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Abstract: In this paper, we further develop the study of rings of integro-differential-delay
operators considered as noncommutative polynomial algebras satisfying standard calculus
identities. Within the algebraic analysis approach, we show that transformations and reductions
of linear differential time-delay systems can be interpreted as homomorphisms and isomorphisms
of finitely presented left modules over an algebra of integro-differential-delay operators. In
particular, we show how Fiagbedzi-Pearson’s transformation can be found again and generalized.
This transformation maps the solutions of a first-order differential linear system with state
and input delays to the solutions of a purely state-space linear system. Fiagbedzi-Pearson’s
transformation reduces to the well-known Artstein’s reduction when the system has no state
delay and yields an isomorphism of the solution spaces.
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1. INTRODUCTION

The goal of the paper is to further develop the study
of transformations and reductions of linear differential
time-delay systems within the algebraic analysis approach
(Cluzeau et al. (2008, 2009); Quadrat (2015)).

Let us consider the linear differential time-delay system

ẋ(t) = A0(t)x(t)+A1(t)x(t−r)+B0(t)u(t)+B1(t)u(t−h),
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, and A0, A1, B0, and B1 are
matrices whose entries are regular functions of the time-
variable t, and h and r are two fixed positive real numbers.
An important issue for time-delay systems is to understand
when (1) is equivalent to the linear state-space system

ż(t) = A(t) z(t) +B(t) v(t), (2)

where z(t) ∈ Rn, v(t) ∈ Rm, and A and B are also two
matrices whose entries are regular functions of t.

In the case where the state x of the linear system (1)
is not delayed, i.e., when A1 = 0, then it is well-known
that (1) and (2) are equivalent through invertible integral
transformations. This latter equivalence is nowadays called
Artstein’s reduction (Artstein (1982)). The case of A1 6= 0
is more complicated. In Fiagbedzi et al. (1986), the study
of integral transformations from (1) to (2) is initiated.

Algebraic analysis is a mathematical theory which studies
general linear systems of partial differential equations us-
ing module theory, homological algebra, sheaf theory, etc.
In the 90’s, algebraic analysis was introduced in control
theory by Oberst, Fliess, and Pommaret. Linear differen-
tial systems, multidimensional systems, differential (con-
stant or time-dependent) time-delay systems were studied
within this algebraic analysis approach. This approach also
encompasses linear systems over rings. The behavioural

approach can also be recasted within this approach. Fi-
nally, using symbolic computation methods (e.g., Gröbner
basis methods over Ore algebras of functional operators),
symbolic packages have been developed for the study of
different classes of linear systems (Chyzak et al. (2005)).

Using rings of integro-differential operators, an algebraic
analysis approach to linear differential systems has re-
cently been initiated in Quadrat (2022b). An algebraic
analysis approach to linear differential constant time-
delay systems was proposed in Quadrat (2015) using rings
of integro-differential-delay operators. Within this mathe-
matical approach, it was shown that Artstein’s reduction
can be interpreted as an isomorphism between the finitely
presented modules defined by (1), where A1 = 0, and (2)
over a ring of integro-differential-delay operators. Quadrat
(2015) advocated for an effective study using recent sym-
bolic computation methods. In Cluzeau et al. (2018), such
an effective approach was initiated and the corresponding
computations were reproduced and generalized using the
computer algebra system Mathematica.

In this paper, after briefly stating again the main ideas of
the algebraic analysis approach, we first further develop
the study of rings of integro-differential-delay operators.
We then explain that the standard integral representation
of (1), used in the method of steps, defines another presen-
tation of the finitely presented left module associated with
(1) over the ring of integro-differential-delay operators.
Finally, we study homomorphisms between the finitely
presented modules defined by (1) and (2). We find again
and generalize results obtained in Fiagbedzi et al. (1986).

2. ALGEBRAIC ANALYSIS APPROACH

If we consider the following functional operators



∂ y(t) = ẏ(t), δ y(t) = y(t− h), τ y(t) = y(t− r),
which act on functions y, then we can easily check that:

∂ ◦ δ = δ ◦ ∂, ∂ ◦ τ = τ ◦ ∂, δ ◦ τ = τ ◦ δ. (3)

Hence, we can define the commutative polynomial ring
D = R[∂, δ, τ ] formed by all the differential time-delay op-
erators in ∂, δ, and τ with coefficients in R. Every element
P ∈ D can be uniquely written as P =

∑
0≤|ν|≤r aν x

ν ,

where ν = (ν1 ν2 ν3) ∈ Z3
≥0 is a multi-index of length

|ν| = ν1 + ν2 + ν3, xν = ∂ν1 ◦ δν2 ◦ τν3 , aν ∈ R, and
r ∈ Z≥0. This ring D can be used to develop a polynomial
approach to linear differential constant time-delay systems
with real coefficients. Since “linear algebra over a ring”
corresponds to module theory in mathematics, module
theory was naturally introduced and used in this study.
This approach has largely been studied in the literature.
See, e.g., Fliess and al. (1998) and the references therein.

