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Abstract: In this paper, we initiate a new algebraic analysis approach to linear differential
systems based on rings of integro-differential operators. Within this algebraic analysis approach,
we first interpret the method of variations of constants as an operator identity. Using this result,
we show that the module associated with a state-space representation of a linear system is the
same as the one associated with its standard convolution representation. This finitely presented
module over the ring of integro-differential operators is proved to be stably free. Finally, we
show how the reachability property can be expressed within this algebraic analysis approach.
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1. INTRODUCTION

In the 90’s, a new approach to linear system theory
(Kalman et al. (1969)) was developed based on ideas,
methods, and results of algebraic analysis. Algebraic anal-
ysis is a mathematical theory, initiated in the 60’s, that
studies linear systems of differential equations (Kashi-
wara et al. (1971)). Within this mathematical approach, a
finitely presented left module over a ring of differential op-
erators is intrinsically associated with a linear differential
system, and the properties of this linear system are studied
using module theory, sheaf theory, homological algebra,
etc. Control systems defined by linear differential equa-
tions have been intrinsically studied within an algebraic
analysis approach using rings of differential operators. The
deep connections between the algebraic analysis approach
and the behavioural theory (Polderman et al. (1998)) have
also been developed. See, e.g., Oberst (1990); Fliess (1990);
Pommaret (2001); Quadrat (2010).

At the end of the 90’s, the algebraic analysis approach to
linear differential systems was extended to linear differen-
tial time-delay systems (Fliess and al. (1998)) using rings
of differential constant time-delay operators. In Chyzak
et al. (2005), an algebraic analysis approach to linear
systems over Ore algebras of functional operators was
developed. Different algorithmic aspects of this approach
were studied using computer algebra methods for certain
classes of noncommutative polynomial rings. Continuous,
discrete, differential, constant delay, or mixed systems can
be studied within this common effective mathematical
approach. In Quadrat et al. (2016), an algebraic analysis
approach to linear systems defined by differential time-
dependent delay equations was initiated based on Ore
extensions of differential time-dependent delay operators.
Rings of integro-differential-delay operators were intro-
duced in Quadrat (2015) to study the transformations
between first-order linear systems with delayed inputs and
purely differential linear systems (e.g., Artstein’s reduc-
tion). Indeed, within the algebraic analysis approach to

linear system theory, transformations and equivalences
of linear functional systems can be studied by means of
homomorphisms and isomorphisms between the finitely
presented modules (Rotman (2009)) defined by the sys-
tem matrices (Cluzeau et al. (2008)). This approach was
further developed in Cluzeau et al. (2018) and computer
algebra aspects of Quadrat (2015) were investigated.

In this paper, using rings of integro-differential operators,
we initiate a new algebraic analysis approach to linear
system theory (Kalman et al. (1969)). We first state again
the general construction of rings of integro-differential
operators (Quadrat (2015); Cluzeau et al. (2018)). Then,
we show how the standard method of variation of con-
stants can simply be rewritten as an identity of integro-
differential operators and we explain its module-theoretic
interpretation. Using this result, we can then prove that
a state-space representation and its standard integral rep-
resentation define the same module over a ring of integro-
differential operators. Moreover, we prove that this module
is stably free (Lam (1999); Rotman (2009)). Classical re-
sults of linear system theory (Kalman et al. (1969)) can be
rewritten within this module-theoretic approach over rings
of integro-differential operators. We finally shortly explain
how the reachability of linear systems can be rewritten
within this approach in a way that encapsulates both the
behaviour and the parametrization philosophies.

2. ALGEBRAIC ANALYSIS APPROACH

Let us briefly state again the algebraic analysis approach
to linear system theory. Let D be a ring of functional
(e.g., differential, shift, time-delay) operators that is not
necessarily supposed to be commutative. Let R ∈ Dq×p be
a q × p matrix with entries in D and .R : D1×q −→ D1×p

the left D-homomorphism (i.e., the left D-linear map)
defined by (.R)(λ) = λR for all λ ∈ D1×q. In what follows,
we shall simply denote the image imD(.R) of .R by D1×q R.
Then, we can define the finitely presented left D-module:

M = cokerD(.R) = D1×p/(D1×q R).



See, e.g., Rotman (2009). Let π : D1×p −→ M de-
note the canonical projection onto M, i.e., the left D-
homomorphism which maps λ onto its residue class π(λ)
inM (i.e., π(λ′) = π(λ) for λ′ ∈ D1×p if λ′−λ ∈ imD(.R),
i.e., if there exists µ ∈ D1×q such that λ′ = λ+ µR). Let
{fj}j=1,...,p denote the standard basis of D1×p, namely, fj
is the row vector of size p defined by 1 at the jth entry
and 0 elsewhere. If we set yj = π(fj) for j = 1, . . . , p, then
using the fact that every m ∈ M is of the form π(λ) for
a certain λ = (λ1 . . . λp) ∈ D1×p, by the left D-linearity
of π, we obtain m =

∑p
j=1 λj π(fj) =

∑p
j=1 λj yj , i.e., m

is a left D-linear combination of the yj ’s. Thus, the left
D-module M is finitely generated by {yj}j=1,...,p.

