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Abstract

This paper presents a sliding mode observer (SMO) design method to estimate the states and unknown inputs (UIs) in a class
of non-infinitely observable (NIO) descriptor systems that contain UIs in both the state and output equations. Existing works
on SMO design for NIO systems did not consider UIs in the output equation. In order to overcome the difficulty caused by
UIs in output channels and the NIO condition, we reformulated the original system and introduced new UIs to replace the
original UIs to obtain an equivalent infinitely observable descriptor system whose output does not contain any UI. Based on
the developed equivalent system, a new SMO method is proposed to estimate both the states and the UIs. Subsequently, the
necessary and sufficient conditions for the existence of the SMO are derived in terms of the original system matrices, which
thus makes the conditions easy to be examined. Finally, an example is used to verify the effectiveness of the proposed method.
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1 Introduction

In the past decades, the sliding mode observer (SMO)
has been widely used for estimating states and unknown
inputs (UIs) due to its robustness to the UIs. The main
feature of the SMO is the nonlinear switching function
which drives the output estimation error to zero in fi-
nite time. Following that, both the states and the UIs
can be estimated asymptotically without requiring the
derivatives of outputs to be available [1]; in particular,
the switching function estimates the UIs. In recent years,
SMOs have gained even more attention and many excel-
lent results have been reported, see for instance [2,3].

⋆ This work is supported in part by National Nat-
ural Science Foundation of China under Grants
61803181 and 61973138, and in part by the Chi-
na Postdoctoral Science Foundation under Grant
2019M651695. E-mail: jcz@jiangnan.edu.cn (J. Zhang),
tan.chee.pin@monash.edu (C. P. Tan), gang.zheng@inria.fr
(G. Zheng), wangyan88@jiangnan.edu.cn (Y. Wang, Corre-
sponding author)

The descriptor system, also known as differential-
algebraic system, singular system or generalized system,
is a special class of systems governed by both dynamic
and algebraic equations. Due to these characteristics,
the descriptor system can represent a wider range of
systems such as electrical circuits, biological systems,
constrained mechanics, chemical processes and so on
[4]. Although there have been fruitful results in general
observer design for descriptor systems (see [5–8] and
references therein), only few works have used SMOs
[9–22]. Note that in [9–15] the so-called infinitely ob-
servable condition (IOC) was required to be satisfied,
which might be a restrictive condition for many physical
systems, such as electrical circuits [23] and the chemical
systems [20] which are non-infinitely observable (NIO).
Indeed, for a descriptor system to satisfy the IOC, the
output matrix needs to have a certain number of sensors,
which could increase the cost and the complexity of the
system [18]. Recently, there are some works in designing
SMOs for NIO descriptor systems [18–22], where some
states of the original system were reformulated as UIs;
this is however conservative because it increases the
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number of UIs and thus reduces the feasibility of the S-
MO. In addition, the works of [18–22] only presented the
sufficient conditions for the so-called minimum-phase
condition without giving the necessary one.

Moreover, it should also be pointed out that [18–22] fo-
cused on the case where the UIs only occur in state equa-
tions, and the case where the output containing UIs has
not been considered. In fact, if the output contains UIs,
the traditional SMO design would immediately become
difficult. This is because in such situations, the nonlin-
ear switching term does not drive the output estimation
error to zero, and the switching term no longer captures
the UI asymptotically. However, in practical situations
the measurement outputs are usually influenced by UIs
such as disturbances or sensor faults.

Motivated by the above observations, this paper is ded-
icated to developing a systematic SMO design method
for a class of NIO descriptor systems where UIs exist in
both the state and output equations. The main contri-
butions as well as the novelties of this paper are three-
fold as follows: (I) Reformulating the original system and
introducing new UIs to replace the original UIs yields
an equivalent descriptor system which satisfies the IOC
and has no UIs in the output, thus enabling the SMO
to be designed for it. (II) Based on the equivalent sys-
tem, both the states and the UIs are estimated by using
a SMO together with a new developed UI algebraic re-
construction method. (III) The necessary and sufficien-
t conditions for the existence of the SMO are given in
terms of the original system matrices which will make it
easier for the designer/user to determine at the outset if
the proposed scheme is applicable to their system.

