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Informal context

• This work is about analyzing dependability properties of complex systems, by
means of Monte Carlo techniques.

• More specifically, we consider transportation systems where some fluid is sent
through a network from a source to a destination, going from node to node
through directional links having some capacity.

• The flow can make a fork at a given node, or a join.

• The links capacities are random variables, and we call failures the events “moving
from the standard (nominal) maximum capacity to a smaller value”. They are
usually supposed to be independent of each other. They are also called the
model’s components.

• The problem is a static one (no time variable). At a given time, where the system
is considered, the links have some capacities, sampled from the capacities’
distributions.

• Because of the links capacities, there is a maximal amount of flow that can be
transported by the network, MF , from source to destination, which is a random
variable.
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Informal context

• We are given a demand value, a minimal amount of fluid we need to be able to
transport. We want to evaluate the number ζ = P{MF < d}, an important
dependability metric in this context, an unavailability one.

• In many situations, and the one considered here, the event {MF < d} is rare,
that is, ζ ≪ 1. How to estimate it is the topic of this talk.

• The main families of techniques to deal with rare events are Importance
Sampling and Splitting (also appearing under other different names), plus some
other special ones such as Recursive Variance Reductions.

• In this paper we deal with Splitting, which is specifically designed for problems
defined on stochastic processes (here, the setting is static).

• Because of that, we must first transform the static model into a dynamic one.

• After presenting the transformation, we will describe a particular
implementation of the Splitting approach that gives very good results.

• Then, we will relax the independence assumption (between capacities), and show
how the proposed method can also deal with this extension to the original model.
The method was actually designed to deal with such an extension.

• To deal with the dependent components case, we use Marshall-Olkin copulas.
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Outline

The talk will consist of the following points:

1 – a brief refresher on the Splitting method,

2 – the flow model,

3 – the Creation and Destruction Processes (CP and DP)
and our multilevel extensions,

4 – our Splitting method, designed to work also with dependent components.
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1—Splitting
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1–Splitting
General context

• We have a stochastic process X = {X(t)}t≥0 living in some space S, and two
subsets of states SA and SB. Assume them disjoint, with X(0) 6∈ SA,SB.

• Let us denote τA (resp. τB) the hitting times of X in SA (resp. in SB).

• We are interesting in evaluating ζ = P{τB < τA}, and we consider the case where
τB ≪ τA with high probability.

X(0)

S

SA SB
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1–Splitting
Starting idea

X(0)

S

SA SB

L∗

S∗

• First idea: simulate several independent copies of X. When one of them gets
close to SB at some time τ , make several copies of it, starting at τ .

• For that purpose, define an intermediate set S∗ ⊃ SB, with S∗ ∩SA = /0, with
border L∗, and split X when it touches L∗.
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1–Splitting
Starting idea

X(0)

S

SA SB

L1

L2

L3

S1 S2
S3

• The procedure can be applied recursively, cloning trajectories that cross the
borders L1,L2,L3 of a sequence of subspaces S1 ⊃ S2 ⊃ S3 ⊃ SB.

• Second (possible) idea: when a trajectory that crossed border Li comes back
at Li before reaching Li+1, kill it (the RESTART variation).
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1–Splitting
Comments

• This is widely used in queuing models for performance evaluation of systems,
and in dependability models.

• In some cases we want to evaluate P(τB < T) where T is an a.s. finite stopping
time.

• In other cases, this type of probabilities help in analyzing other targets.
Example:

• suppose that the states in SB are “bad” states, and that τA = τ0, the return
time to the initial state.

• τB is the system’s life-time.
• We are interested in evaluating the MMTF of the system, the Mean Time To

Failure, = E(τB). In the highly reliable case, MTTF≫ 1.
• It can be shown that

E(τB) =
E
(
min(τ0,τB)

)

P(τB < τ0)
.

The numerator is easy to estimate; the estimation of the denominator is a
typical rare event problem.
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1–Splitting
Importance function

t

h(X(t))

0

ℓ

• Everything is better controlled using a real function h : S→ R,
called importance function, such that, for instance,
x ∈ SA ⇐⇒ h(x)≤ 0 and x ∈ SB ⇐⇒ h(x)≥ ℓ > 0.
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1–Splitting
Importance function

t

h(X(t))

0

ℓ

• In the models we are dealing with, h(X(t)) will tend to stay low, to come back
quickly to 0 (or to negative values, depending on how we defined h), and it will be
rare to observe it getting close to ℓ.
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1–Splitting
Typical references

• In a queueing system modeled by some process, a typical example is
h(x) = # of customers in some queue, when system’s state is x.

