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ABSTRACT
Distributed monitoring is an essential functionality to allow large
cluster federations to efficiently schedule applications on a set of
available geo-distributed resources. However, periodically report-
ing the precise status of each available server is both unnecessary
to allow accurate scheduling and unscalable when the number of
servers grows. This paper proposes Acala, a monitoring frame-
work for geo-distributed cluster federations which aims to provide
the management cluster with aggregate information about the en-
tire cluster instead of individual servers. Our evaluations, based
on actual deployment under controlled environment in the geo-
distributed Grid’5000 testbed, show that Acala reduces the cross-
cluster network traffic by up to 99% and the scrape duration by up
to 55%.
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KEYWORDS
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1 INTRODUCTION
The rapid development of edge and fog computing technologies
creates new opportunities to deploy very large geo-distributed plat-
forms covering a region or even an entire country [10]. Managing
such platforms requires an efficient resource orchestrator, which
enables administrators to treat the set of machines located in nu-
merous strategic locations with the same flexibility as if they were
a single homogeneous cluster. Many research projects are aiming at
reusing and/or extending the popular Kubernetes (K8s) orchestrator
in this new geo-distributed context [8, 37]. When the system size
grows, and in the possible presence of unreliable network connec-
tions between the available resources, it quickly becomes desirable
to organize the platform as a federation of multiple independent
geo-distributed clusters, each of which is in charge of the resources
located in a particular region [23].

In a cluster federation, a “management cluster” is in charge of de-
ciding which of the “member clusters” will be in charge of handling
each newly deployed application. Although the original KubeFed
project allowed little control of the choice of member cluster [23],
newer designs support a range of fine-grained placement policies
based on metrics such as cluster load, location, and network us-
age [32]. These policies base themselves on detailed monitoring
information about the status of available resources, provided by a

robust monitoring framework such as Prometheus and its extension
Prometheus Federation [26].

We demonstrate in this paper that monitoring a large cluster
federation is a very challenging task because the number of metrics
and the volume of monitoring data to be reported to the manage-
ment cluster grows linearly with the system size. Even for medium-
sized clusters, the necessary monitoring network traffic grows to
such large values that it may represent the majority of the sys-
tem management traffic, and may eventually saturate the existing
inter-cluster network links. We however note that the fine-grained
monitoring data that are being reported to the management cluster
are in fact not necessary to support the cluster federation. We there-
fore aim to reduce the volume of management data to provide the
cluster federation with accurate and up-to-date information while
significantly reducing the networking overhead of the federated
monitoring framework itself.

This paper proposes Acala, an extension of Prometheus which
reports information about entire member clusters rather than the
individual servers within them. It uses two techniques to reduce
the number of metrics to be reported to the management cluster:
metrics aggregation merges together the metric values of multiple
servers to report the aggregate status of the entire cluster rather
than its individual servers; and metrics deduplication avoids one
to repeatedly report the same metrics in case their value does not
change significantly.

Our evaluations based on actual deployment in the Grid’5000
testbed [5] show that Acala can reduce the volume of cross-cluster
network traffic by up to 99%, while reducing the necessary time to
scrape metrics by up to 55%. Moreover, the resource usage of Acala
components also remains acceptable.

The rest of this paper is organized as follows. Section 2 discusses
the motivation behind this work. Background and Related Work
are expressed in Section 3. Section 4 introduces how Acala works
and two data reduction strategies. Section 5 shows the evaluations
of the proposed framework and strategies, the conclusions of the
paper are in Section 6.

2 MOTIVATION
Managing multiple geo-distributed federated clusters like a fog
computing platform or a telco cloud use case is a difficult challenge.
Some works focus on the management problem of multiple Kuber-
netes clusters, such as Kubernetes Cluster Federation (KubeFed)
and multi-cluster Kubernetes (mck8s). KubeFed [23] is proposed
to empower users to manage multiple Kubernetes clusters from
one main cluster. However, in its current design, KubeFed mainly
places workloads manually with limited support for automated
policy-based scheduling among the available clusters. This design
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Figure 1: Cross-cluster network traffic in the management
cluster when using mck8s.

therefore makes it hard to manage the workloads in a large-scale
environment automatically. mck8s [32] extends KubeFed and pro-
vides automatic placement, scaling, and bursting of container-based
applications in geo-distributed cluster federations. However, both
works use a centralized control method to manage the resources,
which necessarily implies possible scalability issues.

To illustrate this problem, we leverage a real deployment in the
Grid’5000 testbed. In the setup, we use “Kubernetes in Docker”
(kind) to launch large numbers of Kubernetes clusters [20]. The
first cluster acts as our management cluster. Then, we launch up to
500 member clusters. Each cluster contains two servers (one control
plane and one worker node), resulting in up to 1000 nodes in total.