The remainder of the paper is organised as follows. Sec-
tion 2 gives the problem formulation and preliminaries.
In Section 3, as the main results the SMO developments
and the discussions of the existence conditions are pre-
sented. In Section 4, a practical example is employed to
verify the effectiveness of the proposed methods. Final-
ly, conclusions are given in Section 5.

Throughout the paper, In is an n × n identity ma-
trix. X ⇐⇒ Y means X is equivalent to Y . For ma-
trix Θ, Θ+ is a general inverse of Θ which satisfies
ΘΘ+Θ = Θ, and Sym(Θ) represents Θ + ΘT . Symbol
diag{A1, A2, . . . , As} denotes a diagonal matrix with
matrices A1, A2, . . . , As being the diagonal elements.
For any vector or matrix v, ∥v∥ denotes the 2−norm.

2 Problem formulation and preliminaries

Consider a class of linear descriptor systems as follows:

Eẋ(t) = Ax(t) +Bu(t) +Df(t) (1a)

y(t) = Cx(t) + Ff(t) (1b)

where x ∈ Rn, y ∈ Rp and u ∈ Rm are the state, mea-
surable output and control input vectors, respectively.
f ∈ Rq is the unknown input which could represen-
t disturbances, faults or measurement noise and so on.
E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,D ∈ Rn×q

and F ∈ Rp×q are constant matrices, and x(0), f(t) are
unknown but bounded vectors, i.e., ∥x(0)∥ ≤ x0 and
∥f(t)∥ ≤ f0 (x0, f0 > 0 are known constants). It is as-
sumed that system (1) is regular and impulse-free [23].
Besides, assume generally that rank(E) = n0 < n and
rank [EC ] < n (i.e., the system (1) is NIO [18]). Also
assume generally that rank [DF ] = q, because it is al-
ways possible to find matrices D , F and Ω such that
[DF ] f =

[
D
F

]
Ωf with

[
D
F

]
being full column rank.

As mentioned in the introduction, SMOs can be easily
constructed for descriptor systems that satisfy the IOC,
i.e. rank [EC ] = n [9–15]. Then, Tan et al. relaxed the
IOC, and proposed several SMO-based methods [18–22]
for NIO descriptor systems where the UI appears only
in the state equation, but they are inapplicable for sys-
tem (1) where the UIs appear in both state and output
equations. Moreover, in [18–22], certain states were ex-
pressed as UIs, which inevitably increases the number
of UIs and reduces the possibility of a successful SMO
design. This paper seeks to overcome that limitation by
developing a new SMO scheme for system (1) and giving
the sufficient and necessary conditions.

3 Main results

In this section, by reformulating system (1) and intro-
ducing new UIs to replace the original UIs, we obtain an
equivalent descriptor system that is infinitely observable
and without any UIs in the output. Following that, a S-
MO is developed to estimate the state andUIs. Then, the
existence conditions of the SMO are discussed in detail.

3.1 System reformulation

Pre-multiplying (1a) with matrices EE+ and I −EE+,
yields the following equations respectively

Eẋ(t) = EE+Ax(t) + EE+Bu(t) + EE+Df(t) (2a)

0 = (I − EE+) (Ax(t) +Bu(t) +Df(t)) (2b)

Combining (1)-(2) yields

Eẋ(t) = Ax(t) +Bu(t) +Df(t) (3a)

y(t) = Cx(t) + Ff(t) (3b)

where E = E, A = EE+A, B = EE+B, D =

EE+D, C =
[
(I−EE+)A

C

]
, F =

[
(I−EE+)D

F

]
and

y =
[
−(I−EE+)Bu

y

]
. It can be easily seen that the
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assumption rank [DF ] = q results in rank
[
D
F

]
= q. Ac-

cording to the general matrix inverse theory [5], the
general solution for f in (3b) is

f(t) = F
+
(y(t)− Cx(t)) + (I − F

+
F )η(t) (4)

where η is a definite but unknown vector which will be
considered as a new UI to replace f . Then, substituting

(4) into (3a) and pre-multiplying (3b) with I − F F
+

yields

Ẽẋ = Ãx+ B̃u+DF
+
y +D(I − F

+
F )η (5a)