Let us consider the following n× (n+m)-matrices{
R = (∂ 1n −A −B) ,

R′ = (∂ 1n −A0 −A1 τ −B0 −B1 δ) ,
(4)

with entries in D, i.e., R, R′ ∈ Dn×(n+m), where 1n de-
notes the n×n identity matrix. If we note η = (zT vT )T

and η′ = (xT uT )T , then the above linear functional
systems can respectively be rewritten as follows:

Rη = 0, R′ η′ = 0. (5)

If F is a D-module, i.e., d1 f1+d2 f2 ∈ F for all d1, d2 ∈ D
and for all f1, f2 ∈ F , then we can define the behaviours:

kerF (R.) =
{
η ∈ F (n+m)×1 | Rη = 0

}
,

kerF (R′.) =
{
η′ ∈ F (n+m)×1 | R′ η = 0

}
.

In this paper, the linear systems (1) and (2) will be studied
within the algebraic analysis approach to linear system
theory. Let us briefly state again the main ideals of this
approach. Let D be a noncommutative ring and R ∈ Dq×p.
Then, we can consider the following left D-homomorphism

.R : D1×q −→ D1×p

µ = (µ1 . . . µq) 7−→ µR,

i.e., .R is a left D-linear map. Let us consider the image of
.R, i.e., imD(.R) = {λ ∈ D1×p | ∃ µ ∈ D1×q : λ = µR},
simply denoted by D1×q R, i.e., the left D-submodule of
D1×p formed by all the left D-linear combinations of the
rows of R. Moreover, we can introduce the cokernel of .R:

M := cokerD(.R) = D1×p/imD(.R) = D1×p/(D1×q R).

Let us give another description of M. Let {ei}i=1,...,p be
the standard basis of D1×p, namely, ei is the row vector
of length p with 1 at the ith-entry and 0 elsewhere. Every
element λ = (λ1 . . . λp) ∈ D1×p can then be written
as λ =

∑p
i=1 λi ei. Let π(λ) denote the residue class of

λ ∈ D1×p in M, namely, π(λ) = {λ + µR | µ ∈ D1×q}.
We can define the following operations on residue classes

π(λ1) + π(λ2) := π(λ1 + λ2), d π(λ) := π(d λ),

for all λ1, λ2 ∈ D1×p and for all d ∈ D, which shows that
M has a left D-module structure. Moreover, we can define
the left homomorphism π : D1×p −→ M which maps
λ ∈ D1×p onto its residue class π(λ) in M. Let us note
yi = π(ei) for i = 1, . . . , p. Then, every element m ofM is
of the form m = π(λ) =

∑p
i=1 λi π(ei) =

∑p
i=1 λi yi for a

certain λ ∈ D1×p. Hence, {yi}i=1,...,p is a generating set of

M. Let us note y = (y1 . . . yp)
T so that π(λ) = λ y for all

λ ∈ D1×p. Now, let {fj}j=1,...,q be the standard basis of
D1×q. Using fj R ∈ imD(.R), π(fj R) = 0 for j = 1, . . . , q,

π(fiR) = π((Ri1 . . . Rip)) =

p∑
j=1

Rij π(ej) =

p∑
j=1

Rij yj ,

and thus,
∑p
j=1Rij yj for j = 1, . . . , q, i.e., Ry = 0. Hence,

the generating set {yi}i=1,...,p of M satisfies the left D-
linear relations defined by Ry = 0, i.e., by the system
equations. The left D-module M = cokerD(.R) is said to
be finitely presented (see, e.g., Rotman (2009)).