Figure 1 depicts the aggregate volume of cross-cluster network
traffic after deploying a large mck8s federation with no application
workload. Recv and send show the network traffic received/sent
by the management cluster. We sum Recv and send as the total
network traffic. The scrape interval of Prometheus in mck8s is set
to 5 seconds, which means that the management cluster fetches
metrics from every cluster once every 5 seconds.We observe a linear
growth up to 27.7MiB/s for monitoring 500 member clusters (1,000
nodes), which may be enough to saturate many fog computing
networks. The same linear growth appears when increasing the
number of servers per cluster (not shown in the figure for clarity
reasons). This very large management traffic is due to the resource
monitoring used by mck8s to implement sophisticated scheduling
functionalities. It does not appear when using KubeFed, which
schedules workloads without considering the cluster status.

This simple experiment motivates our work: we aim to support
advanced scheduling policies but without paying the price of de-
tailed resource monitoring. As a result, the precious platform’s
network resources may be used for actual user workloads rather
than cluster management operations.

3 BACKGROUND AND RELATEDWORK
Fog computing extends the cloud computing concept with addi-
tional resources located closer to the end-users. It has receivedmuch
attention from academia in the last few years. Many prior studies
present different facets of fog/edge computing, including placement
of jobs and services [12], service caching [15], seamless application
migration [31], and supporting data stream processing [1]. These

works are based on a single distributed cluster, which will nec-
essarily face the scalability problem. To handle this issue, we are
now witnessing an increasing adoption of geo-distributed multi-
cluster deployments. Some works focus on job scheduling [16],
whereas others address resources management [17, 32] and fault
prediction [30]. These studies rely on a monitoring system to col-
lect the metrics. However, they do not aim to solve the problem of
monitoring itself in a geo-distributed cluster federation.

The main purposes of geo-distributed resource monitoring are
to track resource usage of the computing nodes, especially in poten-
tially resource-restricted and unstable environments. A number of
open source and commercial monitoring tools for cloud platforms
such as DARGOS [25], JCatascopia [36], and Nagios [24] are not con-
sidered suitable for fog computing environments [11]. On the other
hand, some authors present monitoring solutions and architectures
that are designed with the specific constraints of fog computing in
mind, such as PyMon [13], FMonE [4] and Prometheus [28]. The
most popular of these tools is Prometheus. Since 2016, Prometheus
has been accepted by the Cloud Native Computing Foundation
(CNCF) as a “graduated” project, which shows its great potential in
conjunction with Kubernetes. At the same time, many works use
Prometheus as their monitoring solution [2, 6, 7, 14, 22, 34].

Prometheus provides a function called “Federation” which allows
a Prometheus server to collect the metrics from other Prometheus
servers. A common use case is building a global-view Prometheus
server which scrapes and stores the monitoring data from other
Prometheus servers. Two levels of the federation are instance-level
drill-down and job-level drill-down. In Prometheus terminology,
an instance is an endpoint that user can scrape from and a job
is a collection of instances with the same purpose. Prometheus
Federation is often used to monitor systems in geo-distributed
environments [3, 9, 32, 35].

However, Prometheus Federation features three limitations that
generate the high network traffic highlighted in Section 2 and make
it unsuitable for our purposes. First, the highest scrape level of
Prometheus Federation is job-level, and it uses the match mech-
anism to select the series of metrics. For example, the operator
can write job=”node-exporter” in a federation server’s configura-
tion file to scrape the metrics that match this label from the target
Prometheus servers. It results in scraping thematchingmetrics from
all the nodes1 in the target cluster when job="node-exporter" is set.
This design is suitable for backing the metrics for high availability
purposes but not fitting for the management cluster to manage the
federated clusters. It wastes the network bandwidth to transmit and
disk resources to save the same node metrics in the management
cluster. Second, Prometheus Federation will append all original
labels in each metric when a Prometheus server scrapes from the
target Prometheus server to identify where the metric comes from.
However, all original labels are unnecessary for recognition, and
the scheduler may not need this detailed information to make the
decision. Furthermore, the labels are attached before the metrics
transmission, which increases the cross-cluster network traffic. The
third point is that Prometheus Federation collects the monitoring
data at a fixed periodicity. The system will therefore scrape all the

1We assume all nodes in all clusters have installed node-exporter and labeled job="node-
exporter".
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Figure 2: Overview of Acala architecture and scrape flow.

metrics even if some of the metric values did not change, which
once again will waste network bandwidth.