Since the rows Ri• = (Ri1 . . . Rip) of R, i = 1, . . . , q,
belong to D1×q R, their residue classes π(Ri•) are reduced
to 0, which, by the left D-linearity of π, then yields:

π(Ri•) =

p∑
j=1

Rij π(fj) =

p∑
j=1

Rij yj = 0, i = 1, . . . , q.

If we note y = (y1 . . . yp)
T , then the above equations can

be rewritten as Ry = 0. Hence, the family of generators
{yj}j=1,...,p satisfies the relations Ry = 0 (and all their left
D-linear combinations). The left D-moduleM is then said
to be finitely presented (see Lam (1999); Rotman (2009)).

Let F be a left D-module and R ∈ Dq×p. Then,

kerF (R.) = {η ∈ Fp×1 | Rη = 0}
is the abelian group (i.e., the Z-module) formed by all the
F-solutions of the linear system Rη = 0. Note that if D
is a k-algebra, where k is a field, then kerF (R.) inherits
a k-vector space structure. Within the behaviour approach
(Polderman et al. (1998)), kerF (R.) is called a behaviour.
A standard result in homological algebra asserts that

kerF (R.) ∼= homD(M,F),

where homD(M,F) denotes the abelian group (the k-
vector space) formed by all the left D-homomorphisms
from M to F , and ∼= stands for an isomorphism, namely,
a bijective homomorphism (Lam (1999); Rotman (2009)).
Hence, the behaviour kerF (R.) can be intrinsically studied
by the module-theoretic properties of homD(M,F), and
thus, by the properties of the left D-modules M and F .

The main benefit of the algebraic analysis approach to
linear system theory is that built-in system properties
can be translated in terms of module properties, and
those properties that can be effectively checked using
homological algebra and computer algebra methods. For
more details, see the references mentioned in Section 1.

Let R′ ∈ Dq′×p′ and M′ = cokerD(.R′) be the left D-
module finitely presented by R′. It can be shown that
f ∈ homD(M,M′) is defined by a pair of matrices (P, Q),

where P ∈ Dp×p′ and Q ∈ Dq×q′ , satisfying the identity:

RP = QR′. (1)

More precisely, if π′ : D1×p′ −→M′ denotes the canonical
projection onto M′, then f is defined by:

∀ λ ∈ D1×p, f(π(λ)) = π′(λP ).

See, e.g., Cluzeau et al. (2008). Using (1), we have
R (P η′) = Q (R′ η′) = 0 for all η′ ∈ kerF (R′.), i.e., f
induces the following homomorphism of behaviours:

f? : kerF (R′.) −→ kerF (R.)
η′ 7−→ η = P η′.

Thus, a natural way to study behaviour homomorphisms
(e.g., equivalences) is through the study of the homo-
morphisms of the left modules finitely presented by the
corresponding system matrices. See Cluzeau et al. (2008).

In the literature (see the references given in Section 1),
D is usually the ring of ordinary or partial differential
operators, the ring of differential (time-dependent) delay
operators, the ring of multi-shift operators, etc. In the
next section, we shall introduce the ring D of integro-
differential operators and then use it to develop a new
algebraic analysis approach to linear system theory.

3. RINGS OF INTEGRO-DIFFERENTIAL
OPERATORS

Let A be a k-algebra, where k is a field of characteristic 0
(e.g., Q, R, C). We do not assume that A is a commutative
ring. Let us now suppose that the ring endk(A) formed by
the all the k-endomorphisms of A contain a derivation ∂,
namely, ∂ ∈ endk(A) satisfies the standard Leibniz rule:

∀ a1, a2 ∈ A, ∂(a1 a2) = ∂(a1) a2 + a1 ∂(a2). (2)

Then, (A, ∂) is called a differential ring and

C = {a ∈ A | ∂(a) = 0}
is the subring of constants of A. Note that (2) yields

∂(1) = ∂(1× 1) = ∂(1) + ∂(1) = 2 ∂(1) =⇒ ∂(1) = 0,

and since ∂ is k-linear, ∂(c) = c ∂(1) = 0 for all c ∈ k,
which shows that k ⊆ C. We also have c1 (a c2) = (c1 a) c2
for all c1, c2 ∈ C and for all a ∈ A, which shows that A
has a C-bimodule structure (Rotman (2009)). Note that

∀ c1, c2 ∈ C, ∀ a ∈ A : ∂(c1 a c2) = c1 ∂(a c2) = ∂(c1 a) c2,

i.e., ∂ is a C-bimodule endomomorphism.