ỹ = C̃x (5b)

where Ẽ = E, Ã = A−DF
+
C, B̃ = B, and C̃ ∈ Rp×n

is a matrix of full row rank, constructed by selecting

all independent rows of matrix (I − F F
+
)C. Then, the

vector ỹ in (5b), selected from the corresponding rows of

(I−F F
+
)y, is also measurable. Denote q̄ = rank(D(I−

F
+
F )), and thus there exists a full column rank matrix

D̃ ∈ Rn×q̄ and a matrix Λ ∈ Rq̄×q such that D(I −
F

+
F ) = D̃Λ, where q̄ ≤ q. Therefore, the term D(I −

F
+
F )η(t) in (5a) can be rewritten as D̃Λη(t). Then, let

ω = Λη, and system (5) becomes

Ẽẋ(t) = Ãx(t) + B̃u(t) +DF
+
y + D̃ω(t) (6a)

ỹ(t) = C̃x(t) (6b)

To perform the SMO design, assume that the following
conditions hold

rank
[
Ẽ D̃

C̃ 0

]
= n+ rank(D̃) (7a)

rank
[
sẼ−Ã D̃

C̃ 0

]
= n+ rank(D̃), ∀ s ∈ C+. (7b)

Remark 1. In system (1), both the NIO condition and
UIs in the output prevent a SMO from estimating the s-
tates and UIs. However, after the transformations in (2)-
(5), system (6) is obtained, which removes the UIs from
the output and, also, makes it possible for system (6)
to satisfy the IOC, and thus enabling the SMO design.
Therefore, if conditions (7a)-(7b) are satisfied, it is then
possible to design a SMO for system (6) [9] to estimate
x and ω. The implications and equivalent conditions of
(7a)-(7b) will be given in Section 3.3.

For matrix C̃, by using the Smith orthogonal proce-
dure we can find an orthogonal matrix W such that

Ĉ = C̃W = [0 R̂] with R̂ being nonsingular. On the
other hand, (7a) implies that there exists a nonsingular

matrix T̃ and a matrix H̃ such that T̃ Ẽ + H̃C̃ = In [4].

Thus, pre-multiplying system (6) with T̃ and perform-
ing a state transformation x = Wx leads to

Êẋ(t) = Âx(t) + B̂u(t) + ∆̂y(t) + D̂ω(t) (8)

where

Ê = W−1T̃ ẼW ,

 Ê11 Ê12

Ê21 Ê22

 =

 In−p −Ĥ1R̂

0 Ip − Ĥ2R̂


Â = W−1T̃ ÃW ,

 Â11 Â12

Â21 Â22

 , B̂ = W−1T̃ B̃ ,

 B̂1

B̂2


∆̂ = W−1T̃D F

+ ,

 ∆̂1

∆̂2

 , D̂ = W−1T̃ D̃ ,

 D̂1

D̂2

 .

(9)

and Ĥ1, Ĥ2 are
[
Ĥ1

Ĥ2

]
= W−1H̃ where Ĥ1 ∈ R(n−p̄)×p̄.

Decomposing vector x̄ =
[
x̄1
x̄2

]
with x̄1 ∈ Rn−p̄, and

based on the partitions in (9), system (8) can be rewrit-
ten as

ẋ1 + Ê12ẋ2 = Â11x1 + Â12x2 + B̂1u+ ∆̂1y + D̂1ω (10a)

Ê22ẋ2 = Â21x1 + Â22x2 + B̂2u+ ∆̂2y + D̂2ω (10b)

where x2 = R̂−1ỹ. Now, we give Lemma 1 which will
facilitate the SMO design.

Lemma 1. The conditions (7a) and (7b) hold, if and
only if (iff) there exist appropriately dimensioned sym-

metric positive definite (SPD) matrices P̃ , Q̃ > 0 and

matrices J̃ , K̃ such that

T̃ D̃ = J̃ C̃T̃ D̃ (11a)

Sym
(
P̃ [(I − J̃ C̃)T̃ Ã− K̃C̃]

)
= −Q̃ (11b)

Proof. To this end, we will show (7a) ⇐⇒ (11a) and
(7b) ⇐⇒ (11b).

To prove that (7a) ⇐⇒ (11a) : Since
[

I 0

−C̃ I

]
︸ ︷︷ ︸

T2

[
T̃ H̃
0 I

]
︸ ︷︷ ︸

T1

[
Ẽ D̃

C̃ 0

]
=

[
In T̃ D̃

0 −C̃T̃ D̃

]
and T1, T2 are invertible, it follows that con-

dition (7a) holds iff rank
[
In T̃ D̃

0 −C̃T̃ D̃

]
= n + rank(T̃ D̃),

i.e. rank(C̃T̃ D̃) = rank(T̃ D̃) which holds iff there exists

a matrix J̃ that satisfies (11a).

