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PERSISTENT HOMOLOGY BASED CHARACTERIZATION OF THE
BREAST CANCER IMMUNE MICROENVIRONMENT: A FEASIBILITY
STUDY∗

Andrew Aukerman,† Mathieu Carrière,‡ Chao Chen,§ Kevin Gardner,¶Raúl Rabadán‖and
Rami Vanguri∗∗

Abstract. Persistent homology is a powerful tool in topological data analysis. The main
output, persistence diagrams, encode the geometry and topology of given datasets. We
present a novel application of persistent homology to characterize the biological environ-
ment surrounding breast cancers, known as the tumor microenvironment. Specifically, we
will characterize the spatial arrangement of immune and malignant epithelial (tumor) cells
within the breast cancer immune microenvironment. Quantitative and robust characteriza-
tions are built by computing persistence diagrams from quantitative multiplex immunoflu-
orescence, which is a technology which allows us to obtain spatial coordinates and protein
intensities on individual cells. The resulting persistence diagrams are evaluated as charac-
teristic biomarkers predictive of cancer subtype and prognostic of overall survival. For a
cohort of approximately 700 breast cancer patients with median 8.5-year clinical follow-up,
we show that these persistence diagrams outperform and complement the usual descriptors
which capture spatial relationships with nearest neighbor analysis. Our results thus suggest
new methods which can be used to build topology-based biomarkers which are characteristic
and predictive of cancer subtype and response to therapy as well as prognostic of overall
survival.

1 Introduction

Descriptors computed with tools from topological data analysis (TDA), such as persis-
tence diagrams [EH08, ZC05] and Mapper [SMC07], have shown strong analytical power in
many real world biological data. Examples include, but are not limited to, neuronal struc-
tures [LWA+17, KDS+18], cardiac trabeculae [GCZ+13, WCW+17], brain images [PHC+11,
LKC+12], breast images [WKL+21] and genomics data [NLC11, CCR13, RCK+17]. These
methods capture multi-scale geometric and structural patterns of data with guaranteed ro-
bustness against potential noise introduced in measurement [CSEH07, CSEHM10] and in
upstream preprocessing steps [BCOS16]. They provide a principled way to systematically
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quantify complex biomedical systems. Furthermore, state-of-the-art discriminative models
(i.e., classifiers) [CCO17, HKNU17, KHF16] and unsupervised models (i.e., clustering meth-
ods) [LCO18] have been recently introduced, and are able to effectively connect topological
features with clinical/biological outcomes of interest.

We present a new application of topological data analysis to the characterization of
the spatial organization of immune cells surrounding breast tumors, known as the breast
cancer immune microenvironment, using persistence diagrams. Despite tremendous ad-
vancements in cancer screening, diagnostic methods and treatment, breast cancer remains
the second leading cause of cancer death in women with projections of 270,000 new cases
and approximately 42,000 deaths from invasive breast cancer in 2019 [SMJ19]. By charac-
terizing the interplay of cells which comprise the breast cancer immune microenvironment,
we can characterize the response of the patient immune system to the tumor, which is im-
portant in determining response to therapy. Predictors of response to therapy are a critical,
unmet need in breast cancer [DXLB16], and can aid in the development of novel potential
therapeutic targets. We show how persistence diagrams work towards fulfilling this need.

Cancer research and characterization of spatial cell arrangement. In the
past decade, a major focus of cancer research has been on the interplay between the tumor
and immune environments, referred to as the tumor-immune microenvironment [BAAN17].
By characterizing host-specific functional anti-tumor immune responses and their correla-
tions to cancer subtype and overall survival, patient specific immunotherapeutic targets can
be identified [PKS+16] with higher precision. To achieve the goal, it is necessary to char-
acterize the complex spatial arrangement between cancer cells and a mixture of different
immune cells, e.g., T-cells and macrophages, both of which play a versatile biological role
and are believed to be crucially relevant to initiation and regulation of the immune response.
This task involves two important steps: cell detection and characterization.

Thanks to the rapid development of imaging technology and deep learning methods,
we are able to detect not only locations, but also types of different cells within a slide of
tumor biopsy sample from a cancer patient. By staining the slide using immunohistochemical
(IHC) markers, we are able to tag different types of cells with different stains, i.e., colors
bounded with different protein biomarkers. Using a brightfield image scanner, we convert
the stained slide into a whole slide image in which various cells can be identified by their
respective stains [PFCW19, KB17]. The identification of cells is referred to as phenotyping.
Advanced deep learning methods [FAG+19, AFH+19] have been developed to unmix the
stains to detect and identify cells. This approach, called multiplex IHC, is scalable but less
precise as noise is introduced due to the additional deep learning cell detector. Alternatively,
we may use quantitative multiplex immunofluorescence (qmIF), which stains different cells
with different fluorescent stains and detect them using lenses with specific filters. The qmIF
approach is highly reliable, albeit costly in material and time.