Example 1. The polynomial ring k[t] or the Laurent poly-
nomial ring k[t, t−1] in t with coefficients in a field k, or
the ring of k-valued smooth (resp., analytic, meromorphic)
functions in an open subset U of R (resp., of C) with k = R
or C are standard examples of commutative differential
rings with the derivation ∂ = d/dt. If (A, ∂) is one of
these differential ring and n ∈ Z>0, then (An×n, ∂) is a
noncommutative differential ring with C = kn×n.

Let 1 be the identity of endk(A): 1(a) = a for all a ∈ A.

Let us now consider a differential ring (A, ∂) for which
there exists I ∈ endk(A) satisfying the conditions:

(1) I is a C-bimodule endomorphism, i.e.:

∀ a ∈ A, ∀ c1, c2 ∈ C, c1 I(a c2) = I(c1 a) c2.

(2) ∂ ◦ I = 1, i.e., ∂(I(a)) = a for all a ∈ A.

(3) The C-bimodule endomorphism e = 1− I ◦ ∂ of A is
multiplicative, namely:

∀ a1, a2 ∈ A : e(a1 a2) = e(a1) e(a2).

Then, (A, ∂, I) is called an integro-differential ring.

Example 2. Let U be an open subset of R, t0 ∈ U , and
(A = C∞(U), ∂ = d/dt) be the differential ring of real-

valued smooth functions on U . Let I(a)(t) =
∫ t
t0
a(τ) dτ be

the standard integral for all a ∈ A. Using classical calculus
identities, we then have



d

dt

∫ t

t0

a(τ) dτ = a(t), e(a) = a(t)−
∫ t

t0

ȧ(τ) dτ = a(t0),

for all a ∈ A. Thus, e is the evaluation at t0, which is mul-
tiplicative. Moreover, C = R and I is a R-endomorphism of
A. Thus, (A, ∂, I) is an integro-differential ring. Finally, if

n ∈ Z>0, then (A = C∞(U)n×n, ∂ = d/dt, I =
∫ t
t0
ds) is a

noncommutative integro-differential ring with C = kn×n.

Now, note that every a ∈ A yields a ∈ endk(A) defined by
the multiplication by a, namely, a : b ∈ A 7−→ a b ∈ A.

We can now define the ring of integro-differential operators
over A (Quadrat (2015); Cluzeau et al. (2018); Quadrat et
al. (2020)) that plays an important role in what follows.

Definition 1. Let (A, ∂, I) be an integro-differential ring.
Then, the ring of integro-differential operators is the k-
subalgebra of endk(A) generated by ∂, I, e, and by all
the multiplications a for all a ∈ A. Equivalently, I is the
noncommutative polynomial ring A〈∂, I, e〉 over A defined
by ∂, I, e, and a for all a ∈ A which satisfy the relations:

∀ a ∈ A,


∂ ◦ a = a ◦ ∂ + ∂(a),

∂ ◦ I = 1,
I ◦ ∂ = 1− e,
e ◦ a = e(a) ◦ e.

(3)

To simplify the notations, in what follows, we shall remove
the sign of composition ◦ in the expressions of the elements
of I. For instance, ∂◦I and 1−I ◦ ∂ will be simply written
∂ I and 1 − I ∂. Moreover, when the operator context is
clear, a will be simply be denoted by a. For instance, the
first and last identities of (3) are then rewritten as follows:

∀ a ∈ A, ∂ a = a ∂ + ∂(a), e a = e(a) e. (4)

With these conventions, we then have:

∀ a ∈ A, ∂(a), I(a), e(a) ∈ A, ∂ a, I a, e a ∈ endk(A).

The only possible ambiguity is when ∂(a), I(a), and e(a)
are considered as multiplication operators as it is the case
in (4). But the context will always be clear enough.

Remark 1. The first identity of (3) comes from:

∀ b ∈ A, (∂ a)(b) = ∂(a b) = ∂(a) b+a ∂(b) = (a ∂+∂(a))(b).

The second and the third identities of (3) are by construc-
tion. Finally, the last identity of (3) is a direct consequence
of the above third axiom of an integro-differential ring, i.e.:

∀ b ∈ A, (e a)(b) = e(a b) = e(a) e(b) = (e(a) e)(b).

Note that from (3), we can deduce the following identities:

e2 = e, e I = 0, ∂ e = 0,

∀ a ∈ A, I a ∂ = −I ∂ a+ a− e(a) e,

I a I = [I(a), I] := I(a) I − I I(a).

(5)

These identities can be proved using ∂ I = 1 as follows:

e2 = (1− I ∂) (1− I ∂) = 1− I ∂ = e,

e I ∂ = e (1− e) = e− e2 = 0 ⇒ e I = e I ∂ I = 0,

∂ e = ∂ (1− I ∂) = ∂ − ∂ = 0.

The last but one identity of (5) corresponds to the inte-
gration by parts: using (2) and I ∂ = 1− e, we have:

I a ∂ = I (∂ a−∂(a)) = (1−e) a−I ∂(a) = a−e(a) a−I ∂(a).