Note that y is not a vector of functions, it is only the
vector defined by a set of generators of M. If we want
y to be a proper vector of functions, let us consider a
left D-module F of functions. Denote by homD(M,F)
the abelian group (namely, the Z-module) formed by all
the homomorphisms (i.e., left D-linear maps) from M to
F . Let us consider φ ∈ homD(M,F) and let us define
ψ(φ) := (φ(y1) . . . φ(yp))

T ∈ Fp×1. Then, we have

p∑
j=1

Rij φ(yj) = φ

 p∑
j=1

Rij yj

 = φ(0) = 0,

i.e., ψ(φ) ∈ kerF (R.). Conversely, if η ∈ kerF (R.), then we
can define the map ϕη :M−→ F by φη(π(λ)) = λ η ∈ F
for all λ ∈ D1×p. Note this map is well-defined since
π(λ′) = π(λ) is equivalent to λ′ = λ + µR for a certain
µ ∈ D1×q, which yields λ′ η = λ η+µ (Rη) = λ η. Clearly,
we have ϕη ∈ homD(M,F). Moreover, ψ(ϕη) = η for all
η ∈ kerF (R.) and ϕψ(φ) = φ for all φ ∈ homD(M,F),
which shows that there exists an isomorphism (i.e., a
bijective homomorphism) from kerF (R.) to homD(M,F),
which is denoted by kerF (R.) ∼= homD(M,F). Hence, the
behaviours can be seen as the dual with value in F to the
finitely presented left D-modules. The behaviour kerF (R.)
can be studied by means of the left D-modulesM and F .

Within the algebraic analysis approach, if R′ ∈ Dq′×p′ ,
M′ = cokerD(.R′), and kerF (R′.), then homomorphisms
from kerF (R′.) to kerF (R.) can be studied by homomor-
phisms fromM toM′. Let us briefly state again these re-
sults. Let f ∈ homD(M,M′). Then, it can be shown that

f is defined by a pair of matrices P ∈ Dp×p′ andQ ∈ Dq×q′

satisfying RP = QR′. Then, we have f(π(λ)) = π′(λP )

for all λ ∈ D1×p, where π′ : D1×p′ −→ M′ is the left D-
homomorphism which sends λ′ ∈ D1×p′ onto its residue
class π′(λ′) in M′. For more details, see Cluzeau et al.
(2008). Using the above identity, we get the Z-linear map
f? : kerF (R′.) −→ kerF (R.) defined by f?(η′) = P η′

for all η′ ∈ kerF (R′.). The left D-modules ker f , im f ,
and coker f can be explicitly characterized (Cluzeau et al.
(2008)). In particular, f is isomorphism if it is both injec-
tive and surjective, i.e., ker f = 0 and coker f = 0. For the
algorithmic aspects of the computation of matrices P and
Q for given matrices R and R′, see Cluzeau et al. (2008)
and the OreMorphisms package (Cluzeau et al. (2009)).

Using the above algebraic analysis approach to time-
invariant linear differential constant time-delay systems,
we can study the homomorphisms between the finitely
presented D = R[∂, δ, τ ]-modules M = cokerD(.R) to
M′ = cokerD(.R′), where the matrices R and R′ are



defined by (4), and thus, the corresponding homomor-
phisms between the behaviours/linear systems kerF (R.)
and kerF (R′.). Since D is commutative, homD(M,M′)
inherits a D-module structure and it can be proved that
homD(M,M′) is a finitely presented D-module, and thus,
it can be defined by a finite set of generators and a
finite set of D-linear relations. Finally, using Gröbner basis
methods, these generators and relations can be computed.

But, in the literature of delay systems, it is well-known
that differential time-delay transformations are usually
not enough to study interesting problems such as Art-
stein’s reduction, finite spectrum assignment, stabilizabil-
ity, etc., where integral transformations are required (e.g.,
distributed delays). For the study of the transformations
from (1) to (2), we thus have to enlarge the ring D to in-
clude integral operators. We are naturally led to introduce
rings of integro-differential constant time-delay operators
as shown in Quadrat (2015); Cluzeau et al. (2018).

3. RINGS OF INTEGRO-DIFFERENTIAL-DELAY
OPERATORS

As explained in Section 2, to study linear differential time-
delay systems, it is natural to consider rings of integro-
differential-delay operators. Let us first briefly introduce
the rings of integro-differential operators. For more details,
see Quadrat (2022b). To simplify, we shall consider here
the R-algebra A = C∞(R) of real-valued smooth functions
on R, but more algebras can also be used. Let us fix t0 ∈ R.
The ring of integro-differential operators I is then the R-
subalgebra of the ring endR(A) of all the R-endomorphisms
of A generated by the following R-endomorphisms of A:

a : b(·) 7−→ a(·) b(·), a ∈ A,

∂ : a(·) 7−→ ȧ(·), ȧ(t) =
da(t)

dt
,

I : a(·) 7−→ b(·), b(t) =

∫ t

t0

a(s) ds,

e : a(·) 7−→ a(t0).

As in Section 2, the composition of endomorphisms is writ-
ten multiplicatively and a ∈ endR(A) is simply denoted by
a. E.g., a1 I a2 ∈ I is the endomorphism of A defined by:

a1 I a2 : b(·) 7−→ c(·), c(t) = a1(t)

∫ t

t0

a2(τ) b(τ) dτ.

