
JavaBIP meets VerCors: Towards the Safety of
Concurrent Software Systems in Java

Simon Bliudze1, Petra van den Bos2, Marieke Huisman2, Robert Rubbens2,
and Larisa Safina1

1 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
simon.bliudze@inria.fr, larisa.safina@inria.fr

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
p.vandenbos@utwente.nl, m.huisman@utwente.nl, r.b.rubbens@utwente.nl

Abstract. We present “Verified JavaBIP”, a tool set for the verification
of JavaBIP models. A JavaBIP model is a Java program where classes
are considered as components, their behaviour described by finite state
machine and synchronization annotations. While JavaBIP guarantees ex-
ecution progresses according to the indicated state machine, it does not
guarantee properties of the data exchanged between components. It also
does not provide verification support to check whether the behaviour of
the resulting concurrent program is as (safe as) expected. This paper
addresses this by extending the JavaBIP engine with run-time verifi-
cation support, and by extending the program verifier VerCors to ver-
ify JavaBIP models deductively. These two techniques complement each
other: feedback from run-time verification allows quicker prototyping of
contracts, and deductive verification can reduce the overhead of run-time
verification. We demonstrate our approach on the “Solidity Casino” case
study, known from the VerifyThis Collaborative Long Term Challenge.

1 Introduction
Modern software systems are inherently concurrent: they consist of multiple
components that run simultaneously and share access to resources. Component
interaction leads to resource contention, and if not coordinated properly, can
compromise safety-critical operations. The concurrent nature of such interactions
is the root cause of the sheer complexity of the resulting software [8]. Model-
based coordination frameworks such as Reo [5] and BIP [6] address this issue by
providing models with a formally defined behaviour and verification tools.

JavaBIP [9] is an open-source Java implementation of the BIP coordination
mechanism. It separates the application model into component behaviour, mod-
elled as Finite State Machines (FSMs), and glue, which defines the possible state-
less interactions among components in terms of synchronisation constraints. The
overall behaviour of an application is to be enforced at run time by the frame-
work’s engine. Unlike BIP, JavaBIP does not provide automatic code generation
from the provided model; instead it realises the coordination of existing software
components in an exogenous manner, relying on component annotations that
provide an abstract view of the software under development.

To model component behaviour, functions of a JavaBIP program are anno-
tated as FSM transitions. These annotated functions model the actions of the
program components. The computations are assumed to be terminating and
non-blocking. Furthermore, any side-effect is assumed to be either taken into
account by the change of the FSM state, or to be irrelevant for the system
behaviour. Any correctness argument for the system depends on these assump-
tions. A limitation of the JavaBIP approach is that it does not guarantee that
these assumptions hold. This paper proposes a joint extension of JavaBIP and
VerCors [10] providing such guarantees about the implementation statically and
at run time.

VerCors [10] is a state-of-the-art deductive program verification tool for con-
current programs. It verifies programs, written in e.g. Java, using permission-
based separation logic [3]. This logic is an extension of Hoare logic that allows
one to specify properties using contract annotations. These contract annota-
tions include permissions, pre- and postconditions and loop invariants. VerCors
automatically verifies programs with contract annotations. To verify JavaBIP
models, we (i) extend JavaBIP annotations to include verification annotations,
and (ii) adapt VerCors to support JavaBIP annotations. VerCors transforms the
verification annotations and JavaBIP models into contract annotations, leverag-
ing their structure as specified by the FSM annotations and the glue.

For some programs VerCors requires extra contract annotations, e.g. when
complicated loops are involved. To enable properties to be analysed when not all
necessary annotations are added yet, we extend the JavaBIP engine with support
for run-time verification. During a run of the program, the verification annota-
tions are checked for that specific program execution. The run-time verification
support is set up in such a way that it ignores any verification annotations that
were already statically verified, reducing the overhead of run-time verification.

This paper presents the use of deductive and run-time verification in Verified
JavaBIP to prove assumptions made on the JavaBIP models. Specifically, we
make the following contributions:

– We extend regular JavaBIP annotations with verification annotations on pre-
and postconditions for transitions, and invariants for components and states.