Finally, the last identity of (5) can be proved as follows.
Using the first identity of (3) with I(a) instead of a, we
first get ∂ I(a) = I(a) ∂ + ∂(I(a)) = I(a) ∂ + a, i.e.:

a = ∂ I(a)− I(a) ∂ = [∂, I(a)].

Using I ∂ = 1− e, ∂ I = 1, and e I = 0, we finally obtain:

I a I = I (∂ I(a)− I(a) ∂) I = (1− e) I(a) I − I I(a)

= I(a) I − I I(a) = [I(a), I].

Setting a = 1 in this identity and using I(1) = t − t0, we
have I2 = [t − t0, I] = [t, I], which shows that I2 can be
expressed as a k[t]-linear combination of I. More generally,
this result holds for In for all n ∈ Z≥0.

Using (3), (5) and the last remark, every element of I is a
finite sum of terms of the form a ∂j , b I c, and d e ∂k, where
a, b, c, d ∈ A and j, k ∈ Z≥0 (Cluzeau et al. (2018)).

Example 3. We consider again the integro-differential ring
A defined in Example 2. Then, k = R and the ring
of integro-differential operators I is the k-subalgebra of
endk(A) generated by the k-endomorphisms of A:

a : b(·) 7−→ a(·) b(·),

∂ : a(·) 7−→ ȧ(·), ∂(a)(t) = ȧ(t) =
da(t)

dt
,

I : a(·) 7−→ b(·), I(a)(t) = b(t) =

∫ t

t0

a(τ) dτ,

e : a(·) 7−→ a(t0).

Hence, the element a1 I a2 of I is the operator defined by:

a1 I a2 : b(·) 7−→ c(·), c(t) = a1(t)

∫ t

t0

a2(τ) b(τ) dτ.

For instance, the first identity of (3) comes from:

∀ b ∈ A, (∂ a)(b) =
d

dt
(a b) = a

(
db

dt

)
+

(
da

dt

)
b

= (a ∂ + ∂(a))(b).

Similarly, the other identities of (3) come from:

∀ b ∈ A, (∂ I)(b)(t) =
d

dt

∫ t

t0

b(τ) dτ = b(t),

(I ∂)(b)(t) =

∫ t

t0

ḃ(τ) dτ = b(t)− b(t0) = (1− e)(b)(t),

∀ a, b ∈ A, (e a)(b) = e(a b) = a(t0) b(t0) = (e(a) e)(b).

Remark 2. The fact that ∂ is a left inverse but not a two-
sided inverse of I implies that I is not a Dedekind finite
ring (Lam (1999)), and thus, not a noetherian ring.

Finally, as shown in Quadrat et al. (2020), more eval-
uations can be added to I. For instance, if we consider
the ring of integro-differential operators I defined in Ex-
ample 3, then we can add the evaluation e′ defined by
e′(a)(t) = a(t1) for all a ∈ A, where t1 ∈ U is fixed and
different from t0, to get the ring of integro-differential-
evaluation operators J = A〈∂, I, e, e′〉, where e′ satisfies:

∀ a ∈ A, e′ a = e′(a) e′, e e′ = e′, e′ e = e, ∂ e′ = 0. (6)

4. THE METHOD OF VARIATION OF CONSTANTS

In this section, we consider the ring of integro-differential
operators I = A〈∂, I, e〉 defined in Example 3. Let us
explain how the variation of constants method can be in-
terpreted in terms of operators and within module theory.

Let Φ be the transition matrix of the first-order system:

ẋ(t) = A(t)x(t). (7)

In what follows, we shall suppose that Φ : t 7−→ Φ(t, t0)
belongs to An×n. We recall that Φ is an invertible matrix,
i.e., Φ−1 ∈ An×n, satisfying (7) and Φ(t0, t0) = 1n.



Remark 3. If Φ is the transition matrix of (7), then using
(3), we get I (∂ 1n −A) = 1n − e 1n − I A and:

(1n − e 1n − I A) Φ = 0 ⇐⇒ Φ = 1n + I(AΦ).

The last equation can be used to define Picard iteration,
and thus, Peano–Baker series for Φ, namely:

Φ = 1n + I(A) + (I A I)(A) + (I A I A I)(A) + . . .

Let us determine when S = a0 I a1 +a2, where a0, a1, and
a2 ∈ An×n, is a right inverse of R. Using (3), we have:

RS = (∂ 1n −A) (a0 I a1 + a2)

= (ȧ0 −Aa0) I a1 + a2 ∂ + ȧ2 −Aa2 + a0 a1.