• In a dependability model, a typical example is
h(x) = # of failed components, when system’s state is x.

• In both cases, h(x) measures somehow how close we are to the bad states (too
many customers in the queue, or too many components down in the
dependability case).
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1–Splitting
Crude Monte Carlo

t

h(X(t))

0

ℓ

ζ =
1

7

We estimate ζ by dividing the number of trajectories reaching ℓ by the total number
of copies simulated.

G. Rubino 13 / 63



1–Splitting
Thresholds

τAτBτ1 τ2

a trajectory of
process h(X(t))

t

h(X(t))

0

ℓ

ℓ1

ℓ2

• Now, suppose that the set of values of h is partitioned using thresholds
ℓ1, ℓ2, . . . , defining an associated sequence of embedded subspaces of S.

• In the figure, x ∈ S1 ⇐⇒ h(x)≥ ℓ1, x ∈ S2 ⇐⇒ h(x)≥ ℓ2, plus, for instance,
x ∈ SB ⇐⇒ h(x)≥ ℓ and x ∈ SA ⇐⇒ h(x) = 0.
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1–Splitting
Thresholds

τ1

t

h(X(t))

0

ℓ1

ℓ2

ℓ

• Crossing the levels ℓ1, ℓ2, . . . is equivalent to crossing the borders L1,L2, . . .
defined on S (in the previous description).

• Now, each time a trajectory reaches level or threshold ℓi (at time τi), we clone it.
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1–Splitting
Cloning trajectories

τ1 τ2

t

h(X(t))

0

ℓ1

ℓ2

ℓ
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1–Splitting
Cloning trajectories

τBτ1 τ2

t

h(X(t))

0

ℓ1

ℓ2

ℓ
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1–Splitting
Cloning trajectories

τBτ1 τ2

t

h(X(t))

0

ℓ1

ℓ2

ℓ

• Di = event {τi < τA}.

• If we have k thresholds, Dk ⊂ Dk−1 ⊂ ·· · ⊂ D2 ⊂ D1
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1–Splitting
Probabilitiy of embedded events

• Assume we have k thresholds ℓ1, ℓ2, . . . , ℓk = ℓ. The event of interest is Dk.

• Easy to check that we have

P{Dk}= P{Dk |Dk−1}︸ ︷︷ ︸
pk

P{Dk−1 |Dk−2}︸ ︷︷ ︸
pk−1

· · · P{D2 |D1}︸ ︷︷ ︸
p2

P{D1}︸ ︷︷ ︸
p1

= ζ =
k

∏
h=1

ph

• At the heart of Splitting, we have the following result:

ζ̂ =
k

∏
h=1

p̂h → E{ζ̂}= ζ ,

where p̂h is the standard estimator of ph.

• That is, we have an unbiased estimator of the target built from unbiased (crude)
estimators associated with a single threshold case (which is built such that
reaching the threshold is not rare).
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1–Splitting
Estimation

τBτ1 τ2

t

h(X(t))

0

ℓ1

ℓ2

ℓ3

p̂1

p̂2

p̂3

ζ̂

ζ̂ = p̂1 p̂2 p̂3
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1–Splitting
Estimation

τ1

t

h(X(t))

0

ℓ1

ℓ2

ℓ3

# of successful trajectories = 1

total # of trajectories = 3

p̂1

p̂1 =
1

3
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1–Splitting
Estimation

τBτ1 τ2

t

h(X(t))

0

ℓ1

ℓ2

ℓ3

p̂1

p̂2

p̂3

ζ̂

ζ̂ =
1

3

1

3

1

3
=

1

9
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1–Splitting
Estimation

t

h(X(t))

0

ℓ1

ℓ2

ℓ3

N0

N1

N2

N3

R1

R2

R3

ζ̂ =
R1

N0

R2

N1

R3

N2
· · ·

Rk

Nk−1
,

where k is the # of thresholds, Ni is the # of clones built after reaching level ℓi, and
Rj is the # of clones having reached level ℓj .
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1–Splitting
Comments

• We want to have (to observe) Rk > 0 (enough times). Otherwise, the procedure
will return 0, or a too small fraction, typical rare event issue.