Prometheus also supports a feature called “recording rules”which
is similar to Acala’s metrics aggregation. Using it, one can pre-
aggregate selected metrics, store the results in the member clusters,
and scrape them from other Prometheus servers with appropriate
labels. However, recording rules in Prometheus need to be defined
manually for each metric in each member cluster, which is error-
prone and may increase the deployment and configuration cost in
large-scale environments. Moreover, Prometheus does not provide
metric deduplication so it reports data to the global view cluster
periodically, regardless of whether the value has changed since the
previous scraping period.

To overcome these monitoring challenges, we base our work on
Prometheus and introduce Acala. Acala automatically aggregates
the metrics whose metric name and labels are identical in different
servers, which reduces the cross-cluster network traffic as well as
the deployment and configuration cost. It also deduplicates metric
values and thereby avoids transferring unchanged values over and
over again.

4 SYSTEM DESIGN
The objective of this work is to monitor resources with lower cross-
cluster network traffic in geo-distributed cluster federations. In this
section, we discuss the operation of Acala and introduce two data
reduction strategies specially designed for Acala to reach our goal.

4.1 System Model
A geo-distributed cluster federation is a set of multiple clusters that
can choose clusters to be global view clusters, which are respon-
sible for collecting metrics from other clusters. Clusters that are
not selected are member clusters. Each cluster consists of several
computing nodes, and we assume that each node in the cluster has

enough resources that can run the applications to provide moni-
toring. All nodes in a cluster are located in the same area. Each
node and cluster is connected by the network and can communicate.
Although the current design can support multiple layers, for the
sake of simplicity, we leverage a two-tier architecture in this paper.

Acala is built on several components from the Prometheus ecosys-
tem, including the Prometheus server, node-exporter [27], and Push-
gateway [29]. The system overview is shown in Figure 2.

Prometheus servers in member clusters: The duty of these servers
is to scrape 2 time-series data about local metrics in each member
cluster, and to store them in their local database. They constitute
the source of data before aggregation. They can also be used for
querying detailed per-node metrics, for example for anomaly detec-
tion, diagnosis or system management purposes. Moreover, these
Prometheus servers can also be configured to trigger alerts about
nodes with abnormal metric values in their member cluster, such
as fully saturated nodes.

Prometheus server in the global view cluster: The Prometheus
server in the global view cluster is used to save the aggregated data
from the member clusters and their local metrics. The federation’s
scheduler can leverage this Prometheus server to query member
cluster information and make the scheduling decisions.

Node-exporter: This component is our monitoring agent for the
per-node metrics. We install a node-exporter for each node in each
cluster to expose hardware and operating system metrics.

Pushgateway: The Pushgateway is installed in the global view
cluster. It is a middleware that can expose these metrics for the
Prometheus server to scrape. Moreover, Pushgateway also acts as a
cache for metric values.

Acala introduces two new components: Acala-Controller, and
Acala-Member. Acala-Controller is responsible for scraping the
metrics from the target member cluster, adding the labels to identify

2Scrape is the action from Prometheus or Acala to fetch metrics from the target.
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Figure 3: An example of metrics aggregation.

the member cluster, and pushing the metrics to the Pushgateway.
The task of Acala-Member is to pull the metrics from node-exporter
in each cluster and execute proposed data reduction strategies. The
data transmission between Acala-Controller and Acala-Member is
compressed using gzip. The detailed scrape steps are as follows:

Step 1: When it is time for Acala-Controller to scrape the metrics,
the controller sends a request to the target Acala-Member.

Step 2: After Acala-Member receives the request, Acala-Member
uses the HTTP GET method to pull the metrics from the
local computing nodes through node-exporter. Meanwhile,
Acala-Member executes Algorithm 1 to modify the metrics.
Finally, Acala-Member compresses the metrics and sends
them back to Acala-Controller.

Step 3: Acala-Controller decompresses the metrics and leverages
the HTTP POST method to push metrics to the Pushgate-
way. In this step, the Acala-Controller adds the labels (IP
address of control plane and cluster name) to identify the
member cluster.

Step 4: The global-view Prometheus server periodically scrapes
the metrics from the Pushgateway (at a user-defined peri-
odicity independent from the periodicity of inter-cluster
metrics transfer) and stores them locally. The administrator
or federation scheduler can then query the monitoring data
of the member cluster via this Prometheus server.

4.2 Timing to Scrape Metrics
Similar to the original design of Prometheus, the timing to scrape
the metrics from the target member cluster is determined by a
fixed scrape interval. We leverage a timer in the Acala-Controller
to perform regular scrape actions. When the timer counts down
to 0, the system scrapes the metrics once, then sets the timer back
to the default values configured by the administrator. A shorter
scrape interval value means that data in the global view clusters
will be more precise in representing the actual status of the member
cluster, yet at the cost of additional inter-cluster network traffic.
The default scrape interval is defined as 5 seconds.