If a1 = 0, then RS = 1n has no solution. If a1 6= 0, then
RS = 1n if and only if:

ȧ0 −Aa0 = 0,

a2 = 0,

ȧ2 −Aa2 + a0 a1 = 1n,
⇐⇒


ȧ0 −Aa0 = 0,

a2 = 0,

a0 a1 = 1n,

⇐⇒


a0(t) = Φ(t, t0) c0, c0 ∈ kn×n,
a2 = 0,

c0 a1 = Φ(t, t0)−1 = Φ(t0, t).

The matrix R then has the following right inverse:

S = Φ(t, t0) c0 I a1 = Φ(t, t0) I c0 a1 = Φ(t, t0) I Φ(t0, t).

Using RS = 1n, we get R (S f) = f for all f ∈ An×1, i.e.,

(S f)(t) = Φ(t, t0) I Φ(t0, t) f(t) = Φ(t, t0)

∫ t

t0

Φ(t0, τ) f(τ) dτ

=

∫ t

t0

Φ(t, t0) Φ(t0, τ) f(τ) dτ =

∫ t

t0

Φ(t, τ) f(τ) dτ

(8)
is a particular solution of the inhomogeneous system:

ẋ(t)−A(t)x(t) = f(t). (9)

Note that RS = 1n also yields λ = (λR)S, showing that
kerI(.R) = 0, i.e., the left I-homomorphism .R is injective.
Then, we have the short exact sequence of I-modules

0 // I1×n .R // I1×n π //M // 0, (10)

i.e., .R is injective, kerπ = imI(.R), and π is surjective
(Rotman (2009)). The identity RS = 1n then shows that
Π = S R ∈ In×n satisfies Π2 = Π, i.e., Π is an idempotent
of In×n, which yields the direct sum decomposition:

I1×n = kerI(.Π)⊕ imI(.Π), (11)

The fact that .R is injective and .S is surjective yield

kerI(.Π) = kerI(.S), imI(.Π) = imI(.R) ∼= I1×n.

Using I1×n = kerI(.S)⊕ imI(.R), we first get

M = I1×n/imI(.R) ∼= kerI(.S),

and I1×n = kerI(.S)⊕ imI(.R) and imI(.R) ∼= I1×n yield

M⊕I1×n ∼= I1×n, (12)

showing that M is a stably free left I-module, and thus,
a projective left I-module (Lam (1999); Rotman (2009)).
The fact thatM is a stably free is also a direct consequence
of the spliting of (10), which yields (12) (Rotman (2009)).

Let us now compute Π = S R. To do so, we first note that
Ψ = Φ−1 satisfies Ψ̇ + ΨA = 0 and, using Ψ ∂ = ∂Ψ− Ψ̇

(integration by parts; see the first identity of (3)), the third
and fourth identities of (3), e(Ψ) = Φ(t0, t0) = 1n, yield:

Π = S R = (Φ I Ψ) (∂ 1n −A) = Φ I ∂Ψ− Φ I (Ψ̇ + ΨA)

= Φ (1− e) Ψ = 1n − Φ e(Ψ) e = 1n − Φ e.

Remark 4. Since Φ 6= 0, the above computations show
that RS = 1n but S R 6= 1n, which proves that I is not
stably finite ring (see, e.g., Lam (1999)), a fact which is
consistent with the fact that (12) does not yield M = 0.

The existence of a right inverse S of R implies that the
short exact sequence (10) splits, i.e., the existence of a left
I-homomorphism ρ : M −→ I1×n satisfying the identity
(.R) ◦ (.S) + ρ ◦ π = idI1×n . For more details, see, e.g.,
Rotman (2009). This split short exact sequence of left I-
modules can be displayed as follows:

0 // I1×n .R // I1×n
.S

oo
π //M
ρ

oo // 0. (13)

For m = π(λ) ∈M, where λ ∈ I1×n, we have:

ρ(m) = ρ(π(λ)) = λ (1n − S R) = λΦ e. (14)

Remark 5. Note that Φ e is an idempotent element of In×n
since, using e2 = e and e(Φ) = 1n, we then have:

(Φ e)2 = Φ e(Φ e) = Φ e(Φ) e2 = Φ e.

Similarly, 1n − Φ e is an idempotent of In×n. Moreover,
kerI(.(1n − Φ e)) = imI(.Φ e) and imI(.(1n − Φ e)) =
kerI(.Φ e), which shows that (11) becomes:

I1×n = imI(.Φ e)⊕ kerI(.Φ e).

Similarly, we have In×1 = imI(Φ e.)⊕ kerI(Φ e.). The left
(resp., right) I-modules kerI(.Φ e) and imI(.Φ e) (resp.,
kerI(Φ e.) and imI(Φ e.)) are thus direct summands of the
direct sums of I, i.e., they are projective left (resp., right)
I-modules. For more details, see, e.g., Rotman (2009).