• Choosing how many levels to use (parameter k), positioning the levels, selecting
the control parameters N0, . . . ,Nk−1,R1, . . . ,Rk is complicated. There is a large #
of possible configurations.

• Computing the variance of the Splitting estimator is too hard. So, there is no
theorem allowing to have a theoretical comparison of the different possible
configurations.

• There is also no formal result leading to optimal configurations of the procedure
(sufficient conditions), except in simple particular cases.

• What people have is more or less simple models where it is possible to find
optimal values. Then, they are used as heuristic guidelines to choose all those
hyper-parameters in the variant we are running.
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1–Splitting
Some references about Splitting in general

• P. Glasserman et al. “Splitting for Rare Event Simulation: Analysis of Simple
Cases”. In: Proceedings of the 1996 Winter Simulation Conference. San Diego,
California: IEEE Computer Society Press, 1996, pp. 302–308.

• M. J. J. Garvels. “The Splitting Method in Rare Event Simulation”. PhD thesis.
Faculty of mathematical Science, University of Twente, The Netherlands, 2000.

• M. J. J. Garvels, D. P. Kroese, and J.–K. C. W. Van Ommeren. “On the Importance
Function in Splitting Simulation”. In: European Transactions on
Telecommunications 13.4 (2002), pp. 363–371.

• M. Villén-Altamirano and J. Villén-Altamirano. “On the efficiency of RESTART for
multidimensional state systems”. In: ACM Transactions on Modeling and
Computer Simulation 16 (3 July 2006), pp. 251–279.

• G. Rubino and B. Tuffin (editors and co-authors). Rare Event Simulation Using
Monte Carlo Methods. Wiley, 2009.
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2—Flows
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2–Flows
Classical deterministic model

X1

X2

X3

X4

X5

. . . . . .

. . .

. . .

s t

G = (V ,E ,X)





V : set of n nodes, with a source (blue) and a terminal (green);
E : set of m arcs;
X : vector of arc capacities, (X1, . . . ,Xm)≥ (0, . . . ,0).

• Flow: a function on the arcs, satisfying local balance at the interior (red) nodes.
• Result: the sum of the flows on the arcs leaving s is equal to the sum of the

flows of the arcs arriving at t, and it is called the flow value.
• V(X): the maximum possible flow value, underlying the dependence on the

capacities. Algorithms to compute it: Ford-Fulkerson, Edmonds-Karp, etc.
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2–Flows
Stochastic extension

X1

X2

X3

X4

X5

. . . . . .

. . .

. . .

s t

• The capacity Xi of arc i is now a random variable (links can fail).
• X= (X1, . . . ,Xm) is a random vector with values in some S= (S1, . . . ,Sm).
• We are given a demand d, and the question is to know if the transportation

network can transport at least that quantity of fluid.
• The target of the analysis is the estimation of ζ = P{V(X)< d} .
• If the network is large, ζ will be difficult or impossible to compute (NP hard

territory). If the network is highly reliable (ζ ≪ 1), Standard (Crude) Monte
Carlo will suffer if applied naively.
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2–Flows
Stochastic extension

Our goals:

• To focus on the case of ζ ≪ 1 (the rare event case).

• To convert this static model into a dynamic one (a stochastic process) and apply
Splitting to it, for the rareness issue.

• To find a Splitting procedure also able to deal with the case of dependent arc
failures (this led to use Marshall-Olkin copulas to model the dependencies).
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2–Flows
Capacities

Assume (only for the presentation) that

• the capacities X1, . . . ,Xn are discrete i.i.d.

• with P(Xi =Mj) = pj, j = 1, . . . ,n (homogeneous situation),

• M1 >M2 > .. . >Mn > 0,

• plus P(Xi = 0) = p0.

We say that

• if Xi = 0, the link is failed,

• if M2 ≥ Xi ≥Mn, the link is partially working,

• if Xi =M1, the link is fully operational.

• The homogeneous assumption is just for simplicity in the presentation.

• Everything here also works when each Xi has a different distribution. The
notation will need to be (Mi,j), (pi,j), where i= 1, . . . ,m and for component i,
j = 0,1,2, . . . ,ni, with 1+ni = # of possible values of the capacity Xi .

G. Rubino 30 / 63



3—From static to dynamic
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3–From static to dynamic
The Multilevel Creation Process

We build now a dynamics on the same structure.
Basic principles:

• At time t = 0, all links are failed (all the capacities are 0).