The endomorphisms ∂, I, e, and a for all a ∈ A satisfy
standard relations from calculus. For instance, we have

∀ b ∈ A, (∂ a)(b) = ∂(a b) = ∂(a) b+a ∂(b) = (a ∂+∂(a))(b),

i.e., the identity ∂ a = a ∂ + ∂(a) holds in I. Let 1 denote
the identity endomorphism of A. Similarly, we have:

∀ b ∈ A, (∂ I)(b) =
d

dt

∫ t

t0

b(τ) dτ = b,

∀ b ∈ A, (I ∂)(b) =

∫ t

t0

ḃ(τ) dτ = b(t)− b(t0) = (1− e)(b),

∀ a, b ∈ A, (e a)(b) = e(a b) = a(t0) b(t0) = (e(a) e)(b).

Hence, we have the following identities in I:

∀ a ∈ A,


∂ a = a ∂ + ∂(a),

∂ I = 1,
I ∂ = 1− e,
e a = e(a) e.

(6)

The following identities in I can be derived from (6)

e2 = e, e I = 0, ∂ e = 0,

∀ a ∈ A, I a ∂ = −I ∂(a) + a− e(a) e,

∀ a ∈ A, I a I = [I(a), I],

(7)

where [a, b] = a b − b a denotes the commutator of a and
b. For instance, the fourth identity of (7) corresponds to
the integration by parts. For more details, see Quadrat
(2022b). Using (6) and (7), it is clear that I is a non-
commutative polynomial ring in ∂, I, and e with coeffi-
cients in A, denoted by A〈∂, I, e〉. One can show that every
element P of I can be written uniquely as P = P1+P2+P3,
where P1 =

∑r
i=0 ai ∂

i ∈ A〈∂〉, where A〈∂〉 is the ring of
differential operators with coefficients in A, namely, the
non-commutative polynomials in ∂ and a ∈ A satisfying
the first identity of (6), P2 belongs to the ring (without
multiplicative identity) of integral operators

I = A〈I | I a I = [I(a), I]〉 =

{
r∑
i=1

ai I bi | ai, bi ∈ A

}
,

and P3 belongs to the only two-sided ideal 〈e〉 = I e I of I
defined by e. Using the identities in I, we can check again
that P3 is of the form P3 =

∑r
i=0 ai e ∂

i, where ai ∈ A.

To define rings of integro-differential-delay operators, we
add the new R-endomorphism δ of A defined by:

∀ a ∈ A, δ(a)(t) = a(t− h).

In this paper, we shall only consider the case where h is a
fixed positive real number. Thus, δ is a R-automorphism of
A and δ−1(a)(t) = a(t+h) for all a ∈ A. We also consider
the R-endomorphism eh of A defined by:

∀ a ∈ A, eh(a)(t) = a(t0 + h).

Note that we then have

∀ a ∈ A, (eh δ)(a)(t) = eh(a(t− h)) = a(t0) = e(a)(t),

which shows the following identity in endR(A):

e = eh δ. (8)

Thus, e is a consequence of δ and eh. More generally,
we have (eh δ

r+1)(a)(t) = a(t0 − r h) for all r ∈ N, i.e.,
eh δ

r+1 = et0−r h is the evaluation at t0 − r h for r ∈ N.
Similarly, we can easily check the following identities

∂ δ = δ ∂, ∂ eh = 0, e I = eh δ I = 0, δ eh = eh,

e2h = eh, I eh = (t− t0) eh.

Using the change of variables s = τ + h, we get

(δ I)(a)(t) =

∫ t−h

t0

a(τ) dτ =

∫ t

t0+h

a(s− h) ds

=

∫ t

t0

a(s− h) ds−
∫ t0+h

t0

a(s− h) ds,

which yields the following identity:

δ I = I δ − eh I δ = (1− eh) I δ. (9)

Using the change of variables s = τ − h, we also have

(I δ)(a)(t) =

∫ t

t0

a(τ − h) dτ =

∫ t−h

t0−h
a(s) ds

=

∫ t−h

t0

a(s) ds−
∫ t0−h

t0

a(s) ds,

which shows that the identity holds in endR(A):

I δ = δ I−et0−h I = δ I−eh δ2 I = (1−eh δ) δ I = (1−e) δ I.
(10)



Let us check that (9) and (10) are equivalent. Multiply (9)
by 1−eh δ and using the identities δ eh = eh, e2h = eh, and
e I = eh δ I = 0, we first have

(1− eh δ) δ I = (1− eh δ) (1− eh) I δ

= (1− eh δ − eh + eh δ eh) I δ

= (1− eh δ) I δ = I δ − e I δ = I δ,

i.e., (10). Similarly, multiplying (10) by 1 − eh and using
e2h = eh and e I = eh δ I = 0, we then have

(1− eh) I δ = (1− eh) (1− eh δ) δ I
= (1− eh − eh δ + eh δ) δ I = (1− eh) δ I

= δ I − eh δ I = δ I − e I = δ I,

i.e., (9), which proves that (9) and (10) are equivalent.