– We extend VerCors to deductively verify a JavaBIP model, taking into ac-
count its FSM and glue structure.

– We add support for run-time verification to the JavaBIP engine.
– We link VerCors and the JavaBIP engine such that deductively proven an-

notations need not be monitored at run-time.
– Finally, we demonstrate our approach on a variant of the Casino case study

from the VerifyThis Collaborative Long Term Challenge.

2 Related Work
There are several approaches to verify and validate behaviours of abstract models
in the literature. Bliudze et al. propose an approach allowing verification of
infinite state BIP models in the presence of data transfer between components [7].
Abdellatif et al. used the BIP framework to formalize and verify Ethereum smart

2

1 @Port(name = PING , type = PortType.enforceable)
2 @ComponentType(initial = WAITING , name = ECHO_SPEC)
3 public class Echo {
4 @Transition(name = PING , source = WAITING , target = PINGED)
5 public void ping() { System.out.println(this + ": pong"); } }

Listing 1. Example of a minimal pinging component in JavaBIP

contracts written in Solidity [2]. Mavridou et al. have introduced the VeriSolid
framework, which additionally allows the generation of Solidity code from the
verified models [11]. André et al. describe a combined workflow to verify and
validate Kmelia models [4]. They also describe the COSTOTest tool, which can
run a test harness that interacts with the abstract model. Thus, most of these
approaches do not consider verification of model implementation as a primary
goal, which is what we aim at with “Verified JavaBIP”. Only the COSTOTest tool
establishes a connection between the abstract model and the implementation, but
it cannot provide any guarantees about memory safety or functional correctness.

3 JavaBIP and Verification Annotations
JavaBIP annotations capture the FSM specification and describe the behaviour
of a component. They are attached to classes, methods or method parameters,
and were first introduced by Bliudze et al [9]. Listing 1 shows an example of
JavaBIP annotations. The class annotation @ComponentType indicates that this
class is a JavaBIP component and specifies its initial state. In the example,
this is the WAITING state. @Port declares the list of possible transition labels.
Method annotations include @Transition, @Guard and @Data. An @Transition
annotation consists of the name of a port, a start and end state, and optionally
a guard. The transition in the example goes from WAITING to PINGED whenever
the PING port is triggered. As no guard is specified, the transition may always
be taken. @Guard declares a named boolean function, whose result indicates if a
transition is enabled. @Data either declares outgoing data of a getter method, or,
incoming data via a method parameter. Note that the example does not specify
when ports are activated. This is specified as glue, separately from the JavaBIP
component [9].

We added component invariants and state predicates to Verified JavaBIP.
These are declared using the following annotations: @Invariant(expr) for a
property that must hold after construction of the component and before and
after executing a transition, and @StatePredicate(state, expr) for property
that must hold when entering the state, and is assumed to hold when departing
from the state. Furthermore, Verified JavaBIP includes pre- and postconditions
as part of the @Transition annotation. These have to hold before and after
execution of the corresponding function, respectively. Lastly, @Pure indicates
that a method is side-effect-free, and is used only in conjunction with @Guard.

Expressions within annotations should follow the grammar of Java expres-
sions with some limitations: we do not support lambda expressions and method

3

VerCors Result? Report

JavaBIP
Engine

Success

Violation

Pass

Fail

(optional)

JavaBIP
Model

Fig. 1. Verified JavaBIP architecture. Ellipse boxes represent analysis or execution.

references, switch expressions, expressions containing new or instanceOf, and
wildcard arguments. These are limitations of the current implementation. In the
future they might be lifted.

4 Architecture of Verified JavaBIP
The architecture of Verified JavaBIP is shown in Figure 1. The user starts with a
JavaBIP model, optionally with verification annotations. The user then has two
choices: verify the model with VerCors, or execute it with the JavaBIP Engine.

We extended VerCors to automatically transform a JavaBIP model to the
internal representation of VerCors, Common Object Language (COL), which is
roughly equal to the union of the input languages of VerCors. This representation
is then verified. An example of this transformation is given in Listings 2 and 3. If
verification succeeds, the JavaBIP model is memory safe, has no data races, and
all its components respect the specified properties. In this case no extra run-time
verification is needed.