• At t = 0, we start m artificial “repairing processes” in parallel, for all links, where
link i is repaired after an Exponentially distributed random delay τi.

• The m r.v.s τ1, . . . ,τm are independent.

• Observe that, now, X = {X(t), t ≥ 0}.

Our goal:

We want that, in the new dynamic system, P(V(X(1))< d) = ζ , where ζ is the target
defined in the initial static context.
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3–From static to dynamic
A construction of the Multilevel Creation Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 p2 pn p0

t

Xi(t)

λ

We will choose the rate λ , and the points t1,t2, . . . ,tn−1 such that
P(tk−1 < τi ≤ tk) = pk, k= 1, . . . ,n, where t0 = 0 and tn = 1, and P(τi > 1) = p0.

G. Rubino 33 / 63



3–From static to dynamic
A construction of the Multilevel Creation Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 p2 pn p0

t
τi

Xi(t)

...

M1

M2

Mn

◮ If 0< τi ≤ t1 Xi(t) : 0→M1 and keep this value forever,
If t1 < τi ≤ t2 Xi(t) : 0→M2 and keep this value forever,

...
If tn−1 < τi ≤ 1 Xi(t) : 0→Mn and keep this value forever,
If 1< τi keep Xi(t) = 0 forever.
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3–From static to dynamic
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3–From static to dynamic
A construction of the Multilevel Creation Process
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Xi(t)

...

M1

M2
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3–From static to dynamic
A construction of the Multilevel Creation Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 p2 pn p0

t
τi →

Xi(t)

...

M1

M2

Mn

If 0< τi ≤ t1 Xi(t) : 0→M1 and keep this value forever,
If t1 < τi ≤ t2 Xi(t) : 0→M2 and keep this value forever,

...
If tn−1 < τi ≤ 1 Xi(t) : 0→Mn and keep this value forever,

◮ If 1< τi keep Xi(t) = 0 forever.
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3–From static to dynamic
Values to use

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 p2 pn p0

t

Xi(t)

λ

After some algebra, we can take

λ =− ln(p0)

tk =
ln(1−p1−p2− . . .−pk)

ln(p0)
, k= 1, . . . ,n− 1.
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3–From static to dynamic
On the implementation

• When building trajectories, we need to take the τis from smallest to largest.

• In other words, we must work with the order statistic of the sequence of repair
times, τ(1), . . . ,τ(m).

• For this task, it’s more efficient to use the properties of the Exponential, in
particular of the min of independent Exponential r.v.s.

• We know that

• τ(1) is Exponential with rate Λ = λ1+ · · ·+λm,
• argmin{τi}= λi/Λ,
• knowing that τ(1) = τh, τ(2) is Exponential with rate Λ−λh,
• etc.
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3–From static to dynamic
Crude Monte Carlo on the Multilevel Creation Process

t

t = 1t = 0

d

Vmax

V(X(t))

• Following the “repairs”, V(X) grows by jumps.

• Vmax is the max possible value (for instance, the value corresponding to putting
all the links at their max capacities).

• The point is to see if V(X(1)) is above or below d.
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3–From static to dynamic
Crude Monte Carlo on the Multilevel Creation Process

t

(2)(1)

t = 1t = 0

d

Vmax

V(X(t))

• The trajectories crossing level d before t = 1 will be above d at t = 1 (this is the
typical case).

• After points such as (1) and (2), it is then useless to continue the paths.
• Crude Monte Carlo estimation of ζ is the ratio between the # of red points and

the total # of simulated trajectories.

ζ̂ =
1

3
= 0.333
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3–From static to dynamic
Crude Monte Carlo on the Multilevel Creation Process

t

(2)(1)

t = 1t = 0

d

Vmax

V(X(t))

• In the highly reliable case, the trajectories will strongly tend to go up (repairs
are fast).

• Only very few of them will cross the t = 1 border below d (building red points).

• A way of making more efficient the process would be to “stimulate” in some way
the trajectories to go to the right (for instance, slowing down the repairs).
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4–Splitting

on the artificial dynamic process
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4–Splitting on the artificial dynamic process
Splitting on the Multilevel Creation Process

t22 3 34 6

ℓ1 ℓ2 t = 1t = 0

d

Vmax

V(X(t))

• An appropriate application of Splitting requires, once configured,

• to define the thresholds on the time axis,
• then to clone the paths that reach next level before crossing the horizontal

line “y = d”.