We sum up the above identities in the following table,
where c r denotes the product of an element in the first
column by an element in the first row.

c r ∂ I δ eh
∂ ∂2 1 δ ∂ 0
I 1− eh δ t I − I t (1− eh δ) δ I (t− t0) eh
δ ∂ δ (1− eh) I δ δ2 eh
eh eh ∂ eh I eh δ = e eh

(11)

Moreover, we can check that the following identities:

∀ a ∈ A, ∂ a = a ∂ + ∂(a),

δ a = δ(a) δ,

eh a = eh(a) eh,

I a ∂ = −I ∂(a) + (1− eh δ) a,
I a δ = (1− eh δ) δ I δ−1(a),

I a I = [I(a), I],

I a eh = I(a) eh.

(12)

Definition 1. We call ring of integro-differential-delay op-
erators over A = C∞(R), denoted by H = A〈∂, I, δ, eh〉,
the R-subalgebra of endR(A) generated by ∂, I, eh, δ, and
all the multiplication by elements of A. Equivalently, H is
the noncommutative polynomial ring A〈∂, I, δ, eh〉 defined
by ∂, I, δ, and eh which satisfy (11), (12), and eh δ I = 0.

Every element h of H can be written uniquely as

h = a(t, δ, ∂)+b(t, δ) I c(t)+d(t) eh f(δ) I g(t)+i(t) eh j(∂, δ),

where a(t, δ, ∂) is a polynomial in ∂ and δ with coefficients
in A, b(t, δ) a polynomial in δ with coefficients in A,
c, d, g, i ∈ A, f a polynomial in δ with coefficients in
R and j a polynomial in ∂ and δ with coefficients in R.

Consider the R-endomorphisms τ and er of A defined by

∀ a ∈ A, τ(a)(t) = a(t− r), er(a)(t) = a(t0 + r),

where r is a fixed positive real number. Then, similar
identities as (11) and (12) hold for τ and er instead of
δ and eh, as well as er τ I = 0. Similarly as above, we can
define the R-subalgebra of endR(A) defined by ∂, I, δ, eh,
τ , and er satisfying the corresponding identities as well as:

δ τ = τ δ, er eh = eh, eh er = er.

4. ALGEBRAIC ANALYSIS OVER RINGS OF
INTEGRO-DIFFERENTIAL-DELAY OPERATORS

Following the algebraic analysis approach briefly intro-
duced in Section 2, let H = A〈∂, I, δ, eh, τ, er〉 be the

ring of integro-differential-delay operators defined in Sec-
tion 3, R, R′ ∈ Hn×(n+m) the matrices defined by (4),
and M = cokerH(.R) (resp., M′ = cokerH(.R′)) the left
H finitely presented by R (resp., R′).

Now, let P = ∂ 1n − A0 ∈ Hn×n, Θ be the transition
matrix of the linear differential system ẋ(t) = A0 x(t),
and Q = Θ I Θ−1 ∈ Hn×n. Then, using (12), we have

P Q = (∂ 1n −A0) (Θ I Θ−1)

= (Θ ∂ + Θ̇) I Θ−1 −A0 Θ I Θ−1

= Θ ∂ I Θ−1 + (Θ̇−A0 Θ) I Θ−1 = 1n,

which shows that Q is a right inverse of P . Using the fact
that Ψ := Θ−1 is a transition matrix of Ψ̇ + ΨA0 = 0 and
the integration by parts, we get the idempotent of Hn×n:

QP = (Θ I Θ−1) (∂ 1n −A0)

= Θ I (∂Θ−1 − ∂(Θ−1))−Θ I Θ−1A0

= Θ (1− e) Φ−1 −Θ I (∂(Φ−1) + Θ−1A0)

= 1n −Θ eΘ−1 = 1n −Θ e(Θ−1) e = 1n −Θ e.

Let us now introduce the following matrix:

R′′ = QR′ = Q (∂ 1n −A0 −A1 τ −B0 −B1 δ)
= (1n −Θ e−Θ I Θ−1 (A0 +A1 τ) −Θ I Θ−1 (B0 +B1 δ)).