Once cells of different types are detected, we need to quantitatively characterize their
spatial arrangements in order to evaluate correlations with various outcomes of interest.
There are two major challenges. First, the spatial arrangement is highly heterogeneous
across different patients and even within a single tissue sample. Second, stain intensity
is relative, and phenotype thresholds must be manually determined. Discerning true signal
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from background is not always clear, and is currently done in relation to other tissue samples.
Nonetheless, qmIF imaging provides rich data for study; see Figure 1 for an example of raw
image data.

Figure 1: An example input data. Left: The raw microscopic image of a stained tissue
sample. The sample is approximately 1 × 1 mm2 large. The image is 2,000 × 2,000
pixels, 0.5 × 0.5 µ2 per pixel. A sample usually contains 3,000 to 5,000 cells. Right: The
processed results. Cells are identified by localizing their nuclei with a special stain (shown
as white regions). The phenotype of each cell can be identified by the stain intensity of its
cytoplasm and nucleus: T-cells are tagged with CD8 (blue), macrophages are tagged with
CD68 (green), tumor cells are tagged with pancytokeratin (cyan). Any cell may additionally
be tagged with PD-L1 (red). The cells are abstracted into point clouds with different stain
intensities, as shown in Figure 3.

Related work. Previous methods [GMH+18, SBSO16] focus on using nearest neigh-
bor distances from cells of one type (obtained by thresholding the stain intensities) to cells
of a second type. Unfortunately, this thresholding-based approach lacks the ability to model
stain concentration variations, and thus is sensitive to noise. Moreover, it can only charac-
terize fixed neighborhoods around the cells and is oblivious to larger and more complex cell
arrangements.

Persistent homology has recently been used to characterize cellular architecture in
pathology images in [LSB+19], where these descriptors were shown to successfully detect
and quantify circular cell structures corresponding to glands. In contrast, our work operates
on coordinates of phenotyped cells and deals with the global characterization of complex
interactions between these cellular phenotypes.

Note that once persistence diagrams have been computed from phenotyped cells,
there are several ways to use them for subsequent analysis, by either defining scalar products,
or kernels [RHBK15, KHF16, LY18], or explicit vectorization methods [AEK+17, Bub15]. In
this article, we choose to use kernel methods based on the sliced Wasserstein kernel [CCO17].
We utilize kernel methods mostly because (universal) kernels are known to enjoy several
useful theoretical properties for statistical testing [GHS+05, GBSS05], which often lead to
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better results than using simpler vectorization techniques.

Contributions. In this article, we propose the first topological analysis of tumor
immune microenvironment. More specifically, we provide empirical evidence that persistence
diagrams are suitable descriptors by experimentally demonstrating the following points:

• First, stain concentration levels, or stain intensities, that are usually used by prac-
titioners to filter cells, are natural candidates for defining filtrations (in the TDA
vocabulary) from which persistence diagrams can be computed. This way, the whole
range of stain intensities is taken into account instead of thresholding. We hypoth-
esize that the stain intensity is biologically meaningful and the resulting persistence
diagrams will be more predictive than just using cell coordinates from thresholding.
In particular, the stability of persistence diagrams is essential for controlling the noise
and perturbations that often occur when measuring stain intensities.

• Second, persistence diagrams are able to capture topological and structural features
that are characteristic of the arrangement of the cells. This is because the structures
encoded by persistence diagrams are robust to spatial deformation and other types
of noise introduced in detection, which prevents the analysis from being biased by
measurement errors, contrarily to other descriptors used in the literature.

Our study, although preliminary, demonstrates the potential of persistence homology
to be a novel tool to characterize the tumor immune microenvironment. With rich com-
putation and learning tools available for persistence-derived features, we are confident that
topological characterization will lead to powerful predictive and prognostic cancer biomark-
ers.

Plan of the article. We introduce our biological data, and briefly recall the basics
of topological data analysis in Section 2. Then, we explain our methods for computing and
running statistical tests on persistence diagrams in Section 3. Finally, we conclude and
summarize future investigations and open questions in Section 4.

2 Data and Background

In this section, we introduce our biological data (Section 2.1), and briefly recall the rationale
for nearest neighbor analysis (Section 2.2) and topological data analysis (Section 2.3).

2.1 Biological Data

We analyze a large cohort of patients with extensive 8.5 years of follow-up. For each tissue
sample, qmIF imaging was obtained with a panel of immune markers for phenotyping the
tumor immune microenvironment, including: CD8 (cytotoxic T-cells), CD68 (macrophages)
and pancytokeratin (tumor cells). Then, a commercial software package (HALO, Indica
Labs) was used to perform nuclear segmentation, cytoplasmic definition, and stain quantifi-
cation. Cell phenotypes are assigned based on manual thresholds applied to individual stain
intensities. See Figure 1 for the conventional threshold-based phenotype analysis.
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Patient Cohort. Our raw data is comprised of high-throughput tissue microarrays
(TMA) consisting of 1mm × 1mm cores of tissue. The TMA were assembled with tissues
from a cohort of 900 patients that underwent tumor resection following a diagnosis of breast
cancer at Pitt County Memorial Hospital (now Vidant Hospital) in Greenville, North Car-
olina. Patient samples and clinicopathological data were collected under an IRB approved
protocol at the Brody School of Medicine, East Carolina University [BSP+19]. The cohort
is uniquely valuable for research as there is median 8.5 year follow-up data which allows for
predictive and prognostic evaluation for topological biomarkers using patient attributes and
clinical outcomes.