To prove that (7b) ⇐⇒ (11b) : We only need to show

(7b) holds iff there exist matrices J̃ , K̃ such that matrix
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Υ̃ , (I − J̃ C̃)T̃ Ã − K̃C̃ is Hurwitz. Condition (11a)

gives the solution of J̃ as

J̃ = T̃ D̃(C̃T̃ D̃)+ + Z(I − C̃T̃ D̃(C̃T̃ D̃)+). (12)

Substituting (12) into matrix Υ̃ yields

Υ̃ = T̃ Ã− T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã

− Z(I − C̃T̃ D̃(C̃T̃ D̃)+)C̃T̃ Ã−KC̃

= Π1 − ΓΠ2

(13)

where Γ = [Z K], Π1 = T̃ Ã − T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã

and Π2 =
[
(I−C̃T̃ D̃(C̃T̃ D̃)+)C̃T̃ Ã

C̃

]
. Therefore, proving

(7b) ⇐⇒ (11b) can be reduced to showing that (7b)
holds iff the pair (Π1,Π2) is detectable. Next, we will
show the equivalence.

Define the following matrices with full column rank,

S1 =
[
T̃ H̃
0 I

]
,S2 =

[
I 0

(C̃T̃ D̃)+C̃ 0
0 I

]
,S3 =

[
I 0

(C̃T̃ D̃)+C̃T̃ Ã I

]
,

S4 =

[
I 0

−C̃ 0
0 I

]
and S5 =

[
I 0 0
0 I sI
0 0 I

]
. Then, since C̃T̃ D̃ has

full column rank, for any s ∈ C+ we have

rank
[
sẼ−Ã D̃

C̃ 0

]
= rank

(
S2S1

[
sẼ−Ã D̃

C̃ 0

]
S3

)
= rank

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã) T̃ D̃

s(C̃T̃ D̃)+C̃ Iq̄

C̃ 0

]
= q̄ + rank

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã)

C̃

]
= q̄ + rank

(
S4

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã)

C̃

])
= q̄ + rank

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã)

−sC̃+(I−C̃T̃ D̃(C̃T̃ D̃)+)C̃T̃ Ã

C̃

]

= q̄ + rank

(
S5

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã)

−sC̃+(I−C̃T̃ D̃(C̃T̃ D̃)+)C̃T̃ Ã

C̃

])

= q̄ + rank

[
sIn−(T̃ Ã−T̃ D̃(C̃T̃ D̃)+C̃T̃ Ã)

(I−C̃T̃ D̃(C̃T̃ D̃)+)C̃T̃ Ã

C̃

]
= q̄ + rank

[
sIn−Π1

Π2

]
.

(14)

Recalling that rank(T̃ D̃) = rank(D̃) = q̄, it follows from

(14) that (7b) holds iff rank
[
sIn−Π1

Π2

]
= n, i.e., the pair

(Π1,Π2) is detectable, which completes the proof. 2

Remark 2. Matrices P̃ and Q̃ associated with (11b)

can be obtained as follows: Based on the definition Υ̃ ,
(I− J̃ C̃)T̃ Ã−K̃C̃, substituting (12) and (13) into (11b)

yields Sym(P̃Π1 − P̃ΓΠ2) < 0. Treating P̃Γ as a new

variable X, and solving LMI Sym(P̃Π1 − XΠ2) < 0

yields P̃ andX, and then Γ can be solved as Γ = P̃−1X.

This together with (13) and (11b) gives matrix Q̃.

From system (10) and equation (11), we will describe the

SMO design in the following. Let L̂ be a matrix which
will be determined later. Then, pre-multiplying (10b)

with L̂ and subtracting the result from (10a) yields

(Ê12 − L̂Ê22)ẋ2 + ẋ1 = (Â11 − L̂Â21)x1 + (Â12 − L̂Â22)x2

+ (B̂1 − L̂B̂2)u+ (∆̂1 − L̂∆̂2)y + (D̂1 − L̂D̂2)ω
(15)

On the other hand, let

P̂ = W−1P̃W =
[

P̂1 P̂2

P̂T
2 P̂3

]
, K̂ = W−1K̃ =

[
K̂1

K̂2

]
,

Q̂ = W−1Q̃W =

[
Q̂1 Q̂2

Q̂T
2 Q̂3

]
, Ĵ = W−1J̃ =

[
Ĵ1

Ĵ2

]
.