Note that R′′ = QR′ yields imH(.R′′) ⊆ imH(.R′).
R′ = (P Q)R′ = P R′′ yields imH(.R′) ⊆ imH(.R′′),
which proves imH(.R′′) = imH(.R′). Therefore, we have
M′ = cokerH(.R′) = cokerH(.R′′), which proves that M′
is equivalently defined by the following representation:

x = Θ e x+ Θ I Θ−1 (A0 +A1 τ)x+ Θ I Θ−1 (B0 +B1 δ)u.
(13)

Using the properties of the transition matrix Θ, namely,
Θ−1(t, t0) = Θ(t0, t), Θ(t0, t1) Θ(t1, t2) = Θ(t0, t2), we get:

Q(y)(t) = Θ(t, t0)

∫ t

t0

Θ(t0, τ) y(τ) dτ =

∫ t

t0

Θ(t, τ) y(τ) dτ.

Thus, the linear system (1) is equivalent to:

x(t) = (Θ e x+ Θ I Θ−1 (A0 +A1 τ))x(t)

+(Θ I Θ−1) (B0 +B1 δ)u(t)

= Θ(t, t0)x(t0) +

∫ t

t0

Θ(t, τ)A0(τ)x(τ) dτ

+

∫ t

t0

Θ(t, τ)A1(τ)x(τ − r) dτ +

∫ t

t0

Θ(t, τ)B0(τ)u(τ) dτ

+

∫ t

t0

Θ(t, τ)B1(τ)u(τ − h) dτ.

Using (12) and (10) with τ instead of δ, we have:

I Θ−1A1 τ = I τ ((Θ−1A1)( ·+ r))

= (1− e) τ I ((Θ−1A1)( ·+ r)),

I Θ−1B1 δ = I δ ((Θ−1B1)( ·+ h))

= (1− e) δ I ((Θ−1B1)( ·+ h)).

Therefore, (13) becomes:

x = Θ e x+ Θ I Θ−1A0 x

+ Θ (1− e) τ I ((Θ−1A1)( ·+ r))x

+ Θ I Θ−1B0 u+ Θ (1− e) δ I ((Θ−1B1)( ·+ h))u.

The linear system (1) with the following initial condition

∀ t ∈ [t0 − h, t0], x(t) = φ(t),



can then equivalently be represented as follows:

x(t) = Θ(t, t0)φ(t0) +

∫ t

t0

Θ(t, τ)A0(τ)x(τ) dτ

+

∫ t−r

t0−r
Θ(t, τ + r)A1(τ + r)x(τ) dτ

+

∫ t

t0

Θ(t, τ)B0(τ)u(τ) dτ

+

∫ t−h

t0−h
Θ(t, τ + h)B1(τ + h)u(τ) dτ.

The last representation of (1) is at the core to the well-
known method of steps in time-delay system theory.

5. FIAGBEDZI-PEARSON’S TRANSFORMATION

The purpose of this section is to study the existence of
f ∈ homH(M,M′) defined by f(π(λ)) = π′(λP ), where

P =

(
a0 τ I a1 + a2 I a3 + a4 b0 δ I b1 + b2 I b3 + b4

0 c0

)
,

and ai ∈ An×n, bj ∈ An×m, and c0 ∈ Am×m are matrices
to be determined. According to Section 2, P defines a left
H-homomorphism fromM toM′ if and only if there exists
Q ∈ Hn×n satisfying RP = QR′, i.e., such that:

(∂ 1n −A)(a0 τ I a1 + a2 I a3 + a4)

= Q (∂ 1n −A0 −A1 τ), (14)

(∂ 1n −A) (b0 δ I b1 + b2 I b3 + b4)−B c0
= −Q (B0 +B1 δ). (15)

The normal form of the left-hand side of (14) is then:

(ȧ0 −Aa0) τ I a1 + (ȧ2 −Aa2) I a3 + a4 ∂ + a0 τ(a1) τ

+ȧ4 −Aa4 + a2 a3.

Comparing this normal form with the right-hand side
of (14) yields deg∂ Q = 0, degδ Q = 0, degτ Q = 0,
degI Q = 0, i.e., Q ∈ A. Thus, (14) yields Q = a4 and:

(ȧ0 −Aa0) τ I a1 + (ȧ2 −Aa2) I a3
+(a0 a1( · − r) + a4A1) τ + a2 a3 + ȧ4 −Aa4 + a4A0 = 0.

Let us suppose that a1 6= 0 and a3 6= 0. Thus, we get:
ȧ0 −Aa0 = 0,

ȧ2 −Aa2 = 0,

a0 a1( · − r) + a4A1 = 0,

a2 a3 + ȧ4 −Aa4 + a4A0 = 0.