4.3 Data Reduction Strategies
To address the problems mentioned in Section 3, we propose two
data reduction strategies: metrics aggregation and metrics dedupli-
cation highlighted in Algorithm 1.

The data model of metrics in Prometheus is composed of a met-
ric_name, any number of pairs label_name, label_value, and finally
a metric_value. The notation of a metric is:

𝑚𝑒𝑡𝑟𝑖𝑐_𝑛𝑎𝑚𝑒 {𝑙𝑎𝑏𝑒𝑙_𝑛𝑎𝑚𝑒 = 𝑙𝑎𝑏𝑒𝑙_𝑣𝑎𝑙𝑢𝑒, . . .}𝑚𝑒𝑡𝑟𝑖𝑐_𝑣𝑎𝑙𝑢𝑒

4.3.1 Metrics Aggregation. Each node in the member clusters de-
ploys the node-exporter to expose its node-related metrics. In stan-
dard Prometheus Federation design, the highest scrape level is job,
which will scrape the metrics from all nodes in the target member
cluster and append all original labels for these metrics. In contrast,
we choose metrics aggregation between the nodes in the target
member cluster as our solution, elevating the point of monitoring
view from node to cluster. For easy understanding, we use metric
name with labels to represent metric name, label name, and label
value.

Figure 3 presents an example of metrics aggregation. Node-
exporter of node 1 exposes the metric 𝑛𝑜𝑑𝑒_𝑐𝑝𝑢_𝑠𝑒𝑐𝑜𝑛𝑑 {𝑐𝑝𝑢 =

“0”,𝑚𝑜𝑑𝑒 = “𝑖𝑑𝑙𝑒”} 9 and node 2 has the same metric name with
labels (fuchsia color). Metrics aggregation will thus aggregate both
metric names with their labels and metrics values (blue color). For
the value of the metric, we simply average the individual values
together, considering that the federation schedulers only need to
know about the general status of the cluster rather than detailed
per-server metrics. The node-exporter exposes node-related met-
rics such as utilized CPU, memory, and network bandwidth. These
metrics can be aggregated with other metrics with the same name
and labels. When metrics do not have identical name and labels
within the cluster, Acala reports them non-aggregated to the global
view cluster. In case more detailed per-node information is needed,
the administrator can request the Prometheus server deployed in
each cluster directly.

The main idea of this strategy is to average values whose metric
name and labels are identical in different servers. This method
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Algorithm 1: metrics aggregation and deduplication
Output:𝐴𝑀 : A dictionary of Aggregated Metrics (𝑘𝑒𝑦: metric name with

labels, 𝑣𝑎𝑙𝑢𝑒 : metric value)
1 Function Aggregation(𝑀𝑛𝑜𝑑𝑒 ,𝐴𝑀 , 𝑐𝑜𝑢𝑛𝑡𝑒𝑟):
2 if 𝐴𝑀 == ∅ then
3 𝐴𝑀 ← 𝑀𝑛𝑜𝑑𝑒

4 for 𝑘𝑒𝑦 ∈ 𝐴𝑀 do
5 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑘𝑒𝑦 ← 1
6 else
7 for 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ∈ 𝑀𝑛𝑜𝑑𝑒 do
8 if 𝑘𝑒𝑦 ∈ 𝐴𝑀 then
9 𝐴𝑀𝑘𝑒𝑦 ← 𝐴𝑀𝑘𝑒𝑦 + 𝑣𝑎𝑙𝑢𝑒

10 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑘𝑒𝑦 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑘𝑒𝑦 + 1
11 else
12 𝐴𝑀𝑘𝑒𝑦 ← 𝑣𝑎𝑙𝑢𝑒

13 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑘𝑒𝑦 ← 1
14 return𝐴𝑀,𝑐𝑜𝑢𝑛𝑡𝑒𝑟

15 Function Deduplication(𝐿𝑎𝑠𝑡𝐴𝑀 ,𝐴𝑀):
16 if 𝐿𝑎𝑠𝑡𝐴𝑀 ! = ∅ then
17 for 𝑘𝑒𝑦 ∈ 𝐴𝑀 do
18 if 𝐿𝑎𝑠𝑡𝐴𝑀𝑘𝑒𝑦 ! = 𝐴𝑀𝑘𝑒𝑦 then
19 𝐷𝐴𝑀 ← 𝑘𝑒𝑦 𝑎𝑛𝑑 𝐴𝑀𝑘𝑒𝑦