Dualizing (13) with coefficients in F , i.e., applying the
contravariant functor homI( · ,F) to split short exact
sequence (13) and using the isomorphism kerF (R.) ∼=
homI(M,F) of k-vector spaces, we obtain the following
split short exact sequence of k-vector spaces

0 // kerF (R.)
i //Fn×1 R. //

Φ e.
oo Fn×1

S.
oo // 0,

(15)
where i is the canonical injection. See, e.g., Rotman (2009).
Note that Φ e. : Fn×1 −→ kerF (R.) is well-defined since:

∀ η ∈ Fn×1, (∂ 1n −A) Φ e η = (Φ ∂ + Φ̇−AΦ) e η = 0.

In what follows, we shall simply denote i ◦ Φ e. by Φ e.

The splitting of (15) is equivalent to the following identity:

Φ e+ (Φ I Φ−1) (∂ 1n −A) = 1n. (16)

Thus, for every ξ ∈ An×1, if we set ζ(t) = ξ̇(t)−A(t) ξ(t),
then the operator identity (16) yields:

ξ(t) = (Φ e) ξ(t) + Φ I Φ−1 (∂ 1n −A) ξ(t)

= Φ(t, t0) ξ(t0) + (Φ I Φ−1 ζ(t)

= Φ(t, t0) ξ(t0) +

∫ t

t0

Φ(t, τ) ζ(τ) dτ. (17)

We find again method of the variation of constants.

If f = B u, where B ∈ An×m, then the general solution of

ẋ(t) = A(t)x(t) +B(t)u(t) (18)



is then defined by:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ. (19)

Remark 6. The natural triviality of the Cauchy problem(
∂ 1n −A
e1n

)
x(t) = 0 ⇔

{
ẋ(t) = A(t)x(t),
x(t0) = 0,

⇔ x = 0,

is a direct consequence of (16), which can be rewritten as

(S Φ)C = 1n, C :=

(
∂ 1n −A
e1n

)
. (20)

Indeed, C x(t) = 0 then yields (S Φ)C x(t) = x(t) = 0.
This result can be understood as a Nullstellensatz theorem.
Note that the condition that all the entries of Φ belong
to A plays a similar role as the algebraically closed field
condition in algebraic geometry. Indeed, if this is not the
case, then the Bézout identity (20) does not hold over I.

Using (20), we have the following idempotent of I2n×2n:

Θ = C (S Φ) =

(
1n Φ ∂
0 e 1n

)
.

Thus, we clearly have kerI(.Θ) = imI(.Θ′), where:

Θ′ = 12n −Θ =

(
0 −Φ ∂
0 (1− e) 1n

)
.

Using (1− e) 1n = I ∂ 1n and the fact that Φ is invertible,
we have kerI(.Θ) = imI(.D), where D = (0 ∂ 1n) ∈
I1×2n. Note that kerI(.D) = 0 since µ ∈ kerI(.D) yields
µ∂ 1n = 0, i.e., µ = µ∂ 1n I = 0. Using (20), we have
I1×2n C = I1×n, i.e., C = cokerI(.C) = 0, and the
following split exact sequence of left I-modules holds

0 // I1×n .D // I1×2n

.F
oo

.C // I1×n

.E
oo // 0, (21)

where E = (S Φ) and F =
(
−ΦT (I 1n)T

)T
. Fix

ζ, ω ∈ Fn×1. Let us now study the solvability of the
following inhomogeneous linear system

C ξ =

(
ζ
ω

)
, (22)

where ξ is sought in Fn×1. Applying the functor homI( · ,F)
to (21), we get the split exact sequence of k-vector spaces

0 Fn×1oo F. //F2n×1

D.
oo

E. //Fn×1

C.
oo 0,oo

which shows that a necessary and sufficient condition for
the solvability of (22) is D (ζT ωT )T = 0, i.e., ∂ ω = 0.
Let F = A and ω = xt0 ∈ kn×1. Then, (22) is a Cauchy
problem, whose unique solution in An×1 is defined by:

ξ(t) = E (ζ(t)T xTt0)T = (S Φ) (ζ(t)T xTt0)T .

Let us now give an equivalent representation of (7), i.e.,
another presentation ofM. We have previously shown that
Π = S R = 1n−Φ e. Clearly, I1×n Π ⊆ I1×nR. Using the
identity RΠ = (RS)R = R, I1×nR ⊆ I1×n Π, which
yields imI(.Π) = imI(.R), and thus,M = cokerI(.Π), i.e.,
Π is another presentation matrix of M. Hence, we have
kerF (R.) = kerF (Π.), i.e., (7) is equivalent to:

((1n − Φ e) η(t) = η(t)− Φ(t, t0) η(t0) = 0

⇔ η(t) = Φ(t, t0) η(t0).

Note that {e xi}i=1,...,n is another set of generators of
M. Indeed, the left I-module generated by {e xi}i=1,...,n

is a left I-submodule of M. Now, M = cokerI(.Π)

yields x = Φ e x, where x = (x1, . . . , xn)T . Thus, the
xi’s are left A-linear combinations of the e xj ’s, which
yieldsM =

∑n
i=1 I e xi. Equivalently, using (20), we have

I1×2n C = I1×n and:

M = I1×n/
(
I1×nR

)
=
(
I1×2n C

)
/
(
I1×nR

)
.