(16)

Let Φ be the transition matrix of ȧ0−Aa0 = 0. Integrating
(16), we then obtain:

a0(t) = Φ(t, t0) c0, c0 ∈ Rn×n,

a2(t) = Φ(t, t0) c2, c2 ∈ Rn×n,
c0 a1(t) = −Φ(t0, t+ r) a4(t+ r)A1(t+ r),

c2 a3(t) = −Φ(t0, t) (ȧ4(t)−A(t) a4(t) + a4(t)A0(t)).

Using that c0 and c2 are two constant matrices, we get:

P11 = a0 τ I a1 + a2 I a3 + a4
= Φ( · , t0) c0 τ I a1 + Φ( · , t0) c2 I a3 + a4
= Φ( · , t0) (τ I c0 a1 + I c2 a3) + a4,

P11(t) = a4(t)− Φ(t, t0) (τ I Φ(t0, t+ r) a4(t+ r)A1(t+ r)

+I Φ(t0, t) (ȧ4(t)−A(t) a4(t) + a4(t)A0(t))) .

Using the identities ∂ δ = δ ∂, ∂ I = 1, δ b1 = b1(· − h) δ,
we then get the following normal form of (15):

(ḃ0 −Ab0) δ I b1 + (b0 b1( · − h) + a4B1) δ + (ḃ2 −Ab2) I b3

+b4 ∂ + b2 b3 + ḃ4 −Ab4 −B c0 + a4B0 = 0,

Suppose that b1 6= 0 and b3 6= 0. The last equation yields:

⇐⇒



ḃ0 −Ab0 = 0,

b0 b1( · − h) + a4B1 = 0,

ḃ2 −Ab2 = 0,

b4 = 0,

b2 b3 + ḃ4 −Ab4 −B c0 + a4B0 = 0,

⇐⇒



ḃ0 −Ab0 = 0,

ḃ2 −Ab2 = 0,

b4 = 0,

b0 b1( · − h) + a4B1 = 0,

b2 b3 −B c0 + a4B0 = 0.

Integrating the last system, we then obtain:

b0(t) = Φ(t, t0) d0, d0 ∈ Rn×n,

b2(t) = Φ(t, t0) d2, d2 ∈ Rn×n,
b4 = 0,

d0 b1(t) = −Φ(t0, t+ h) a4(t+ h)B1(t+ h),

d2 b3(t) = Φ(t0, t) (B(t) c0(t)− a4(t)B0(t)).

Using that c0 and c2 are two constant matrices, we obtain:

P12 = b0 δ I b1 + b2 I b3 + b4
= Φ( · , t0) (d0 δ I b1 + d2 I b3)

= Φ( · , t0) (δ I d0 b1 + I d2 b3),

P12(t) = Φ(t, t0) (−δ I Φ(t0, t+ h) a4(t+ h)B1(t+ h)

+ I Φ(t0, t) (B(t) c0(t)− a4(t)B0(t))).

Theorem 1. A left H-homomorphism from M to M′ is
defined by f(π(λ)) = π′(λP ) for all λ ∈ H1×(n+m), where
P is a four block matrix defined by P21 = 0, P22(t) = c0(t),

P11(t) = a4(t)

−Φ(t, t0) (τ I Φ(t0, t+ r) a4(t+ r)A1(t+ r)

+I Φ(t0, t) (ȧ4(t)−A(t) a4(t) + a4(t)A0(t))) ,

P12(t) = Φ(t, t0) (−δ I Φ(t0, t+ h) a4(t+ h)B1(t+ h)

+I Φ(t0, t) (B(t) c0(t)− a4(t)B0(t))) ,

for all a4 ∈ An×n and c0 ∈ Am×m, where Φ is transition
matrix of ȧ−Aa = 0. Thus, the solutions of (1) are sent to
solutions of (2) by the following integral transformation:

z(t) = a4(t)x(t)

−
∫ t−r

t0

Φ(t, τ + r) a4(τ + r)A1(τ + r)x(τ) dτ

+

∫ t

t0

Φ(t, τ) (A(τ) a4(τ)− a4(τ)A0(τ)− ȧ4(τ))x(τ) dτ

−
∫ t−h

t0

Φ(t, τ + h) a4(τ + h)B1(τ + h)u(τ) dτ

+

∫ t

t0

Φ(t, τ) (B(τ) c0(τ)− a4(τ)B0(τ))u(τ) dτ,

v(t) = c0(t)u(t).
(17)

If the following relations hold



{
ȧ4 −Aa4 + a4A0 = −Φ( · , ·+ r) a4( ·+ r)A1( ·+ r),

B c0 − a4B0 = Φ( · , ·+ h) a4( ·+ h)B1( ·+ h),
(18)

then the matrix P simplifies into:{
P11 = a4 + Φ( · , t0) (1− τ) I Φ(t0, ·+ r) a4( ·+ r)A1( ·+ r),

P12 = Φ( · , t0) (1− δ) I Φ(t0, ·+ h) a4( ·+ h)B1( ·+ h).