20 else
21 𝐷𝐴𝑀 ← 𝐴𝑀

22 return 𝐷𝐴𝑀

23 Function Main:
24 while true do
25 Wait for connection
26 if Received scraping request then
27 𝑀𝑛𝑜𝑑𝑒 ← Pull Metrics from each 𝑛𝑜𝑑𝑒 in cluster
28 for Each node in cluster do
29 𝐴𝑀,𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← Aggregation(𝑀𝑛𝑜𝑑𝑒 ,𝐴𝑀 , 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 )
30 Update 𝑣𝑎𝑙𝑢𝑒 of𝐴𝑀 to average values based on𝐴𝑀 and

𝑐𝑜𝑢𝑛𝑡𝑒𝑟

31 if 𝐷𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 then
32 𝑇𝑒𝑚𝑝𝐴𝑀 ← 𝐴𝑀

33 𝐴𝑀 ← Deduplication(𝐿𝑎𝑠𝑡𝐴𝑀 ,𝐴𝑀)
34 𝐿𝑎𝑠𝑡𝐴𝑀 ← 𝑇𝑒𝑚𝑝𝐴𝑀

35 Compress𝐴𝑀
36 send𝐴𝑀 back to Acala-Controller
37 𝐴𝑀 ← ∅
38 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← ∅

can solve two problems we mentioned before. The first problem
is to collect monitoring data for each node in the target member
cluster. Metrics aggregation merges the metrics from all nodes into
a single aggregated metrics, which can decrease the volume of
monitoring data to reduce cross-cluster network traffic. Moreover,
metrics aggregation averages metrics values to represent the overall
cluster status. This is in line with other related work [32] which
also applies the aggregating strategy to represent the overall cluster
resources situation. However, they perform aggregation after all
individual metrics have been scraped, transferred and stored in the
global view cluster.

As discussed in Section 3, Prometheus Federation adds all orig-
inal labels in each metric to identify which server each metric
belongs to. In contrast, metrics aggregation keeps the metric la-
bels unchanged, the same as before aggregation. For the cluster
information, we add the labels including the IP address of control
plane and cluster name (set by administrators manually) to indi-
cate the member cluster in Acala-Controller, which takes place
after the transmission. Therefore, metrics aggregation can reduce
cross-cluster network traffic.

4.3.2 Metrics Deduplication. Prometheus Federation blindly scrapes
metrics from the member clusters at a periodic interval. As a re-
sult, in case some metrics values do not change frequently, they
get transferred repeatedly and unnecessarily, which consumes net-
work bandwidth to transfer these redundant data. To further reduce
cross-cluster network traffic, we propose a second data reduction
strategy – metrics deduplication.

Metrics deduplication compares the metric values with the most
recently transferred one. If the values are identical, the deduplica-
tion strategy removes this metric from this metric value transfer.
On the other hand, if the metric value changes, the system will
include this metric again to report the fresh data.

However, note that Prometheus includes a metrics staleness
mechanism. If no new value is reported after 5 minutes (default
of Prometheus), this metric will be marked as stale and its value
will be excluded from results returned to the federation scheduler.
When using metrics deduplication, this staleness mechanism may
exclude valuable deduplicated values from the results. Therefore,
Acala leverages Pushgateway to cache these metrics locally so
that the Prometheus server in the global view cluster can scrape
from Pushgateway and keep fresh metric values in the Prometheus
server without having to repeatedly transfer them from the member
clusters.

To allow Acala to perform both metrics aggregation and dedu-
plication, the algorithm will perform aggregation first and then
deduplication based on the aggregated data. Although both data
reduction strategies may run independently, we leave this topic for
future work.

Themetrics aggregation and deduplication process are illustrated
in Algorithm 1. When a request for a new scrape action arrives at
the Acala-Member in the target member cluster, the Acala-Member
pulls the metrics from each node through node-exporter (lines
26-27). If the metric names with labels are identical, the value of
matched metrics get summed and the counter for this metric is
incremented (lines 8-10). However, if the metric does not have the
same metric name with labels, the algorithm appends this metric as
a new metric and sets its counter to one (lines 12-13). After all met-
rics finish aggregation, the value of metrics are averaged (line 30).
When the deduplication function is enabled, the algorithm copies
the full Aggregated Metrics (𝐴𝑀) to 𝑇𝑒𝑚𝑝𝐴𝑀 . Then, it executes
the deduplication function to remove the metrics with the same
value as the last scrape (lines 16-22). 𝐿𝑎𝑠𝑡𝐴𝑀 gets the metrics from
𝑇𝑒𝑚𝑝𝐴𝑀 , which are full aggregated metrics that can be compared
for the next scrape (line 34). Finally, Acala-Member compresses the
metrics, sends them back to Acala-Controller, clears the data, and
waits for the next scrape request (lines 35-38).