(16)

It follows from (11a) thatW−1T̃ D̃ = W−1J̃ C̃ W W−1T̃ D̃,

i.e.
[
D̂1

D̂2

]
=
[
Ĵ1

Ĵ2

] [
0 R̂

] [
D̂1

D̂2

]
. Now, choose matrix

L̂ = Ĵ1R̂− P̂−1
1 P̂2(I − Ĵ2R̂) (17)

and it is easy to verify that D̂1− L̂D̂2 = 0. Thus, system
(15) reduces to

(Ê12 − L̂Ê22)ẋ2 + ẋ1 = (Â11 − L̂Â21)x1+

(Â12 − L̂Â22)x2 + (B̂1 − L̂B̂2)u+ (∆̂1 − L̂∆̂2)y.
(18)

In the following subsection, a SMO will be constructed.

3.2 SMO design

Based on the reformulation given in Section 3.1 and the
conditions (7a) and (7b), a new SMO is developed for
systems (18) and (10b) as follows

ζ̇1 = (Â11 − L̂Â21)x̂1 + (Â12 − L̂Â22)R̂
−1ỹ

+(B̂1 − L̂B̂2)u+ (∆̂1 − L̂∆̂2)y
(19)

x̂1 = ζ1 − (Ê12 − L̂Ê22)R̂
−1ỹ (20)

ζ̇2 = Â21x̂1 + Â22R̂
−1ỹ + B̂2u+ ∆̂2y + v (21)

x̂2 = ζ2 + (I − Ê22)R̂
−1ỹ (22)

where

v(t) = ρ
eỹ
∥eỹ∥

, ρ > (ρ0 + ∥Â21∥ · e1 + ∥D̂2∥ · ω̄), (23)

ζ1 and ζ2 are the SMO states, x̂1 and x̂2 are the estimates

of x1 and x2, e1 = x1− x̂1 and eỹ = x2− x̂2 = R̂−1ỹ− x̂2

4



are estimation errors. ρ0 > 0, e1 and ω̄ are the upper
bounds of ∥e1∥2 and ∥ω∥2, respectively. Next, in Theo-
rem 1, we analyze the performance of SMO (19)-(22).

Theorem 1. Based on (7a) and (7b) and the above
developments, the SMO (19)-(22) can achieve e1 → 0,
t → ∞ and sliding motion eỹ = 0 in finite time. Further-
more, the state x and unknown input f can be asymp-
totically estimated by SMO (19)-(22).

Proof. Firstly, it will be proven that e1 → 0, t → ∞.
Considering systems (18) and (19)-(22) we have ė1 =

(Â11 − L̂Â21)e1. In the following, it will be shown that

Â11− L̂Â21 is Hurwitz. For equation (11b), pre-multiply
with W−1 (from (9) and (16)) and post-multiply with
W to get

Sym
(
P̂
(
(I − Ĵ Ĉ)Â− K̂Ĉ

))
= −Q̂. (24)

Based on the decompositions of matrices P̂ , Ĵ , Â, K̂ and

Ĉ in (16), the sub-block on the first row and the first

column of P̂
(
(I − Ĵ Ĉ)Â− K̂Ĉ

)
is

[
I 0

]
P̂
(
(I − Ĵ Ĉ)Â− K̂Ĉ

) [
I
0

]
=
[
P̂1 P̂2

] (
(I − Ĵ Ĉ)Â− K̂Ĉ

) [
I
0

]
=
[
P̂1 P̂2

]
(I − Ĵ Ĉ)Â

[
I
0

]
= P̂1

(
Â11 −

(
Ĵ1R̂− P̂−1

1 P̂2

(
I − Ĵ2R̂

))
Â21

)
= P̂1

(
Â11 − L̂Â21

)
.

(25)

Then, equations (24) and (25) imply

P̂1(Â11 − L̂Â21) + (Â11 − L̂Â21)
T P̂1 = −Q̂1 < 0 (26)

which indicates that Â11 − L̂Â21 is Hurwitz. Thus, we
have e1 → 0, t → ∞. Also, since the initial state x(0)

is bounded by x0, from (26) we have eT1 (t)P̂1e1(t) ≤
eT1 (0)P̂1e1(0), which implies that we can find a scalar

e1 ,
√

λmax(P̂1)

λmin(P̂1)
∥
[
I 0

]
WT ∥x0 such that ∥e1∥2 ≤ e1.