If verification fails, there are either memory safety issues, or components
violate properties. In the first case, the user needs to update the verification an-
notations, and retry verification with VerCors, since memory safety properties
cannot be checked by the JavaBIP engine. In the second case, VerCors out-
puts and stores a verification report with the JavaBIP model, indicating which
properties were verified and which were not.

We extended the JavaBIP engine with run-time verification support. If a
verification report is included with the JavaBIP model, the JavaBIP engine uses
it to only verify at run time the verification annotations that were not verified
deductively. If no verification report is included, the JavaBIP engine verifies all
verification annotations at run time.

5 Implementation of Verified JavaBIP
This section briefly discusses relevant implementation details for Verified JavaBIP.

Run-time verification in the JavaBIP engine is performed by checking the
relevant properties at points of interest. For example, before the execution of a
transition, the pre-condition of the transition as well as the component invariant
is checked. Furthermore, the user can configure what should happen if run-time
verification fails: print a warning and continue execution, or terminate execution.

4

1 @Transition(name=PING ,source=PING ,target=PING ,guard=HAS_PING)
2 public void ping() { pingsLeft --; }

Listing 2. Example of a transition in JavaBIP.

1 requires PING_state_predicate () && hasPing ();
2 ensures PING_state_predicate ();
3 public void ping() { pingsLeft --; }

Listing 3. COL representation of Listing 2 after encoding JavaBIP semantics.

Deductive verification is done by encoding the JavaBIP semantics into COL.
We describe this encoding with an example. Listing 2 shows the ping method,
where the @Transition annotation indicates a transition from state PING to
PING. The guard indicates that the transition may only be taken if it is not
the last ping. The name HAS_PING refers to the @Guard annotation of the corre-
sponding method hasPing, which returns pingsLeft >= 1.

Listing 3 shows the COL representation of the ping method after encoding
the JavaBIP semantics. Line 1 states the precondition of the ping method, and
line 2 the postcondition. PING_state_predicate() refers to the state predicate
of state PING. It may restrict the values of the fields in the class. If not defined
by the user, it is true. Since the predicate is both a pre- and a postcondition,
it is assumed at the start of the method, and needs to be proven to hold at the
end of the method. hasPing() is the method with the @Guard annotation for the
HAS_PING label. The method is used directly in the COL representation. For each
JavaBIP construct, we have implemented such a transformation of JavaBIP to
COL. As these transformations are all similar, the rest of them are not discussed.

To prove memory safety of JavaBIP models, we extended VerCors to au-
tomatically generate permission annotations. Currently, a naive policy is used,
where each component owns the data of all its fields. This works well for JavaBIP
models where each component has full ownership over its data, and none of it is
shared. If this is not the case, the naive approach will not suffice, and a differ-
ent approach will be needed, e.g. by VerCors taking into account user written
permissions. For more info about permissions, we refer the reader to [3].

6 VerifyThis Casino and Verified JavaBIP
Finally, we illustrate Verified JavaBIP with the Casino case study adapted from
[12]. We discuss the case study, the JavaBIP transformation, and its verification.

The Casino consists of three component types: a player, an operator, and the
casino. The model supports multiple players and casinos; each casino has only
one operator. The players can place bets on a coin flip. The casino pays out twice
for a correct guess, and keeps the money otherwise. The operator can choose to
add or withdraw money to the pot of the casino. To decide how much money to
add or withdraw, the operator maintains locally the balance of the casino pot.

5

We have added several invariants to this model. The purse of every player,
the casino pot and its operator copy, the wallet of the operator, and a placed bet,
must all be non-negative, as the model does not support debts. If no bet is placed,
it must be zero. These properties are defined as @Invariant or @StatePredicate
verification annotations on the corresponding components and states in the
JavaBIP model (see Appendix A).

There are two problems with this model. However, because their root cause,
detection and solutions are very similar, we only discuss one of them. Specifically,
the problem is that the player can win more than the casino pot contains. This
is possible because there are no restrictions on how much the player can bet.