The proposed framework and two data reduction strategies ele-
vate the traditional view of monitoring in Prometheus Federation
from "node" to "cluster". The design of Acala is to hierarchically
monitor different levels of metrics. The original Prometheus Feder-
ation scrapes per-server metrics from all member clusters to the
global view cluster, where all the detailed metrics can be found.
Instead, Acala keeps the detailed per-server metrics, which are nei-
ther aggregated nor deduplicated, in the member cluster. It then
reports the modified metrics to the global view cluster. Using met-
rics aggregation, the monitoring data in the global view cluster
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represent the overall member cluster status. The layer of monitor-
ing will be “cluster status” in the global view cluster, and “node
status” in each member cluster. Note that, although Acala performs
metric aggregation and metric deduplication, from a macro per-
spective, our solution does not discard any data. The operator can
still query detailed per-node metrics in the member clusters for
anomaly detection and system management.

5 PERFORMANCE EVALUATION
To understand the performance of Acala with our proposed meth-
ods, we evaluate our framework in different aspects when we in-
crease the number of computing nodes in one member cluster. The
detailed experimental setups for the evaluation are described next.

5.1 Experimental Setup
For the sake of making our work as close as possible to the produc-
tion environment, we implement a prototype of our framework and
run it in the Grid’5000 geo-distributed testbed which is composed
of eight sites located in different cities in France and more than 750
physical compute nodes pooled in homogeneous clusters [5]. We
discuss the setup along the following four aspects: deployment of
the experiment, performance indicators, comparison methods, and
tools for collecting the data.

Deployment of the experiment: To support the design fea-
tures described in Section 4, we utilize Python 3.10 to implement
Acala-Controller andAcala-Member.We leverage Kubernetes (v1.23.5)
for container orchestration to build the environment to analyze
Acala in a geo-distributed cluster federation. At the same time, we
use different open-source projects in Kubernetes clusters for differ-
ent functions. Cilium v1.11.4 is our Container Network Interface
(CNI) that provides, secures, and observes network connectivity
between container workloads in Kubernetes. Kube-Prometheus-
stack v34.10.0 is a collection of Kubernetes manifests, including
Prometheus v2.34.0 and node-exporter v1.3.1.

We first launch one Kubernetes cluster to be our global view
cluster. This cluster contains two nodes (one for the control plane
and one worker node). All the nodes are running in VMs, and each
VM has 4 CPU cores and 16GiB of memory. For the member cluster,
we create the VMs from 2 nodes to 31 nodes. Each set has one
control plane and several worker nodes. The VMs in the member
cluster consist of 2 CPU cores and 8GiB of memory. Each cluster
installs the Prometheus server, and node-exporter deploys on each
node in each cluster.

We place our Acala-Controller in the global view cluster and
Acala-Member in the member cluster to measure the performance.
Moreover, Acala-Controller is installed on the same node as the
Prometheus server, which can reduce the inter-node network traffic
when the Prometheus server in the global view cluster scrapes from
Pushgateway. Meanwhile, the Pushgateway is equipped in the same
pod as Acala-Controller, which can make the metrics transmission
in the pod. In Kubernetes, a Pod is the smallest deployable unit
of computing [18]. We leverage a Kubernetes Deployment [19]
for these two components so that our software will automatically
restart if a component error occurs.

Performance indicators: The main goal of Acala is to reduce
the cross-cluster network traffic in geo-distributed cluster federa-
tions. Hence we measure network traffic as our primary indicator in
the experiment. A lower network traffic implies better performance.
Moreover, efficiency is a pivotal point in evaluating a system. There-
fore, the scrape duration and resource consumption are also the
objectives we consider. If scrape duration and resource consumption
are shorter and lower, the overall efficiency is better.

Comparisonmethods: In our proposed system, the data reduc-
tion strategy is a method to reduce the metrics when the global
view clusters scrape from the member clusters. To evaluate the
performance of metrics aggregation and metrics aggregation with
deduplication, we compare them with unmodified Prometheus Fed-
eration. In addition, we examine these three methods with different
scrape interval (5 s and 60 s).

Tools for collecting the data: After deploying the system, we
start to collect the related data. All experiments are gathered for 6
minutes. There are three performance indicators for evaluating the
Acala. Each indicator has its method of collection. For the cross-
cluster network traffic, we use tcpdump to capture the network
traffic. The scrape duration is based on the time.perf_counter() func-
tion in the Acala source code to measure the execution time of each
step.We sum the execution time of Acala-Member, Acala-Controller,
and the duration of Prometheus scrape from the Pushgateway to
become our scrape duration. The resource usage of the Acala compo-
nents, including CPU and memory, is monitored by the Kubernetes
Metrics Server (v0.6.1) [21].