Quantitative Multiplex Immunofluorescence. Unlike traditional immunohis-
tochemistry, qmIF enables simultaneous staining of multiple markers in a single piece of
tissue. We use the Ultivue UltiMapper I/O PD-L1 assay consisting of the following mark-
ers: CD8 (cytotoxic T-cells), CD68 (macrophages), PD-L1 (an immunosuppressive protein),
pancytokeratin (epithelial cells), and DAPI (DNA marker) for identification of cell nuclei.
In our data, positively stained epithelial cells via pancytokeratin are considered to be tumor
cells. Every cell in the tissue is designated with a PD-L1 status being either positive or
negative corresponding to above or below threshold stain intensity. All staining thresholds
are adaptively determined to enhance signal (consistent with a positive staining pattern
assessed visually) to background. The result of the phenotyping analysis is a text file for
each tissue sample consisting of entries listing information about each cell location, includ-
ing the manual phenotyping result and raw stain intensities. Each tissue sample consists of
3,000-5,000 cells.

2.2 Nearest Neighbor Analysis

Nearest neighbor analysis is commonly performed with qmIF data [GMH+18]. We measure
the nearest neighbor distance between cells of different phenotypes. For any two phenotypes
t1 and t2, we denote their corresponding point/cell sets Pt1 and Pt2 . For any cell p of
phenotype t1, p ∈ Pt1 , its nearest neighbor distance to Pt2 is

d(p, Pt2) = min
q∈Pt2

d(p, q),

in which d(p, q) is the Euclidean distance between p and q. The mean and standard devi-
ation of d(p, Pt2) over all p’s in Pt1 are calculated, and referred to as the nearest neighbor
distance features for the pair of phenotypes (t1, t2). Note that we ignore distances below
0.05 microns to avoid errors due to overlapping cells. We apply the same process for all pairs
of phenotypes and use the corresponding means and deviations as features of biomarkers,
potentially predictive of triple-negative status and prognostic of overall survival.

2.3 Topological Data Analysis

In this article, we aim at characterizing the spatial arrangement of phenotypes using persis-
tence diagrams, which are common descriptors of topological data analysis. In this section
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we describe the basics of persistent homology and persistence diagrams. A thorough treat-
ment of persistence can be found in several computational topology and algebraic topology
textbooks such as [EH10, CdSGO16, Oud15].

Persistent homology. The aim of persistent homology is to encode the topological
information contained in a dataset X through the lens of a filter function f : X → R. This
is achieved by considering the sublevel sets of f : Fα = {x ∈ X : f(x) ≤ α}. The family of
sublevel sets F = {Fα}α∈R defines a filtration, i.e., a family of subsets of X that are nested
with respect to the inclusion: Fα ⊆ Fβ if α ≤ β. The idea of persistence is to track the
topological changes occurring in the filtration as the sublevel set threshold α increases from
−∞ to +∞. For instance, each time a topological structure such as a connected component,
a handle or a void, appears in the sublevel set, we use the corresponding threshold as the
so-called birth time for this structure. Similarly, each time a structure disappears in the
sublevel set (think for instance of a handle being filled in after data points inside the handle
were added to the sublevel set), we use the corresponding threshold as the death time. This
tracking is eventually encoded in a persistence diagram, that we denote by D(f), which is a
set of dots in the Euclidean plane R2, each dot representing a topological structure whose
birth and death times can be retrieved from the coordinates of the dot.

Persistence on images. In Figure 2, we provide an example of persistent homology
computation performed on an image taken from the MNIST [LBBH98] dataset. We use the
opposite of the pixel intensity as the filter function, so that it increases from black to white.
Given a specific filter function value, the black pixels displayed in the top row of Figure 2
are those constituting the sublevel set. One can see that at values b and d, handles are
created in the union of black pixels, and they are eventually filled in at value e, for which
the corresponding sublevel set includes all pixels. Other examples on our biological data are
also displayed in Figures 5 and 6.

Stability of persistence diagrams. One of the most useful properties of persis-
tence diagrams is their stability: persistence diagrams computed from similar images must
be similar themselves w.r.t. the so-called Wasserstein distances between them.