Besides, from the definition of ω(t) in (6) we have ω(t) =

D̃+D(I−F
+
F )f(t). Thus, there exists an upper bound

of ω(t) as ω = ∥D̃+D(I − F
+
F )∥f0 satisfying ∥ω(t)∥ ≤

ω. Next, by using these results we will show the achieve-
ment of sliding motion eỹ = 0 in a finite time.

It follows from (10b) and (19)-(22) that the estimation
error dynamics of eỹ are

ėỹ = Â21e1 + D̂2ω − v. (27)

Consider a Lyapunov function V2 = 1
2e

T
ỹ eỹ, and then

from (27) it follows that

V̇2 = eTỹ

(
Â21e1 + D̂2ω − v

)
≤ ∥eỹ∥

(
∥Â21∥ · e1 + ∥D̂2∥ · ω

)
− ρ∥eỹ∥

≤ −ρ0∥eỹ∥

(28)

which yields V̇2 ≤ −
√
2ρ0

√
V2. Thus, the reachability

condition has been satisfied, and according to the slid-
ing mode theory, sliding motion ėỹ = eỹ = 0 is at-

tained in finite time tf = t0 +

√
2V2(0)

ρ0
[1]. Then, we

have x̂1 → x1, t → ∞ and x̂2 ≡ x2, t ≥ tf , which also

implies
[
x̂1

x̂2

]
→ x, t → ∞. Therefore, for the state es-

timate x̂ = W
[
x̂1

x̂2

]
, since matrix W is orthogonal and

thus invertible, we have x̂ → x, t → ∞.

Then, since e1 → 0, it follows from (27) that after the

sliding motion is achieved we have veq → D̂2ω, where
veq, the so-called equivalent output error injection, is the
low-frequency component of v required to maintain the
sliding motion, and can be approximated online to any
degree of accuracy as veq ≈ ρ

eỹ
∥eỹ∥+δ with δ > 0 being

a small constant [18–22]. Besides, since D̂1 − L̂D̂2 = 0

we have
[
L̂
I

]
veq → D̂ω which implies T̃−1W

[
L̂
I

]
veq →

D̃ω.

On the other hand, pre-multiplying (4) with D yields

Df(t) = DF
+
(y(t)− Cx(t)) +D(I − F

+
F )η(t) (29)

or

Df(t) = DF
+
(y(t)− Cx(t)) + D̃ω(t). (30)

Since matrix
[
D
F

]
has full column rank, by solving the

algebraic equations (3b) and (30) the original UI f can
be re-expressed as

f =

([
D
F

]T [
D
F

])−1 [
D
F

]T [
DF

+
(y(t)−Cx(t))+D̃ω(t)

y(t)−Cx(t)

]
.

(31)
Define the following measurable signal

f̂ ,
([

D
F

]T [
D
F

])−1 [
D
F

]T [DF
+
(y−Cx̂)+T̃−1W

[
L̂veq
veq

]
y−Cx̂

]
(32)

where f̂ is the estimate of f . Since x̂ → x and

T̃−1W
[
L̂
I

]
veq → D̃ω, t → ∞, we have f̂ → f , t → ∞.

This completes the proof. 2
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Remark 3. It should be emphasized that the sliding
motion eỹ = 0 is crucial in state and UI estimation. On

the one hand, once eỹ = 0 is achieved, we have x̂2(t) ≡
x2(t), which together with the estimate x̂1 defined in
(20) gives the state estimation x̂(t). On the other hand,

the achievement of eỹ = 0 also allows us to estimate D̂2ω
by using the equivalent output error injection veq, and
further gives the estimation of f in (32).

Remark 4. Note that conditions (7a) and (7b) contain

intermediate matrices Ẽ, Ã, D̃, C̃ that make the condi-
tions difficult to be examined. In the next subsection,
the equivalent conditions of (7a) and (7b) will be given
in terms of original system matrices, which will make it
easier for the designer/user to determine at the outset if
the proposed scheme is applicable to their system.