5.2 Experimental Results
This section shows the experimental results of three performance
indicators.

5.2.1 Cross-Cluster Network Traffic. Figures 4 and 5 show the ex-
perimental results of cross-cluster network traffic on average and
per scrape, respectively. Figures 4(a) and 5(a) present the results
of the system scraping the metrics every 5 seconds whereas the
outcomes of 60 second scrape interval are shown in Figures 4(b)
and 5(b). To increase readability in the figures, we denote Metrics
Aggregation as MA, Metrics Aggregation With Deduplication as
MAWD, and Prometheus Federation as PF.

Figure 4(a) shows that metrics aggregation with deduplication
significantly reduces cross-cluster network traffic, which is 0.45 KiB/s,
whereas the network traffic in metrics aggregation and Prometheus
Federation are 1.64 KiB/s and 2.33 KiB/s when monitoring a sin-
gle worker node in the member cluster. Using metrics aggregation
with deduplication in Acala and compared to Prometheus Feder-
ation, the reduction of network traffic in the single-node case is
1.88 KiB/s, which is 81% lower, and there are 30% lower when we
apply the metrics aggregation as our data reduction strategy. Fig-
ure 4(b) shows the same trend that both of our proposed methods
have lower network traffic than the Prometheus Federation. If the
monitored nodes are set to 20, 25, and 30, the network traffic is
98%/93%, 98%/94%, and 99%/95% lower when we use the metrics
aggregation with deduplication/metrics aggregation and compare
to Prometheus Federation.

Overall, Figure 4 demonstrates that no matter how many moni-
tored nodes are in the experiment, both of our proposed methods
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(a) Scrape interval is set to 5 seconds.
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(b) Scrape interval is set to 60 seconds.

Figure 4: Average cross-cluster network traffic with scrape interval is set to 5 seconds (a) and 60 seconds (b).
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(a) Scrape interval is set to 5 seconds.
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(b) Scrape interval is set to 60 seconds.

Figure 5: Cross-cluster network traffic per scrape with scrape interval is set to 5 seconds (a) and 60 seconds (b).
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Figure 6: Scrape duration (a) and Execution time of each step (b) when scrape interval is set to 5 seconds.

perform significantly better than Prometheus Federation. The de-
sign of Prometheus Federation will scrape the metrics from all
nodes in the target member cluster to the global view cluster. Our
strategy is also to scrape the metrics from all nodes, but we make

this task in the member cluster, making the transmission happen in
the same cluster, which can reduce the cross-cluster network traffic.
Moreover, our methods aggregate the same metrics between the
monitored nodes, which can decrease the volume of monitoring



Chih-Kai Huang and Guillaume Pierre

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

0
5

10
15
20
25
30
35
40
45

Ac
al

a 
CP

U
 u

sa
ge

 (
m

)

MA_Controller
MAWD_Controller
MA_Member
MAWD_Member

(a) CPU consumption.

0 5 10 15 20 25 30
Number of monitored nodes in one member cluster

40

60

80

100

120

Ac
al

a 
m

em
or

y 
us

ag
e 

(M
iB

)

MA_Controller
MAWD_Controller
MA_Member
MAWD_Member

(b) Memory consumption.

Figure 7: CPU (a) and Memory (b) consumption when scrape interval is set to 5 seconds.

data to reduce cross-cluster network traffic and make the view of
monitoring from node to cluster. In addition, the method of metrics
aggregation with deduplication is even lower than metrics aggrega-
tion since unmodified data does not get sent multiple times. If the
value of the metric is the same as the current time and the last time,
metrics aggregation with deduplication will remove these metrics
to save network bandwidth between clusters.