This problem is detected by both deductive and run-time verification. Con-
cretely, VerCors cannot prove that the casino pot is non-negative, which is part
of the casino invariant, after the PLAYER_WIN transition. The JavaBIP run-time
engine can also detect this problem, but it is not guaranteed to. This is because
the model contains some non-determinism. For example, if no player ever wins,
this problem does not occur, and run-time verification does not detect it.

There are several possible solutions. First, the user can choose to only run the
model with run-time verification enabled, such that the execution can be stopped
upon violation. Depending on the model, combined with the performance penalty
of run-time verification, this might be an acceptable solution. Second, extra
JavaBIP guards can be added to the transitions, restricting model behaviour at
run time. For example, a guard could be added to PLACE_BET that requires bet
<= pot. However, in the general case, adding guards might introduce deadlocks,
and it slows down run-time verification. Third, a solution is to change the model
in such a way that this problem cannot occur. For example, the casino could
offer choices of how much the player can bet. This solution introduces no extra
run-time checks. However, refactoring a model takes effort, and in the general
case the behaviour of the model will change. Depending on the situation, the
user may opt for each of these three solutions.

7 Conclusions and Future Work
We presented Verified JavaBIP, a tool set for verifying the assumptions of JavaBIP
models and their implementations. The tool set extends the original JavaBIP
annotations with annotations intended for verification of functional properties.
Verified JavaBIP offers both deductive verification of models using VerCors, and
run-time verification of the model using the JavaBIP engine. Any properties not
verified deductively can be checked at run-time, while any properties verified
deductively are skipped for checking at run time. In the demonstration, we used
Verified JavaBIP on the Casino case study, automatically detecting a problem.

There are several directions for future work. Support for automatically check-
ing memory safety could be further extended by also supporting data-sharing
between components. We would also like to support run-time verification of mem-
ory safety. Additionally we would like to do more experimental evaluation on the
capabilities and performance of Verified JavaBIP. Finally, we are planning to in-
vestigate run-time verification of safety properties of the JavaBIP model beyond
invariants.

6

References
1. Solidity programming language, https://soliditylang.org/, (Accessed at: 2022-10-

21)
2. Abdellatif, T., Brousmiche, K.L.: Formal verification of smart contracts based on

users and blockchain behaviors models. In: 9th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (Feb 2018).
https://doi.org/10.1109/NTMS.2018.8328737

3. Amighi, A., Hurlin, C., Huisman, M., Haack, C.: Permission-based separation logic
for multithreaded Java programs. Logical Methods in Computer Science 11(1) (Feb
2015). https://doi.org/10.2168/LMCS-11(1:2)2015

4. André, P., Attiogbé, C., Mottu, J.M.: Combining techniques to verify service-
based components (Sep 2022), https://www.scitepress.org/Link.aspx?doi=10.
5220/0006212106450656, [Online; accessed 26. Sep. 2022]

5. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3), 329–366 (2004). https://doi.
org/10.1017/S0960129504004153

6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in BIP. In: 4th IEEE Int. Conf. on Software Engineering and Formal Methods
(SEFM06). pp. 3–12 (Sep 2006). https://doi.org/10.1109/SEFM.2006.27, invited
talk

7. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.: For-
mal verification of infinite-state BIP models. In: Finkbeiner, B., Pu, G., Zhang, L.
(eds.) Automated Technology for Verification and Analysis. pp. 326–343. Springer
International Publishing, Cham (2015)

8. Bliudze, S., Katsaros, P., Bensalem, S., Wirsing, M.: On methods and tools
for rigorous system design. Int. J. Softw. Tools Technol. Transf. 23(5), 679–
684 (2021). https://doi.org/10.1007/s10009-021-00632-0, https://doi.org/10.1007/
s10009-021-00632-0

9. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordina-
tion of concurrent software components with JavaBIP. Software: Practice and Ex-
perience 47(11), 1801–1836 (Apr 2017). https://doi.org/10.1002/spe.2495, https:
//doi.org/10.1002%2Fspe.2495

10. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verification
of parallel and concurrent software. In: IFM. Lecture Notes in Computer Science,
vol. 10510, pp. 102–110. Springer (2017), https://link.springer.com/chapter/10.
1007/978-3-319-66845-1_7

11. Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: VeriSolid: Correct-by-design
smart contracts for Ethereum. In: Financial Cryptography and Data Security,
pp. 446–465. Springer, Cham, Switzerland (Sep 2019). https://doi.org/10.1007/
978-3-030-32101-7_27

12. VerifyThis collaborative long-term verification challenge: The Casino example,
https://verifythis.github.io/casino/, (Accessed at: 2022-10-12)

7

https://soliditylang.org/
https://doi.org/10.1109/NTMS.2018.8328737
https://doi.org/10.1109/NTMS.2018.8328737
https://doi.org/10.2168/LMCS-11(1:2)2015
https://doi.org/10.2168/LMCS-11(1:2)2015
https://www.scitepress.org/Link.aspx?doi=10.5220/0006212106450656
https://www.scitepress.org/Link.aspx?doi=10.5220/0006212106450656
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1007/s10009-021-00632-0
https://doi.org/10.1007/s10009-021-00632-0
https://doi.org/10.1007/s10009-021-00632-0
https://doi.org/10.1007/s10009-021-00632-0
https://doi.org/10.1002/spe.2495
https://doi.org/10.1002/spe.2495
https://doi.org/10.1002%2Fspe.2495
https://doi.org/10.1002%2Fspe.2495
https://link.springer.com/chapter/10.1007/978-3-319-66845-1_7
https://link.springer.com/chapter/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://verifythis.github.io/casino/

Idle
Game

available

Bet placed

Create game

Place
bet

Decide
bet

Add to pot

Remove
from pot

Add to pot

Remove
from pot

Add to pot

Fig. 2. Finite state machine representation of the Solidity Casino smart contract. Note
that this figure does not visualize the structure of the JavaBIP encoding.

Appendix
A Demonstration
This appendix demonstrates the Verified JavaBIP tool set by applying it to the
VerifyThis Casino case study. This case study was chosen because it strikes a
good balance between being non-trivial, and easy to understand. Additionally,
it also contains a problem, detectable with both deductive and run-time verifi-
cation.

We first discuss the case study and its origin in Appendix A.1, followed by
an explanation of how the case study was encoded in JavaBIP, in Appendix A.2.
We show how to detect the problem in Appendices A.3 and A.4, and how to fix
the problem in Appendix A.5.

Before the artefact deadline, we will provide an artefact containing the fol-
lowing:

– Instructions on the structure and usage of the artefact;
– The source and binary of VerCors with JavaBIP support;
– The JavaBIP Engine with run-time verification support;
– Examples to test the tool set;
– Various versions of the Casino example to illustrate problems with the model

and how they can be fixed;
– Scripts to run the tool set on the provided examples; and
– Sources of the tools.

A.1 Solidity Casino: Case Study

The VerifyThis Collaborative Long Term Challenge considers a casino imple-
mented in Solidity, a language for defining smart contracts [1]. This particular
implementation of a casino allows players to bet on the outcome of a coin flip. If
they guess the correct outcome, they win, and the casino pays out twice the bet.
If they guess incorrectly, no money is received, and the casino keeps the money.

8

Figure 2 visualizes the structure of the casino as a state machine. The op-
erator can add to and remove money from the pot of the casino at any time.
Except after a bet is placed, then the operator can only add money to the pot,
because placing a bet is only allowed if there is enough money in the pot. If
it were possible to remove money from the pot after placing a bet, the casino
could end up with a negative balance. For more details, we refer the reader to
the VerifyThis website explaining the challenge [12].

A.2 Solidity Casino: JavaBIP Encoding

The JavaBIP encoding of the Casino diverges from the original casino example
to generalize the original case study. Concretely, the concept of “operator” and
“player” were factored out and made independent. This allows instantiation of
the model with any number of casinos, players, and operators. There are several
reasons for the generalization. First, a model that can be instantiated for different
parameter values makes doing performance evaluations easier. Unfortunately,
because of time constraints, this is still future work. Second, the generalized
model also allows use of an advanced feature of the JavaBIP framework that
was not relevant before, which is that of a three-way synchronization.

