data Analytics using Multi-
Objective Optimization. In 37th IEEE International Conference on Data Engi-
neering, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 396–407. https:
//doi.org/10.1109/ICDE51399.2021.00041

[37] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc.
VLDB Endow. 13, 3 (2019), 307–319. https://doi.org/10.14778/3368289.3368296

[38] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for
Similarity Queries. In SIGMOD ’21: International Conference on Management of
Data, Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos
Idreos, and Divesh Srivastava (Eds.). ACM, 1745–1757. https://doi.org/10.1145/
3448016.3452790

http://www.crcpress.com/product/isbn/9781466558212
http://www.crcpress.com/product/isbn/9781466558212
https://www.usenix.org/conference/hotcloud20/presentation/bag
https://www.usenix.org/conference/hotcloud20/presentation/bag
https://arxiv.org/abs/2006.05078
https://arxiv.org/abs/2006.05078
https://arxiv.org/abs/2006.05078
https://doi.org/10.1145/2723372.2735372
https://doi.org/10.1007/s11047-018-9685-y
https://doi.org/10.1007/s11047-018-9685-y
http://sites.computer.org/debull/95SEP-CD.pdf
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.1145/3318464.3389741
http://proceedings.mlr.press/v48/hernandez-lobatoa16.html
http://proceedings.mlr.press/v48/hernandez-lobatoa16.html
http://www.vldb.org/pvldb/vol14/p1570-herodotou.pdf
http://dl.acm.org/citation.cfm?id=1287369.1287385
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/jyothi
https://doi.org/10.1145/1989323.1989355
https://doi.org/10.1145/1989323.1989355
http://www.vldb.org/pvldb/vol14/p1606-leis.pdf
http://www.vldb.org/pvldb/vol14/p1606-leis.pdf
http://www.vldb.org/pvldb/vol8/p25-Li.pdf
http://www.vldb.org/pvldb/vol8/p25-Li.pdf
https://doi.org/10.14778/3184470.3184474
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
http://www.vldb.org/pvldb/vol14/p1950-liu.pdf
http://www.vldb.org/pvldb/vol15/p414-lu.pdf
http://www.vldb.org/pvldb/vol15/p414-lu.pdf
https://doi.org/10.48550/ARXIV.2207.02026
https://doi.org/10.1145/3448016.3457276
http://www.vldb.org/pvldb/vol9/p780-marcus.pdf
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342646
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
http://www.vldb.org/pvldb/vol14/p2019-negi.pdf
https://doi.org/10.1145/3448016.3452821
https://doi.org/10.1145/2987550.2987566
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1109/ICDE51399.2021.00041
https://doi.org/10.1109/ICDE51399.2021.00041
https://doi.org/10.14778/3368289.3368296
https://doi.org/10.1145/3448016.3452790
https://doi.org/10.1145/3448016.3452790

[39] Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. In Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers. The Association for Computer
Linguistics, 1556–1566. https://doi.org/10.3115/v1/p15-1150

[40] Zilong Tan and Shivnath Babu. 2016. Tempo: robust and self-tuning resource man-
agement in multi-tenant parallel databases. Proceedings of the VLDB Endowment
9, 10 (2016), 720–731.

[41] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wycko�, and Raghotham Murthy. 2009. Hive
- A Warehousing Solution Over a Map-Reduce Framework. PVLDB 2, 2 (2009),
1626–1629.

[42] Immanuel Trummer and Christoph Koch. 2014. Approximation Schemes for
Many-objective Query Optimization. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). ACM, New York, NY, USA, 1299–1310. https://doi.org/10.1145/2588555.
2610527

[43] Immanuel Trummer and Christoph Koch. 2014. Multi-objective Parametric Query
Optimization. Proc. VLDB Endow. 8, 3 (Nov. 2014), 221–232. https://doi.org/10.
14778/2735508.2735512

[44] Immanuel Trummer and Christoph Koch. 2015. An Incremental Anytime Algo-
rithm forMulti-Objective QueryOptimization. In Proceedings of the 2015 ACMSIG-
MOD International Conference on Management of Data, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015. 1941–1953. https://doi.org/10.1145/2723372.2746484

[45] Kapil Vaidya, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2021.
Leveraging Query Logs and Machine Learning for Parametric Query Optimiza-
tion. Proc. VLDB Endow. 15, 3 (2021), 401–413. http://www.vldb.org/pvldb/vol15/
p401-vaidya.pdf

[46] Dana Van Aken, Andrew Pavlo, Geo�rey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). ACM, New York, NY, USA, 1009–
1024. https://doi.org/10.1145/3035918.3064029

[47] M. van Steen and A.S. Tanenbaum. 2017. Distributed Systems (3 ed.).
[48] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-
dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-
jamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: yet an-
other resource negotiator. In ACM Symposium on Cloud Computing, SOCC ’13,
Santa Clara, CA, USA, October 1-3, 2013, Guy M. Lohman (Ed.). ACM, 5:1–5:16.
https://doi.org/10.1145/2523616.2523633

[49] Lalitha Viswanathan, Alekh Jindal, and Konstantinos Karanasos. 2018. Query and
Resource Optimization: Bridging the Gap. In 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer
Society, 1384–1387. https://doi.org/10.1109/ICDE.2018.00156

[50] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normal-
izing Flow based Cardinality Estimator. Proc. VLDB Endow. 15, 1 (2021), 72–84.
http://www.vldb.org/pvldb/vol15/p72-li.pdf