If we suppose that a4 and c0 are invertible, then (18) yields:
A = ȧ4 a

−1
4 + a4A0 a

−1
4

+ Φ( · , ·+ r) a4( ·+ r)A1( ·+ r) a−14 ,

B = a4B0 c
−1
0 + Φ( · , ·+ h) a4( ·+ r)B1( ·+ r) c−10 .

(19)

Finally, if we set a4 = 1n and c0 = 1m in (19), we then
obtain the following corollary of Theorem 1.

Corollary 2. With the notations of Theorem 1, if the
matrice A and B are chosen so that{

A(t) = A0(t) + Φ(t, t+ r)A1(t+ r),

B(t) = B0(t) + Φ(t, t+ h)B1(t+ h),
(20)

then the matrices P11 and P12 of Theorem 1 become:{
P11(t) = 1n + Φ(t, t0) (1− τ) I Φ(t0, t+ r)A1(t+ r)

P12(t) = Φ(t, t0) (1− δ) I Φ(t0, t+ h)B1(t+ h).

Thus, the solutions of (1) are sent to solutions of (2) by:
z(t) = x(t) +

∫ t

t−r
Φ(t, τ + r)A1(τ + r)x(τ) dτ

+

∫ t

t−h
Φ(t, τ + h)B1(τ + h)u(τ) dτ,

v(t) = u(t).

(21)

If A1 = 0, then (20) and (21) yield A = A0 and:

P =

(
1n Φ( · , t0) (1− δ) I Φ(t0, ·+ h)B1( ·+ h)

0 1m

)
.

Example 1. Let us consider the time-invariant case, i.e.,
A, A0, A1 ∈ Rn×n and B, B0 ∈ Rn×m. Then, we first
get Φ(t, t0) = eA (t−t0). Setting t0 = 0, a4 ∈ Rn×n and
c0 ∈ Rn×m to simply the expressions, Theorem 1 yields:

z(t) = a4 x(t)

−
∫ t−r

0

eA (t−τ−r) a4A1 x(τ) dτ

+

∫ t

0

eA (t−τ) (Aa4 − a4A0)x(τ) dτ

−
∫ t−h

0

eA (t−τ−h) a4B1 u(τ) dτ

+

∫ t

0

eA (t−τ) (B c0 − a4B0)u(τ) dτ,

v(t) = c0 u(t).

If a4 and c0 are invertible, then (19) yields{
A = a4A0 a

−1
4 + e−Ar a4A1 a

−1
4 ,

B = a4B0 c
−1
0 + e−Ah a4B1 c

−1
0 ,

and the solutions of (1) are sent to solutions of (2) by:
z(t) = a4 x(t) +

∫ t

t−r
eA (t−τ) a4A1 x(τ) dτ

+

∫ t

t−h
eA (t−τ) a4B1 u(τ) dτ,

v(t) = c0 u(t).

Now, if we set a4 = 1n and c0 = 1m, then we obtain:

P =

(
1n + eA t (1 − τ) I e−A (t+r) A1 eA t (1 − δ) I e−A (t+h)B1

0 1m

)
.{

A = A0 + e−Ar A1,

B = B0 + e−AhB1,

Thus, the solutions of (1) are sent to solutions of (2) by:
z(t) = x(t) +

∫ t

t−r
eA (t−τ−r)A1 x(τ) dτ

+

∫ t

t−h
eA (t−τ−h)B1 u(τ) dτ,

v(t) = u(t).

We have just found again Fiagbedzi-Pearson’s transforma-
tion introduced in Fiagbedzi et al. (1986).

Finally, if A1 = 0, i.e., if (1) has no state delay, then
A = A0, B = B0 + e−A0 hB1, and the matrix P becomes:

P =

(
1n e

A t (1− δ) I e−A (t+h)B1

0 1m

)
.

We then find again Artstein’s reduction (Artstein (1982)) z(t) = x(t) +

∫ t

t−h
eA (t−τ−h)B1 u(τ) dτ,

v(t) = u(t),

which bijectively maps the solutions of (1) with A1 = 0 to
the solutions of (2). See Artstein (1982); Quadrat (2015).
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