Definition 2.1 ([CdSGO16, CSEH07]). The p-Wasserstein distance dp between two persis-
tence diagrams D,D′ is defined as:

dp(D,D′)p = infγ
∑

q∈D∪∆
∥q − γ(q)∥p∞,

where ∆ is made of an infinite number of copies of the diagonal {(x, x) : x ∈ R} and γ
ranges over all matchings between D ∪∆ and D′ ∪∆.

When the sum in Definition 2.1 is replaced by a maximum, the Wasserstein distance
becomes the so-called bottleneck distance d∞. Using this distance, one can state the sta-
bility property of persistence diagrams, which shows that the Wasserstein distance between
persistence diagrams is upper bounded by the distance (in the ∥ · ∥∞ norm) between filter
functions.

Theorem 2.2 ([CCSG+09, CSEH07]). Given a topological space X and two continuous
functions f, g : X → R, the following inequality holds:

d∞(D(f), D(g)) ≤ ∥f − g∥∞ (1)
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Figure 2: Example of a persistence diagram (lower right) computed on an image taken
from the MNIST [LBBH98] dataset (lower left) using the opposite of the pixel stain inten-
sity whose sublevel sets are displayed in the top row. Green squares represent connected
components while the blue and orange circles represent handles, whose representative cycles
are displayed on the original image.

This result is particularly relevant for stain intensities as the presence of several
biological factors and potential biases in experiments can lead to noise in the data. However,
Theorem 2.2 ensures that as long as the amplitude of the noise is bounded, the corresponding
persistence diagrams, as well as the different statistics that one can compute from them (see
Section 3 below), are meaningful and reliable.

Note that similar stability results can be obtained with p-Wasserstein distances, with
different upper bounds [CSEHM10, Oud15].

3 Methods and Results

In this section, we detail our methods to compute and analyze persistence diagrams from
point clouds representing cells with different stain intensities. More specifically, we show
how to discretize the cell domain into an image with stain intensity-valued pixels, from
which we calculate the corresponding persistence diagrams (in homological dimensions zero
and one) in Section 3.1. Then, we show how to run statistical tests between different
populations based on persistence diagrams using Hilbert space embeddings with the Sliced
Wasserstein kernel [CCO17] in Section 3.2. Finally, we discuss results for different patient
groups (patients with different molecular subtypes, patients that survived after 8.5 years
vs. deceased) in Section 3.3.
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3.1 Persistence Diagrams of Cells with Stain Intensity Values

In this section, we explain how persistence diagrams are computed on our point clouds
representing cells so as to make use of the associated stain intensities.

Point clouds. As mentioned earlier, the image data for each patient is summarized
in a point cloud, where the points represent cells, and have four associated stain inten-
sities, corresponding to the CD8, CD68, PD-L1, and pancytokeratin (tumor) stains (see
Section 2.1). Each patient also has two binary labels corresponding to overall survival and
whether the cancer subtype is triple-negative. After removing samples with bad quality
or missing labels, our final dataset is comprised of 671 point clouds. See Figure 3 for an
example of such point clouds, where we only kept the cells with stain intensities above a
certain threshold to ease visualization. One can see from these point clouds that different
topological structures seem to emerge depending on the stain being considered: structures
can be either isolated components corresponding to the scattered spots of cells exhibiting
large stain intensity values (such as pancytokeratin (tumor) in Figure 3) or small cycles
corresponding to regions where there are no cells with large stain intensity (such as CD8
in Figure 3). The lack of any discernible structure is also a possible feature if the stain
intensity is diffuse across the whole tissue (such as PD-L1 in Figure 3).

Figure 3: Illustration of the point clouds corresponding to the different stains (cell color and
size is proportional to stain intensity to ease visualization). One can see that the different
stain intensities induce different geometric patterns.

Persistence Diagrams. It is common in topological data analysis to use Vietoris-
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Figure 4: Discretization process turning a point cloud with stain intensity values into an
image. We start with the full point cloud with the corresponding stain intensity values
(upper left). Note that we only show cells above a certain stain intensity threshold to ease
visualization. The cells are then placed into pixels of a grid drawn on top of the plane (upper
right). These pixels with the corresponding stain intensity values are then turned into an
image (bottom row), by summing the stain intensities in each pixel.
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Rips, Cech or Alpha filtrations [CCSG+09] when dealing with point clouds. However, these
filtrations would be agnostic to stain intensities, only providing information about the shape
of the whole point cloud, which may not be sufficient to successfully encode the spatial and
geometrical relationships between phenotypes.

In order to take the stain intensities into account when computing topological de-
scriptors, we propose an image-based filtration. We first discretized the plane into a grid of
40× 40 pixels. Next, we binned the stain intensity values on this grid, and sum up the stain
intensities in each bin, or pixel, so as to obtain an image. Note that the choice of resolution
(i.e., the number of pixels) has to be carefully done: if the number of pixels is too small,
one might not be able to see and compute the topological structures, but on the other hand,
a resolution that is too large would induce artifacts, in the sense that all cells would be
isolated, and no interesting topology could be computed. Our resolution of 40 × 40 pixels
was manually chosen and seemed to be the best tradeoff on our data. See Figure 4 for an
illustration of this process. Note also that it would be interesting to use Nadaraya-Watson
kernel-based estimators (see Chapter 6 in [HTF03]) to smooth the stain intensities of the
pixels, but we left this possibility for future work.