• The resulting estimation (in the picture) is ζ̂ =
2

2

3

4

3

6
= 0.375
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4–Splitting on the artificial dynamic process
From Creation Process to Destruction Process

Recall that our ultimate goal is to be able to deal with dependent components.

• We must choose how to model dependencies. One of the easiest ways is to use
Marshall–Olkin copulas, based on the idea that failures happen in shocks.

• A shock is the simultaneous failure of a subset of components; it’s just a way to
use data reporting, for instance, correlations between individual failure events.

• The process of going from correlation data to shocks and their associated
failure rates is out of the scope of the talk (see the references).

• Given these remarks and after observing that the Creation Process isn’t well
adapted to this setting, we made the same kind of multi-level extension to the
dual Destruction Process (DP).

• In a DP, the m components start operational, and they fail one after the other
according to a similar dynamic process as before.

• But moving Splitting to the DP context is not straightforward and we had to
make some important changes.
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4–Splitting on the artificial dynamic process
Notation on capacities for the Destruction Process

Now, Xi ∈ Si = {Mn, . . . ,M2,M1,0}, i= i, . . . ,m, with

Xi =





Mn w.p. pn,
...

M2 w.p. p2,
M1 w.p. p1,
0 w.p. p0,

Mn > · · ·>M2 >M1 > 0.

• If Xi =Mn, arc i is fully operational.

• If 0< Xi <Mn, arc i is partially failed.

• If Xi = 0, arc i is totally failed.

All links start fully up (value Mn in the homogeneous case), and link i will fail at
time τi, assumed to be Exponentially distributed.

We call failure the move from Mn to some Mk, k≤ n− 1, or to 0.
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4–Splitting on the artificial dynamic process
Implementing the Multilevel Destruction Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 pnpn−1p0

t

Xi(t)

λ

We will choose the rate λ , and the points t1,t2, . . . ,tn−1 such that
P(tk < τi ≤ tk+1) = pk, k= 0, . . . ,n− 1, where t0 = 0 and tn = 1, and P(τi > 1) = pn.
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4–Splitting on the artificial dynamic process
Implementing the Multilevel Destruction Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 pnpn−1p0

t
τi

Xi(t)

...

M1

Mn

Mn−1

◮ If 0< τi ≤ t1 Xi(t) :Mn → 0 and keep this value forever,
If t1 < τi ≤ t2 Xi(t) :Mn →M1 and keep this value forever,

...
If tn−1 < τi ≤ 1 Xi(t) :Mn →Mn−1 and keep this value forever,
If 1< τi keep Xi(t) =Mn forever.
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4–Splitting on the artificial dynamic process
Implementing the Multilevel Destruction Process
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...
◮ If tn−1 < τi ≤ 1 Xi(t) :Mn →Mn−1 and keep this value forever,

If 1< τi keep Xi(t) =Mn forever.
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4–Splitting on the artificial dynamic process
Implementing the Multilevel Destruction Process

t0 = 0 tn = 1t1 t2 tn−1· · ·

· · ·
p1 pnpn−1p0

t

Xi(t)

λ

Values:

λ =− ln(pn),

tk =
ln(1−p0−p1− . . .−pk−1)

ln(pn)
, k= 1, . . . ,n− 1.
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4–Splitting on the artificial dynamic process
Crude Monte Carlo on the Multilevel Destruction Process

t

t = 1t = 0

d

Vmax

V(X(t))

• Following the “failures”, V(X) decreases by jumps.

• Vmax is the max possible value (for instance, the value corresponding to putting
all the links at their max capacities).

• The point is to see if V(X(1)) is above or below d.
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4–Splitting on the artificial dynamic process
Crude Monte Carlo on the Multilevel Destruction Process

t

t = 1t = 0

d

Vmax

V(X(t))

• The trajectories crossing level d before t = 1 will be below d at t = 1 (this is the
typical case).

• After red points it is then useless to continue the paths.
• Crude Monte Carlo estimation of ζ is the ratio between the # of red points and

the total # of simulated trajectories. Here,

ζ̂ =
1

3
= 0.333
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4–Splitting on the artificial dynamic process
Crude Monte Carlo on the Multilevel Destruction Process

t

t = 1t = 0

d

Vmax

V(X(t))

• In the highly reliable case, the trajectories will rarely go down.

• Only very few of them will cross the “y= d” line before t= 1 (building red points).