We characterize the relations among the e xi’s. Lemma 3.1
of Cluzeau et al. (2008) and kerI (.C) = imI(.D) yield:

M∼= cokerI

(
.

(
1n 0
0 ∂ 1n

))
∼=M′ = cokerI(.∂ 1n).

Using Lemma 3.1 of Cluzeau et al. (2008), the isomorphism
ψ : M′ −→ M is defined ψ(π′(λ)) = π(λ e1n) and
ψ−1 :M−→M′ is defined by ψ−1(π(λ)) = π′(λΦ) for all
λ ∈ I1×n. Let us check again thatM′ ∼=M. Using ∂ e = 0,
we obtain the following commutative exact diagram

0 // I1×n .∂ 1n //

.0
��

I1×n π′ //

.e 1n

��

M′

ψ

��

// 0

0 // I1×n .R // I1×n π //M // 0,

(23)

where ψ ∈ homI(M′,M) is given by ψ(π′(λ)) = π(λ e1n)
for all λ ∈ I1×n. Using (20), we get ψ−1(π(λ)) = π′(λΦ)
for all λ ∈ I1×n, and the commutative exact diagram:

0 // I1×n .R //

.Φ
��

I1×n π //

.Φ
��

M
ψ−1

��

// 0

0 // I1×n .∂ 1n // I1×n π′ //M′ // 0.

(24)

Using (3), we can check again the commutativity of the

above diagram: RΦ = (∂ 1n−A) Φ = Φ ∂+Φ̇−AΦ = Φ ∂.

As explained in Section 2, η ∈ kerF (R.) corresponds to
f ∈ homI(M,F), where ηi = f(xi) for i = 1, . . . , n. Using
that {e xi}i=1,...,n also generates M, η can be defined by
f(e xi) = e f(xi) = e ηi for i = 1, . . . , n. For instance, if
F = A, using kerA(∂ 1n.) = C(A)n×1, where C(A) = k,
then applying the functor homI( · ,A) to (23) and (24),
we obtain the following commutative exact diagram

An×1

Φ.
��

An×1∂ 1n.oo

Φ.
��

kn×1oo

(ψ−1)
?

��

0oo

An×1

0.

OO

An×1

e 1n.

OO

R.oo kerA(R.)

ψ?

OO

oo 0,oo

where ψ? and
(
ψ−1

)?
are respectively defined by:

∀ η ∈ kerA(R.), ψ?(η) = (e1n)(η) = (e(η1), . . . , e(ηn))T ,

∀ c ∈ kn×1,
(
ψ−1

)?
(c) = Φ c ∈ kerA(R.).

Theorem 7. Let A ∈ An×n, R = ∂ 1n − A, Φ be the
transition matrix of ẋ(t) = A(t)x(t), and S = Φ I Φ−1.
Then, the following results hold:

(1) RS = 1n, Φ e+ S R = 1n, and Π := S R = 1n − Φ e
satisfies Π2 = Π, i.e., Π is an idempotent of In×n.

(2) If F is a left I-module (e.g., F = A), then we have:

∀ ξ ∈ Fn×1, ξ = Φ e ξ + S R ξ.

All the F-solutions of (∂ 1n−A) ξ = ζ are then of the
form ξ = Φ e ξ + S ζ, i.e., of (17) if F = A.

(3) If F is a left I-module (e.g., F = A) and ξt0 ∈ kn×1,
then the following Cauchy problem{

(∂ 1n −A) ξ = ζ,
e ξ = ξt0

has the unique solution ξ = Φ ξt0 + S ζ ∈ Fn×1.



(4) imI(.R) = imI(.Π), and thus, we have

M = cokerI(.R) = cokerI(.Π),

which, for all left F-modules (e.g., F = A), yields:

kerF (R.) ∼= homI(M,F) ∼= kerF (Π.).

(5) We have M∼=M′ = cokerI(.∂ 1n), and thus:

kerA(R.) ∼= kerA(∂ 1n.) = kn×1.

5. REACHABILITY OF LINEAR SYSTEMS

Let us consider P = (∂ 1n −A −B) ∈ In×(n+m), where
A ∈ An×n and B ∈ An×m. Then, the linear system
(18) is defined by P η = 0, where η = (xT uT )T . As
above, let Φ be the transition matrix of ẋ(t) = A(t)x(t)
and S = Φ I Φ−1 a right inverse of R = ∂ 1n − A. Now,
P η = 0 yields (S P ) η = 0. Conversely, using RS = 1n,
(S P ) η = 0 yields R (S P ) η = P η = 0, which shows that
P η = 0 and S P η = 0 are equivalent. Using (16), we have:

S P = (S R − S B) =
(
1n − Φ e − Φ I Φ−1B

)
.