We chose the image-based filtration instead of other alternatives because it was eas-
ier and more intuitive to deal with resolution/scale for this study. Indeed, when handling
a point cloud with attached values, one usually has two other choices: (1) Use scalar field
analysis [CGOS11], which is based on δ-neighborhood graphs. However, tuning the param-
eter δ is difficult and depends on the geometric characteristics (such as reach and radius
of convexity) on the Riemannian manifold the data is supposed to be sampled from; it is
thus quite hard to estimate. Also, the theoretical approximation results of scalar field anal-
ysis are only valid for nested pairs of Vietoris-Rips filtrations, which are notoriously more
difficult to compute in positive homology dimensions. (2) A simpler option is to directly
build a Vietoris-Rips or Alpha complex, and filter it with the intensities using lower-star
filtrations; however, it also requires to either define a neighborhood scale parameter δ, which
is difficult to estimate (for Vietoris-Rips complexes), or to work with Delaunay triangula-
tions, which might introduce biases due to the coordinates of the cells and independent from
the point cloud values. Compared with these alternatives, we found it much easier to use
an image-based filtration, as we can naturally control the scale by tuning the image/grid
resolution.

Finally, we used persistent homology (see Section 2.3) to produce persistence dia-
grams out of our stain intensity-based images, by filtering the pixels with the opposite of the
stain intensity (so that pixels with large stain intensity appear first). Note that points with
death time 0 corresponds to topological structures that disappeared when adding the pixels
with stain intensity 0, i.e., the pixels corresponding either to the cells not belonging to the
corresponding phenotype or to pixels with no associated cells. These points should thus not
be considered characteristic of the corresponding phenotype. See Figure 5 for examples of
such persistence diagrams. Correlations between tissue morphology shown in the images and
the persistence diagrams are observed. For example, the distance to the diagonal of points
in persistence diagrams of homological dimension 0 and the number of points in persistence
diagrams of homological dimension 1 seem to be correlated to the aggregation of cells with
large stain intensity.
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Figure 5: Examples of images with stain intensity-based pixels computed from point clouds
(left) and their corresponding persistence diagrams (right). Points in homological dimension
0 are displayed in red and points in homological dimension 1 are displayed in green. From
top to bottom: stains of CD8, CD68, PD-L1 and pancytokeratin.
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Pairs of phenotypes. As mentioned in Section 1, characterizing the interactions,
or co-localizations, between pairs of phenotypes might be as important, if not more, as char-
acterizing them alone. Hence, we also computed persistence diagrams out of images with
pixels colored by the average of pairs of phenotypes. This can be thought of as a similar but
quite more general measure of co-localization than the one given by nearest neighbors (see
Section 2.2). Indeed, the standard nearest neighbor analysis basically ranks the cells with
respect to the distance to their closest neighbors. In terms of persistence, this ranking can
be retrieved from the pixel filtration values: the lower they are, the more the correspond-
ing pixels are likely to contain cells that co-localize from the two phenotypes. However,
persistence diagrams also encode the interactions between the topological structures that
are born from these co-localization spots. See Figure 6 for examples of such persistence
diagrams. One can see from these images that the topological structures that are present in
the image of a pair of phenotypes roughly include those of each phenotype alone, and that
the structures that co-localize are emphasized.

Figure 6: Examples of images and associated persistence diagrams computed from pairs of
phenotypes/stains. Points in homological dimension 0 are displayed in red and points in
homological dimension 1 are displayed in green.

Robustness. From a theoretical point of view, the stability property that persis-
tence diagrams enjoy (see Section 2.3 and Proposition 2.2) is very advantageous. Indeed, it
is well-known that any nearest neighbor analysis is sensitive to measurement errors: even a
slight mistake in the measurement of stain intensity can induce different phenotype assign-
ments for the cells, and thus different outputs from a nearest neighbor analysis. Since we do
not depend on thresholding to compute persistence diagrams, we avoid this issue. On the
other hand, the stability theorem for persistence diagrams ensures that any measurement
error only has a small effect, provided that the error is small itself.
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3.2 Statistics on Persistence Diagrams

In this section, we provide details about the statistical methods we used to assess the effi-
ciency of persistence diagrams as characteristic and predictive biological descriptors.