• A way of making more efficient the process would be to “stimulate” in some way
the trajectories to go down.
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4–Splitting on the artificial dynamic process
Bad application of the Splitting idea

t

ℓ1 ℓ2 t = 1t = 0

d

Vmax

V(X(t))

• All this means that a similar use of the Splitting idea shown before doesn’t work.

• Using thresholds on the time axis will push the clones to the right, and we want
them to go down.
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4–Splitting on the artificial dynamic process
New Splitting approach on the Multilevel Destruction Process

t

2

2

3

4

4

6

ℓ1

ℓ2

t = 1t = 0

d

Vmax

V(X(t))

• The idea is to put the thresholds on the vertical axis, on the V(X(t)) values,

• and to clone the trajectories from the crossing points when they happen before
t = 1.

• In the picture, we then have ζ̂ =
2

6

2

4

3

4
= 0.125
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4–Splitting on the artificial dynamic process
An example

• In the talk, I omitted details about the implementation of the Splitting
algorithms.

• In particular, the hyper-parameters issues are not described, and we don’t
discuss the different versions of Splitting that can be used. In the paper, we
followed some guidelines of this type, and used pilot runs for fine tuning them,
before simulating.

• Another important issue in this area is variance control, because we lack results
concerning the variance of the different versions of the method. As said before,
we only have optimality results on pretty simple models providing guidelines on
the design of the procedures.

• Another important practical issue is data leading to the shock-based model for
handling dependencies. There is a reference at the end where we explored this
issue with some mathematical details about the technical side.
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4–Splitting on the artificial dynamic process
An example

s

t

Xi =





8 w.p. 0.9899,
4 w.p. 0.0100,
0 w.p. 0.0001.

→ Vmax = 24
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4–Splitting on the artificial dynamic process
An example

ζ̂ RE Th N t d

1.22 E−07 2.82% 20 106 54 12
1.19 E−07 2.27% 21 106 96 12
1.19 E−07 2.01% 22 106 149 12
1.19 E−07 2.01% 23 106 201 12
1.19 E−07 1.87% 24 106 371 12

6.05 E−10 4.05% 26 106 58 8
6.06 E−10 4.05% 27 106 62 8
5.63 E−10 2.95% 28 106 112 8
5.83 E−10 2.59% 29 106 152 8
6.27 E−10 2.30% 30 106 260 8

ζ̂ : the target (an unavailability metric).

RE: Relative Error, SD(ζ̂ )/E(ζ̂ )

Th: number of thresholds.

N: total number of paths.

t: simulation time in sec.

d: demand value.
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Last comments

• From our viewpoint, the most interesting aspect of this proposal is the fact that
it fits with the problem of relaxing the usual independent components
assumption in the models.

• The other point to underline is the good behavior of the method when the failure
of the system becomes very rare.

• It will be useful to try Importance Sampling on this problem, perhaps the
so-called Zero Variance sub-family, for comparison purposes.
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• M. Lomonosov. “On Monte Carlo estimates in network reliability”. In: Prob. in
Eng. and Informational Sciences 8 (1994), pp. 245–264.

The Creation Process is defined in this paper.

• Héctor Cancela, Leslie Murray, and Gerardo Rubino. “Efficient Estimation of
Stochastic Flow Network Reliability”. In: IEEE Transactions on Reliability 68, 3
(Sep. 2019), pp. 954—970.

This paper proposes the Multilevel extension of the initial Creation Process and

the associated Splitting approach to the flow problem described here.

• O. Matus, E. Moreno, J. Barrera and G. Rubino. “On the Marshall–Olkin Copula
Model for Network Reliability Under Dependent Failures”. In: IEEE Transactions
on Reliability 68, 2 (June 2019), pp. 451–461.

This paper illustrates the use of the Marshall–Olkin copulas in the area and the

benefits in accuracy this tool offers.
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Some references

• Héctor Cancela, Leslie Murray, and Gerardo Rubino. “Reliability Estimation for

Stochastic Flow Networks with Dependent Arcs”. In: IEEE Transactions on
Reliability (2022), to appear (the revised version was accepted this week).

This paper corresponds to the talk. It has some numerical results on a couple of

models.

• Zdravko I. Botev, Pierre L’Ecuyer, Gerardo Rubino, Richard Simard, Bruno Tuffin.
“Static Network Reliability Estimation via Generalized Splitting”. In: INFORMS J.
of Computing (2013), 25, 1.

A related work on applying Splitting to a more classical network reliability

problem.
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