Hence, (S P ) η = 0 is exactly (19). Within the algebraic
analysis approach to linear system theory, we have just
shown that I1×n P = I1×n (S P ), which then yields:

L = cokerI(.P ) = cokerI(.S P ).

Thus, (18) and (19) are two equivalent representations of
the same linear system, i.e., they define two different pre-
sentations of the same left I-module L (Rotman (2009)).

Note that the identity RS = 1n shows that the matrix
T = (ST 0T )T ∈ I(n+m)×n is a right inverse of P , and
thus, the following exact sequence of I-modules splits

0 // I1×n .P // I1×(n+m)

.T
oo

κ //L
σ

oo // 0,

which yields L ⊕ I1×n ∼= I1×(n+m), i.e., L is a stably
free left I-module (Lam (1999); Rotman (2009)). If F is
a left I-module, then applying the contravariant functor
homI( · ,F) to the above split exact sequence, we then
obtain the following split exact sequence

0 // kerF (P.)
i //F (n+m)×1 P. //
ϕ

oo Fn×1

T.
oo // 0,

where i ◦ϕ+T P. = 1n+m, i.e., ϕ(ξ) = (1n+m−T P ) ξ for
all ξ = (ξT1 ξT2 )T ∈ F (n+m)×1. Now, using (16), we have:

1n+m − T P =

(
1n − S R S B

0 1m

)
=

(
Φ e Φ I Φ−1B
0 1m

)
.

Using kerF (P.) = imϕ = ϕ
(
F (n+m)×1

)
, we get the

following parametrization of the linear system kerF (P.)(
x(t)
u(t)

)
=

(
Φ ξ1(t0) + Φ I Φ−1B ξ2(t)

ξ2(t)

)
∈ kerF (P.),

(25)
for all ξ ∈ F (n+m)×1. Therefore, we find again that
x(t) = Φ e ξ1(t) + Φ I Φ−1B u(t) is a solution of (18) for
all ξ1 ∈ Fn×1 and u ∈ Fm×1, with e(x) = ξ1(t0). Thus,
(18) is parametrized by x(t) = Φx(t0) + Φ I Φ−1B u(t).

Considering the ring J defined at the end of Section 3,
we can then consider the value e′(x) = x(t1) of x at
t1 > t0. Thus, we can study the reachability property of
linear systems (Kalman et al. (1969)), namely, the fact
that (e′ (1n − Φ e))(z) = z(t1) − Φ(t0, t1) z(t0) is of the

form of e′(Φ I(Φ−1B u)) =
∫ t1
t0

Φ(t0, τ)B(τ)u(τ) dτ , i.e.,

the fact that there is an input u such that (19) yields:

x(t1) = Φ(t0, t1) z(t0) +

∫ t1

t0

Φ(t1, τ)B(τ)u(τ) dτ = z(t1).

The reachability property corresponds to the inclusion:

imF (e′ (1n − Φ e).) = imF ((e′ 1n − e′(Φ) e).)

⊆ imF (e′ Φ I Φ−1B.) = imF (e′(Φ) e′ I Φ−1B.).
(26)

If F satisfies the condition that for every zt1 ∈ Rn×1, there
exists z ∈ Fn×1 such that z(t1) = zt1 and z(t0) = 0,
then z(t1)−Φ(t0, t1) z(t0) = zt1 , i.e., imF (e′ (1n−Φ e).) =
Rn×1. Hence, (26) becomes imF (e′ Φ I Φ−1B.) = Rn×1,
i.e., e′Φ I Φ−1B. : Fm×1 −→ Rn×1 is surjective. It is
well-known that imF (e′Φ I Φ−1B.) = imR(Wc.), where
Wc = e′

(
I
(
Φ−1BBT Φ−T

))
∈ Rn×n is the controllability

gramian (Kalman et al. (1969)). Thus, if the linear system
(18) is reachable at t1, i.e., if Wc is invertible, setting

L = BT Φ−T W−1
c e′(Φ)

−1
(e′ 1n − e′(Φ) e), then we get

the identity e′ 1n − e′(Φ) e = e′(Φ) e′ I Φ−1B L. Setting
ξ2 = Lξ1 for an arbitrary ξ1 ∈ Fn×1 into (25), i.e.,
u = ξ2 = Lξ1, then x = Φ e(ξ1) + Φ I(Φ−1B u) and:

x(t0) = e(x) = e(Φ) e(ξ1) + e(Φ) e(I(Φ−1B u)) = ξ1(t0),

x(t1) = e′(x) = e′(Φ) e′(e(ξ1)) + e′(Φ) e′(I Φ−1B u)

= e′(Φ) e(ξ1) + e′(ξ1)− e′(Φ) e(ξ1) = ξ1(t1).

Since ξ ∈ Fn×1 is arbitrary, u drives x from an arbitrary
initial condition ξ1(t0) to an arbitrary value ξ1(t1) at t1.
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