We will now discuss the actual JavaBIP encoding. In this encoding, there are
three component types: Player, Operator, and Casino. Changes in the state
take place as synchronizations between components. For example, when money
is added to the pot of the casino, Operator and Casino synchronize, transferring
the amount to be added from the Operator to the Casino. Similarly, when
Player bets, Player and Casino synchronize, communicating the amount to be
betted. Finally, when a bet is decided, a ternary synchronization takes place to
establish in all three components that the bet was decided. For Operator, this
means the amount of money in the Casino has either increased or decreased.
For Player, it either receives twice the bet, or nothing. For the Casino, it either
needs to pay out, or transfer the bet to the pot. The components and their
transitions are visualized in Figure 3.

Consider the code in Listing 4, which shows part the Casino component. The
component starts in state IDLE. As indicated by the @Transition annotation,
the ADD_TO_POT transition can be activated in the BET_PLACED state. A require-
ment of the transition is that only the operator can trigger it, which is fulfilled
by the guard part of the transition annotation. Besides that, it is always safe to
add money to the pot, so it has no pre- and postconditions. In the full JavaBIP
model, the method can also be activated in other states, but these annotations
have been omitted from the paper for brevity. In the next subsection we will
discuss parts of the model that might not be safe, and how these limitations can
be expressed in contracts.

The @Invariant and @StatePredicate annotations in Listing 4 indicate the
component invariant and state invariant, respectively. The component invariant
indicates that bet and pot should both contain non-negative integers. The state
predicate indicates that in the IDLE state, the bet variable should be equal to
zero. The full JavaBIP model contains more annotations, but they are omitted
for brevity.

9

create_game

[is_operator]

IDLE

receive_bet

[is_operator]

GAME_AVAILABLE

casino_win [is_operator && !guessed]

player_win [is_operator && guessed && is_player]

BET_PLACED

add_to_pot [is_operator]

remove_from_pot

add_to_pot [is_operator]

remove_from_pot add_to_pot

prepare_to_add

[enough_funds]

add_to_pot remove_from_pot

prepare_to_remove

WORKINGPUT_FUNDS WITHDRAW_FUNDS

create_game

decide_bet

create_game

decide_bet

create_game

decide_bet

prepare_bet
GAME_AVAILABLE

place_bet

BET_PREPARED

receive_money

Casino

Operator

Player

Fig. 3. Finite state machines of components in JavaBIP Casino case study

1 @ComponentType(initial = IDLE , name = CASINO_SPEC)
2 @Invariant("bet >= 0 && pot >= bet")
3 @StatePredicate(state = IDLE , expr = "bet == 0")
4 public class Casino {
5 int pot;
6 Coin guess;
7 int bet; // Other variables omitted ...
8

9 @Transition(name = ADD_TO_POT , source = BET_PLACED , target
= BET_PLACED , guard = IS_OPERATOR)

10 public void addToPot(@Data(name = OPERATOR) Integer sender ,
@Data(name = INCOMING_FUNDS) int funds) {

11 pot = pot + funds;
12 System.out.println("CASINO" + id + ": " + funds +
13 " received from operator " + sender +
14 ", pot: " + pot);
15 }
16 // Rest of component ...
17 }

Listing 4. Excerpt of JavaBIP Casino component

10

======================================
100 // Remove money from pot
101 @Transition(name = REMOVE_FROM_POT , source = IDLE ,

target = IDLE , guard = IS_OPERATOR)
102 public void removeFromPot(@Data(name = OPERATOR)

Integer sender , @Data(name = INCOMING_FUNDS) int funds) {
103 pot = pot - funds;
104 System.out.println (" CASINO" + id + ": " + funds +
105 " removed by operator " + sender +
106 ", pot: " + pot);
107 }

In this transition the invariant of the component is not

maintained , since ...