Kernel-based Statistical Tests. In order to formally assess the statistical power
of persistence diagrams with respect to the groups of interest, such as survived vs. deceased,
or triple-negative cancer subtype vs. other subtype, we need to be able to run statistical
tests on distributions of persistence diagrams. Several recent works have looked at this
question from a theoretical point of view [KHN+15, RT17, VJM18]. In this article, we focus
on Kernel Mean Embeddings [GBR+12], that is, we characterize a sample of a distribution D
of persistence diagrams D̂n = {D1, . . . , Dn} by embedding the diagrams in a Hilbert space
H with a continuous map Φ, and by taking the mean (in the Hilbert space) of this sample:
Φ(D̂n) :=

1
n

∑n
i=1Φ(Di).

Now, given two samples D̂n and D̂′
n, one can compute the statistic:

MMD(D̂n, D̂′
n) := ∥Φ(D̂n)− Φ(D̂′

n)∥H,

also called the maximum mean discrepancy, and use it to perform statistical tests in order
to check whether D and D′ are the same. This statistic has been shown to be a good
proxy, with quantified approximation bounds, to its continuous version ∥Φ(D) − Φ(D′)∥H
in [GBR+12], where Φ(D) is defined as ED∼D[Φ(D)].

Choice of the embedding function. It might not be totally clear how to choose
such a map Φ for embedding persistence diagrams. This can actually be done quite easily
with the use of kernels:

Definition 3.1. Let DN,L be the space of persistence diagrams with at most N points in-
cluded in [−L,L]2. A kernel is a pairwise function k : DN,L × DN,L → R such that the
matrix K = ((k(Di, Dj)))1≤i,j≤n is positive semi-definite for any family of persistence dia-
grams D1, . . . , Dn ∈ DN,L.

A useful result of kernel methods actually relates kernels to embeddings in Hilbert
spaces:

Proposition 3.2. Let k be a kernel on DN,L. Then, there exists a Hilbert space Hk and a
map Φk such that, for any D,D′ ∈ DN,L, one has k(D,D′) = ⟨Φ(D),Φ(D′)⟩Hk

.

In other words, any kernel matrix can be interpreted as a Gram matrix in an implicit
(and potentially infinite-dimensional) Hilbert space. Moreover, the statistic MMD can be
easily computed from k with:
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MMD(D̂n, D̂′
n)

2 =

〈
1

n

n∑
i=1

Φ(Di)−
1

m

m∑
j=1

Φ(D′
j),

1

n

n∑
i=1

Φ(Di)−
1

m

m∑
j=1

Φ(D′
j)

〉
Hk

=
1

n2

n∑
i=1

n∑
u=1

⟨Φ(Di),Φ(Du)⟩Hk
+

1

m2

m∑
j=1

m∑
v=1

⟨Φ(D′
i),Φ(D

′
v)⟩Hk

− 2

nm

n∑
i=1

m∑
j=1

⟨Φ(Di),Φ(D
′
j)⟩Hk

=
1

n2
∥K∥1 +

1

m2
∥K ′∥1 −

2

nm
∥K̃∥1,

where K,K ′ and K̃ are the kernel matrices computed on D×D, D′×D′, and D×D′

respectively. Note however that it has been shown in [GBR+12] that MMD is a biased
statistic—in practice, we compute the unbiased MMD, defined as:

MMDu(D̂n, D̂′
n)

2 =
1

n(n− 1)

n∑
i=1
u̸=i

⟨Φ(Di),Φ(Du)⟩Hk
+

1

m(m− 1)

m∑
j=1
v ̸=j

⟨Φ(D′
i),Φ(D

′
v)⟩Hk

− 2

nm

n∑
i=1

m∑
j=1

⟨Φ(Di),Φ(D
′
j)⟩Hk

Now it only remains to pick a kernel for persistence diagrams. Several choices have
been proposed in recent works [AEK+17, Bub15, CCO17, KHF16, RHBK15], and we will
focus on one called the Sliced Wasserstein kernel kSW [CCO17] in this work, since it has
been shown to be one of the most efficient approaches in different statistical tasks [CCO17].
Its definition is based on the Sliced Wasserstein distance SW between persistence diagrams,
which is defined (informally) as the integral over all possible lines of the 1-Wasserstein
distance (see Section 2.3) computed between projections of these diagrams onto a line going
through the origin. In practice, one does not compute this integral exactly but rather sample
a fixed number of lines, finding the average Wasserstein distance between the corresponding
projections. We refer the interested reader to [CCO17] for a precise definition of this distance,
and we merely recall the definition of the associated kernel:

Definition 3.3 ([CCO17]). Let D,D′ ∈ DN,L and σ > 0. The Sliced Wasserstein kernel is
defined as:

kSW(D,D′) = e−
SW(D,D′)

2σ2 ,

where SW denotes the Sliced Wasserstein distance between persistence diagrams.

One can easily see that kSW can be interpreted as a Gaussian kernel, with its only
parameter σ being the corresponding bandwidth.
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Characteristic kernels. There is a specific class of kernels in the literature that
is of particular interest when it comes to statistical tests: the so-called characteristic ker-
nels [SFL11, SGS18].