Acala collects metrics from monitored targets based on the fixed
scrape interval. However, the current design does not smooth the
data transmission over time as data get transferred at periodic in-
tervals (same as Prometheus Federation). Therefore, we also want
to know how much network bandwidth is used per scrape in this
experiment. The results of cross-cluster network traffic per scrape
are shown in Figure 5. In the case of 5 second scrape interval, we see
in Figure 5(a) that the cross-cluster network traffic of Prometheus
Federation experiences linear growth from 11.67 KiB (for 1 node),
39.17 KiB (for 5 nodes) to 215.48 KiB (for 30 nodes). The difference
between 1 and 30 monitored nodes is 203.81 KiB, which is 1746%
greater. This is because Prometheus Federation scrapes the metrics
from all nodes in the member cluster. Moreover, it also appends
all original labels in each metric to identify the scraped target.
These strategies significantly increase cross-cluster network traffic.
Figure 5(b) reflects that the results are almost the same as with 5
seconds scrape interval case in our methods of metrics aggregation
and metrics aggregation with deduplication. The network traffic of
both methods grows a little when the number of monitored nodes
increases. When increasing the monitored nodes from 1 to 30, the
network traffic of metrics aggregation with deduplication/metrics
aggregation is 2.57/8.00 KiB and 3.21/10.81 KiB, respectively. The
growth rates are 25% and 35%, which are lower than Prometheus
Federation. Although our methods aggregate the metrics, some
metrics are specific to nodes. These metrics will append to aggre-
gated metrics, which will increase a little the cross-cluster network
traffic.

These results demonstrate that our solution works well in one
member cluster with various numbers of worker nodes. We expect
that the cross-cluster network traffic of multi-clusters deployment
will grow proportionally since our approach aggregates metrics
between nodes in a cluster but not between different clusters.

5.2.2 Scrape Duration. We now study the time it takes to scrape
metrics using Acala. For the sake of clarity, we only show the results
of 5 seconds scrape interval in Figure 6. We see in Figure 6(a) that
scrape duration grows with the number of worker nodes that need
to be scraped. However, the growth rates of Prometheus Federa-
tion’s scrape duration are greater than both of our methods. Acala
starts to outperform Prometheus Federation with about 5 monitored
nodes. In the case of a single node, the scrape duration of metrics
aggregation and metrics aggregation with deduplication is greater
than Prometheus Federation because Acala must execute additional
operations compared to Prometheus Federation. In the case of 30
nodes in the member cluster, the scrape duration of Prometheus
Federation is around 0.58 s, whereas the scrape duration of metrics
aggregation with deduplication is 0.27 s (53% lower that Prometheus
Federation). Furthermore, the metrics aggregation in the same case
performs even better, up to 55% shorter than Prometheus Feder-
ation. In general, our methods perform better than Prometheus
Federation when the cluster contains more nodes.

The detailed execution times of each step in the proposed ap-
proach are shown in Figure 6(b). We present two cases with 1 node
and 30 nodes, and split the scrape time along the five main steps
of Acala: Pull Metrics, Execution Methods, Send To Controller, Post
To Pushgateway, and Prometheus Scrape. We can see that the total
execution time of metrics aggregation with deduplication is greater
than metrics aggregation in both cases. Based on the figure, we can
find that the Execution Methods is slightly greater because metrics
aggregation with deduplication will compare the last values of the
metrics, which consumes more time for execution. The execution
time of the 30 nodes situation is greater than 1 node. The major
increases are from Pull Metrics and Execution Methods. More nodes
need to be processed by the Acala-Member, which takes more time.

5.2.3 Resources Consumption of Acala Components. To better un-
derstand the efficiency of our system, we measure the resource
usage to see how much CPU and memory are needed. Same as
scrape duration experiments, we only show the results of 5 seconds
scrape interval in Figure 7. The CPU usage3 of Acala components
3In the Kubernetes metrics server, the unit of CPU usage is millicpu or millicores (m).
For example, 100m is equivalent to 0.1 vCPU/core for cloud providers or 0.1 hyper
thread on bare-metal Intel processors [33].
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is depicted in Figure 7(a). We found that the CPU usage of Acala-
Member grows as the number of monitored nodes increases, and
metrics aggregation with deduplication is a little greater than met-
rics aggregation. There are two reasons for these results: one is that
more nodes need to execute, and the other is because comparison
consumes CPU resources. At the same time, the Acala-Controller’s
CPU usage of metrics aggregation with deduplication is lower than
metrics aggregation because the transmission volume is smaller,
which reduces the execution of functions such as decompression
in Acala-Controller. Regardless of the Acala-Controller or Acala-
Member, the memory consumption of both approaches is almost
the same, which is around 90MiB for Acala-Controller and 55MiB
for Acala-Member as shown in Figure 7(b).

6 CONCLUSION
This article presents Acala, amonitoring framework for geo-distributed
cluster federations. Acala exploits two strategies called metrics ag-
gregation and metrics deduplication for reducing the volume of
monitoring data that needs to be reported to the management clus-
ter. Acala performs more efficiently than regular Prometheus Fed-
eration because of lower cross-cluster network traffic and shorter
scrape duration. Using actual deployment for experiments, we show
that Acala can reduce the cross-cluster network traffic by up to
99% and the scrape duration by up to 55% compared to Prometheus
Federation.
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