[----------
2 @Invariant ("bet >= 0 && pot >= bet")

----------]

... this expression may be false
======================================

Listing 5. Output of VerCors after verifying the Casino JavaBIP model.

Even though the model was carefully designed, it contains a problem: the
operator can withdraw more money than is available in the Casino pot. We will
now show how this problem can be detected with both deductive and run-time
verification.

A.3 Deductive Verification

To deductively verify the Casino model with VerCors, the source code of the
model is given to VerCors:

$ vercors Casino.java Constants.java Operator.java Player.
java Main.java

After several seconds of analysis, VerCors reports that the invariant of the
Casino component does not hold after removing money from the pot, as shown
in Listing 5.

Note how both the transition that violates the invariant is shown, as well as
which part of the invariant is violated. As bet is supposed to be non-negative,
and pot should be greater or equal to bet, it follows that VerCors cannot prove
that pot remains non-negative.

A.4 Run-time Verification

The JavaBIP engine with run-time verification now checks the contract that,
according to the VerCors output, it was not able to verify: pot >= bet.

In the following we see that the execution starts with creating the casino,
and initializing the operator and players with the predefined amount of money
in their wallets. After that players make their first bet.

11

OPERATOR101 created with wallet: 500
CASINO201: INITIALIZED
PLAYER301: INITIALIZED
PLAYER302: INITIALIZED
PLAYER303: INITIALIZED
OPERATOR101: decided to put 446, wallet: 54
PLAYER303: bet 6 prepared , purse: 94
PLAYER301: bet 48 prepared , purse: 52
PLAYER302: bet 20 prepared , purse: 80
CASINO201: GAME CREATED
...

After receiving the bets, the Casino is checking the guesses and concludes
that player 2 wins! However, this makes the pot to be negative, which triggers
an alert from the invariant violation.

CASINO201: received bet: 20, guess: TAILS from player 302
CASINO201: 20 lost , pot: -20
19:06:54.881 [ACTOR_SYSTEM -akka.actor.default -dispatcher -3]
ERROR org.javabip.executor.BehaviourImpl - Invariant

violation: bet >= 0 && pot >= bet

A.5 Fixing the problem

As discussed in Section 6, there are several ways to fix a broken model: (i) al-
ways execute the model with run-time verification, (ii) add extra guards, or
(iii) refactor the model. For the sake of illustrating the tool set, we will show an
example of applying option (ii). Concretely, we add the guard ENOUGH_FUNDS to
the transition annotation of REMOVE_FROM_POT. The updated annotated method
is shown in Listing 6. This will restrict the transition to only be enabled when
there is enough money in the casino pot, ensuring that the casino pot cannot
become negative because of withdrawals from the operator.

For deductive verification, the change in the model causes VerCors to suc-
cesfully verify the model: it prints “Verification completed successfully.”

1 // Remove money from pot
2 @Transition(name = REMOVE_FROM_POT , source = IDLE , target =

IDLE , guard = "IS_OPERATOR && ENOUGH_FUNDS")
3 public void removeFromPot(@Data(name = OPERATOR) Integer

sender , @Data(name = INCOMING_FUNDS) int funds) {
4 pot = pot - funds;
5 System.out.println("CASINO" + id + ": " + funds +
6 " removed by operator " + sender +
7 ", pot: " + pot);
8 }

Listing 6. REMOVE_FROM_POT transition with the new guard underlined.

12

upon termination, which indicates that the model is memory safe, data race free,
and respects the verification annotations. Furthermore, a verification report is
produced, which states that the invariant of the Casino component has been
verified. For run-time verification, the change will cause the model to no longer
crash at run-time when run-time verification is enabled, as the invariants are no
longer violated. Additionally, when the previously produced verification report
is included when executing the model, the run-time verifier skips checking the
component invariant of Casino while running the model. For a small model such
as this one, the difference between doing the run-time checks and not doing them
is negligible. However, we speculate that for models with more components, the
overhead could be noticeable.

13

	JavaBIP meets VerCors: Towards the Safety of Concurrent Software Systems in Java