Definition 3.4. A kernel k is called characteristic if its corresponding map Φk is injective
on distributions, i.e., for any pair of distributions D and D′, one has:

∥Φ(D)− Φ(D′)∥Hk
= 0 =⇒ D = D′

Obviously, any statistical test based on a kernel requires it to be characteristic in
order to be theoretically backed-up. Even though it is not clear whether the Sliced Wasser-
stein kernel is characteristic or not, there exists a strategy to build a characteristic kernel
out of another one, that was first presented in [KHN+15], and that we use again in this
work:

Theorem 3.5 ([KHN+15]). Let k be a kernel on DN,L whose associated map Φk is con-
tinuous and injective and whose associated Hilbert space Hk is separable. Then the kernel
k̃ := ek is a characteristic kernel.

Theorem 3.5 is actually a consequence of a more general theorem that is valid on any
compact metric space (the fact that DN,L is compact with respect to the first Wasserstein
distance between persistence diagrams was proved in [KHN+15]). Moreover, it has been
shown in [CCO17] that the map ΦkSW associated to kSW is continuous and injective. Finally,
since it is also known that DN,L is separable [MMH11], it follows that the Hilbert space
associated to kSW is separable as well, as the completion of the span of a separable space.
Hence the following result:

Proposition 3.6. The kernel k̃SW := ekSW is characteristic.

All of the statistical analysis presented in the following section has been performed
with the kernel k̃SW, which we call the characteristic Sliced Wasserstein kernel.

Comparison with NN features. Concerning the features given by nearest neigh-
bor analysis, i.e., the means and variances of the distribution of Euclidean distances to the
closest neighbors (see Section 2.2), we use kernel-based statistical tests based on the MMD
computed with a standard linear kernel (which is known to be characteristic). Moreover, we
also test the independence between persistence diagrams and nearest neighbor features in or-
der to check whether these two types of features are complementary or not. Kernel methods
can also be used to run independence tests based on the Hilbert-Schmidt criterion [GBSS05].
The so-called Hillbert-Schmidt Independence Criterion (HSIC for short) [GBSS05] is:

HSIC(D̂X
n , D̂Y

n ) =
1

(n− 1)2
tr (KX ·H ·KY ·H) ,

where D̂X
n (resp. D̂Y

n ) is a sample of size n from a distribution DX (resp. DY ) in a space X
(resp. Y ), KX (resp. KY ) is the kernel matrix associated to D̂X

n (resp. D̂Y
n ), H = In − 1

n1,
In is the identity matrix of size n, and 1 is the n × n matrix containing only ones. The
quantity HSIC is known to be a good estimator of the cross-covariance operator between
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Φ(DX) and Ψ(DY ), where Φ (resp. Ψ) is the feature map associated to KX (resp. KY ), and
is known to be zero if and only if the distributions DX and DY are independent (provided
that both kernels are characteristic, see Theorem 4 in [GBSS05] 1). Another measure of this
cross-covariance operator, which provides a value that can thought of as a generalization
of the usual covariance between random variables, is the so-called constrained covariance
coefficient [GSB+05], defined as:

COCO(D̂X
n , D̂Y

n ) =
1

n

√
∥(H ·KX ·H) · (H ·KY ·H)∥2.

Again, this coefficient is zero if and only if the distributions DX and DY are independent
for characteristic kernels.

3.3 Results

In this section, we provide the experimental results obtained on our data using the char-
acteristic Sliced Wasserstein kernel k̃SW presented in Section 3.2 for persistence diagrams
and a standard linear kernel for the NN features. In lieu of building a classifier, we instead
focus on evaluating the statistical significance between groups of patients. This is due to the
lack of tissue area in the tissue microarrays, which limits robust measurements of immune
population densities typically available in whole-slide images used for diagnosis.

The kernel bandwidth σ of k̃SW was selected manually as the median of all pairwise
sliced Wasserstein distances between persistence diagrams, as described in [FSCF16]. We
conduct two types of statistical tests; in the first one, we use the MMD statistic to assess
whether persistence diagrams can successfully distinguish interesting subgroups in the data,
and in the second one, we use the HSIC and COCO statistics to assess how independent
persistence diagrams are from NN features. In both cases, p-values are approximated with
10 · 103 random permutations, which are either permutations of the subgroup labels (for the
MMD statistic), or permutations of the rows of the kernel matrices (for the HSIC statistic).
Moreover, the p-values were adjusted with Bonferroni corrections in order to control the
familywise error rate.

Triple-negative subtype. In this first experiment, we separate the patients with
respect to their cancer subtype. More specifically, we aim at distinguishing between patients
with triple-negative breast cancer and those with other subtypes. Triple-negative breast
cancer is especially interesting due to its high ability to provoke an immune response, or
immunogenecity, among subtypes. However, triple-negative breast cancer patients typically
have poor prognosis due to the lack of response to hormonal or receptor-status therapy. By
better understanding the immune profiles associated with triple-negative breast cancers and
the association with treatment response (i.e. overall survival), it could be possible to design
targeted immunotherapies [LLJW18].