[51] Lucas Woltmann, Dominik Olwig, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2021. PostCENN: PostgreSQL with Machine Learning Mod-
els for Cardinality Estimation. Proc. VLDB Endow. 14, 12 (2021), 2715–2718.
http://www.vldb.org/pvldb/vol14/p2715-woltmann.pdf

[52] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
Proc. VLDB Endow. 12, 3 (2018), 210–222. https://doi.org/10.14778/3291264.
3291267

[53] PeizhiWu and Gao Cong. 2021. A Uni�ed DeepModel of Learning from both Data
and Queries for Cardinality Estimation. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2009–2022. https:
//doi.org/10.1145/3448016.3452830

[54] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.
2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.

https://doi.org/10.48550/ARXIV.2012.14743
[55] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker,

and Ion Stoica. 2013. Shark: SQL and rich analytics at scale. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (New
York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA, 13–24. https:
//doi.org/10.1145/2463676.2465288

[56] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73. https://doi.org/10.14778/3421424.3421432

[57] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Peter
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),
279–292. https://doi.org/10.14778/3368289.3368294

[58] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim.
2019. Graph Transformer Networks. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett (Eds.). 11960–11970. https://proceedings.neurips.cc/paper/2019/
hash/9d63484abb477c97640154d40595a3bb-Abstract.html

[59] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems De-
sign and Implementation (San Jose, CA) (NSDI’12). USENIX Association, Berkeley,
CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[60] Khaled Zaouk, Fei Song, Chenghao Lyu, Arnab Sinha, Yanlei Diao, and Prashant J.
Shenoy. 2019. UDAO: A Next-Generation Uni�ed Data Analytics Optimizer.
PVLDB 12, 12 (2019), 1934–1937. https://doi.org/10.14778/3352063.3352103

[61] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement
Learning. In Proceedings of the 2019 International Conference on Management of
Data (Amsterdam, Netherlands) (SIGMOD ’19). ACM, New York, NY, USA, 415–
432. https://doi.org/10.1145/3299869.3300085

[62] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. 2021. ResTune: Resource Oriented Tuning Boosted by
Meta-Learning for Cloud Databases. In SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2102–2114. https:
//doi.org/10.1145/3448016.3457291

[63] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014. Fuxi:
a Fault-Tolerant Resource Management and Job Scheduling System at Internet
Scale. Proc. VLDB Endow. 7, 13 (2014), 1393–1404. https://doi.org/10.14778/
2733004.2733012

[64] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. The VLDB
Journal 21, 5 (Oct. 2012), 611–636. https://doi.org/10.1007/s00778-012-0280-z

[65] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries using Graph Embedding. Proc. VLDB Endow.
(2020), 1416–1428.

[66] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489–1502. http:
//www.vldb.org/pvldb/vol14/p1489-zhu.pdf

[67] Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren Patel,
Malay Bag, Hitesh Sharma, and Alekh Jindal. 2021. Phoebe: A Learning-based
Checkpoint Optimizer. Proc. VLDB Endow. 14, 11 (2021), 2505–2518. http:
//www.vldb.org/pvldb/vol14/p2505-zhu.pdf

[68] Yuqing Zhu and Jianxun Liu. 2019. ClassyTune: A Performance Auto-Tuner for
Systems in the Cloud. IEEE Transactions on Cloud Computing (2019), 1–1.

[69] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. 2017. BestCon�g: tapping the perfor-
mance potential of systems via automatic con�guration tuning. SoCC ’17: ACM
Symposium on Cloud Computing Santa Clara California September, 2017 (2017),
338–350.

https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1145/2588555.2610527
https://doi.org/10.1145/2588555.2610527
https://doi.org/10.14778/2735508.2735512
https://doi.org/10.14778/2735508.2735512
https://doi.org/10.1145/2723372.2746484
http://www.vldb.org/pvldb/vol15/p401-vaidya.pdf
http://www.vldb.org/pvldb/vol15/p401-vaidya.pdf
https://doi.org/10.1145/3035918.3064029
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1109/ICDE.2018.00156
http://www.vldb.org/pvldb/vol15/p72-li.pdf
http://www.vldb.org/pvldb/vol14/p2715-woltmann.pdf
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.1145/3448016.3452830
https://doi.org/10.48550/ARXIV.2012.14743
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.1145/2463676.2465288
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.14778/3368289.3368294
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/9d63484abb477c97640154d40595a3bb-Abstract.html
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.14778/3352063.3352103
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.1145/3448016.3457291
https://doi.org/10.14778/2733004.2733012
https://doi.org/10.14778/2733004.2733012
https://doi.org/10.1007/s00778-012-0280-z
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p1489-zhu.pdf
http://www.vldb.org/pvldb/vol14/p2505-zhu.pdf
http://www.vldb.org/pvldb/vol14/p2505-zhu.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Background on MaxCompute
	3.2 System Design for Resource Optimization

	4 Fine-Grained Modeling
	4.1 Multi-Channel Coverage
	4.2 MCI-based Models

	5 Stage-level optimization
	5.1 blackMOO Problem and Our Approach
	5.2 Intelligent Placement Advisor (IPA)
	5.3 Resource Assignment Advisor (RAA)

	6 Experiments
	6.1 Model Evaluation
	6.2 Resource Optimization (RO) Evaluation

	7 Conclusions
	Acknowledgments
	References