We show in Figure 7 (left) the p-values obtained with persistence diagrams, and
the ones computed with NN features, for each (pair of) phenotypes. It can be seen from

1The cited result is actually proved for the so-called universal kernels but we leave this subtlety aside in
the context of this work since it has no effect on our analysis.
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this plot that the p-values obtained with persistence diagrams are always better than those
given by NN features. We find that the NN metrics are not always significant, and this
was further verified with the full NN distribution shapes. On the other hand, persistence
diagrams demonstrated consistency of the p-values including CD8-involved pairs, indicating
they reveal topology beyond that quantified by the NN algorithm.

Survival. In this second experiment, we now aim at distinguishing between pa-
tients that were alive at the latest follow-up after diagnosis. Although this includes causes
unrelated to the breast cancer morbidity and associated treatment, such as dying of natural
causes or other disease, this is still a good measure of overall disease-free survival. The
corresponding p-values are displayed in Figure 7 (right). It can be seen that the p-values
corresponding to persistence diagrams are in general much lower than those corresponding of
NN features, especially in PD-L1 involved pairs. PD-L1 combinations are relatively rare and,
as explained at the end of Section 3.1, NN features are sensitive to noise and the counting
statistics on the number of phenotype pairs. Characterizing the spatial interactions of PD-
L1 expression, however, would provide valuable insight into the possible immuno-repressive
patterns in the tumor immune microenvironment.

We see, on the other hand, stability of persistence diagrams providing statistically
significant measures. This makes diagrams a more robust descriptor than NN alone at the
same statistical power. Similarly, it is clear from the distribution of values that persistence
diagrams are more stable descriptors than NN features, picking up topology relating to
PD-L1.

Figure 7: P-values computed for the MMD statistical test for NN features (black), 0-
dimensional persistence diagrams (green) and 1-dimensional persistence diagrams (red), for
different (pairs of) phenotypes. We also indicate the significance level 0.05 with a dashed
blue horizontal line.

Independence. Finally, we check the independence measures (computed with the
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HSIC and COCO statistics) between persistence diagrams and nearest neighbor features.
We show the computed values in Figure 8. One can see that the p-values are always
small, indicating some dependencies between NN features and persistence diagrams, which
is expected since, even though persistence diagrams encode different information than NN
features, the construction of both types of features are similar. Moreover, the COCO coeffi-
cients indicate, for each (pair of) phenotypes, how dependent persistence diagrams and NN
features are.

Figure 8: P-values computed for the HSIC statistical test and COCO coefficients between
NN features and persistence diagrams in dimension 0 (left) and 1 (right). We also indicate
the significance level 0.05 with a dashed blue horizontal line.

4 Open Questions and Future Work

We show a novel approach for the application of topological data analysis techniques to
cancer characterization through the analysis of qmIF data using persistent homology. We
evaluated our method on a unique cohort of 671 patients using high-throughput tumor
microarrays with a median 8.5 year follow-up. Our preliminary analyses show that features
derived from persistent homology between groups of patients stratified by survival and triple
negative status are statistically significant and are complementary to the state-of-the-art
nearest neighbor approach. This indicates that the persistent homology features can be
used as a complementary biomarker.

Open questions. Our preliminary study is by no means comprehensive, and many
questions remain open.

• In this article, we only focus on verifying the statistical significance of the topolog-
ical signal arising from cell arrangement observed via multiplex IF. Our results in-
dicate potential in a discriminative model (e.g., a classifier with topological features
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[KHN+15, CCO17]). This work should be extended to develop classifiers, which would
require careful design of the learning module and featurization of persistence diagrams.

• Our analysis only considered single phenotypes and pairs of phenotypes. However,
a more complete characterization should handle interactions between more than two
phenotypes, despite greatly increasing the number of persistence diagrams computed
for each patient. Moreover, there is no single solution on how to combine the differ-
ent stain intensities. In this work, we merely took the average between normalized
stain intensities, even though it would be interesting to weight the filtrations given
by stain intensities in order to take the range of stain intensity values into account.
The weight coefficients could even be learned so as to avoid a brute force search,
using for instance recent works on differentiability of persistence diagrams for learn-
ing [BGND+19, CNBW19, HFSC19, PSO18].

• Multiple stain intensities actually fits into the multiparameter persistence framework,
see [CZ09, HOST19], where data is filtered by several filtrations at the same time.
Our approach of taking linear combinations of stain intensities actually amounts to
draw lines in this multiparameter space and compute usual persistence along these
lines, which is the approach that is also advocated in recent works [CFK+19, LW15].
However, multiparameter persistence is a current area of research, and invariants have
been obtained in recent works, at least for bifiltrations, that is, filtrations with two
parameters [BCB18, BL18, CO16]. Even though they are harder to encode than
persistence diagrams, it might be interesting to apply these results in our context.
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