Remark 5. The requirement of the prior knowledge of
x0 and f0 (which respectively are the bounds of x(0) and
f(t)) used to design SMO parameter ρ in (23), is a stan-
dard assumption in SMO research [18–22]. The values of
x0 and f0 can normally be determined by knowing the
physical properties of the system or by simulating its op-
eration. In the case that x0 and f0 cannot be determined,
a time-varying ρ(t) given by the following adaptive law

ρ̇(t) = α0∥eỹ∥, ρ(0) ≥ 0, α0 > 0 (33)

can also achieve sliding motion. The mechanism is this:
with the adaptive gain ρ(t), equation (28) can be rewrit-

ten as V̇2 ≤ −
(
ρ(t)− ∥Â21∥ · e1 − ∥D̂2∥ · ω

)
∥eỹ∥.

Then, with initial value ρ(0) ≥ 0, ρ(t) keeps increasing
until sliding motion eỹ = 0 is achieved, when ρ(t) is large

enough such that ρ(t) > ∥Â21∥ ·e1+∥D̂2∥ ·ω (no matter

how large the (unknown) expression ∥Â21∥·e1+∥D̂2∥·ω
is). Then, ρ(t) stops increasing and maintains its value.
The estimation performance of the SMO (19)-(22) un-
der the adaptive ρ(t) given by (33) will be illustrated in
the simulation.

Remark 6. In addition to the smoothing function veq ≈
ρ

eỹ
∥eỹ∥+δ above, another way to approximate the equiv-

alent signal veq is the low-pass filter method given by
Utkin in [24], where veq,i, the i-th component of veq, can
be obtained by passing the component vi(t) through a
first-order low-pass filter of time constant τ satisfying
τ v̇eq,i + veq,i = vi. Both the methods above have been
proven to be able to get the low-frequency components
of v(t) [18–22,24]. However, the low-pass filter method
may cause singularity, but the smooth function does not
cause any singularity, and is a trade-off between getting
ideal performance(eỹ = 0 exactly) and a smooth low-
frequency component of v(t) [25].

3.3 Existence conditions

Here, the necessary and sufficient conditions of (7) are
given by Lemma 2 and Lemma 3 which are in terms of
the original system matrices E,A,D,C, F .

Lemma 2.Matrices Ẽ, C̃, D̃ satisfy (7a) iff the following
equation holds

rank

[
E A D 0
0 E 0 D
0 C F 0
0 0 0 F

]
= n+ rank

[
E D
0 F

]
+ rank

[
D
F

]
. (34)

Proof. Let S6 =
[

EE+

I−EE+

]
, S7 = diag{S6, S6, I, I},

S8 =

[
I −E+A −E+D 0
0 I 0 0
0 0 I 0
0 0 0 I

]
, S9 = diag{I, I, [F+

F I −

F
+
F ]}, S10 =

[
I 0 −DF

+

0 I 0
0 0 I

]
, S11 =

[
F F

+

I−F F
+

]
, S12 =

diag{I, S11},S13 =

[
I 0 0

−F
+
C I 0

0 0 I

]
andS14 = diag{S11, I},

we have

rank

[
E A D 0
0 E 0 D
0 C F 0
0 0 0 F

]
= rank

(
S7

[
E A D 0
0 E 0 D
0 C F 0
0 0 0 F

]
S8

)

= rank


E 0 0 0
0 (I−EE+)A (I−EE+)D 0

0 E 0 EE+D
0 0 0 (I−EE+)D
0 C F 0
0 0 0 F


= rankE + rank

 E 0 EE+D
(I−EE+)A (I−EE+)D 0

C F 0
0 0 (I−EE+)D
0 0 F


= rankE + rank

[
E 0 D
C F 0
0 0 F

]
= rankE + rank

(
S10

[
E 0 D
C F 0
0 0 F

]
S9

)
= rankE + rank

[
Ẽ 0 0 D̃
C F 0 0
0 0 F 0

]
= rankE + rankF + rank

[
Ẽ 0 D̃
C F 0

]
= rankE + rankF + rank

(
S12

[
Ẽ 0 D̃
C F 0

]
S13

)
= rankE + rankF + rank

[
Ẽ 0 D̃
0 F 0

C̃ 0 0

]
= rankE + 2rankF + rank

[
Ẽ D̃

C̃ 0

]
.

(35)

On the other hand,

rank [E D
0 F ] = rank (S14 [E D

0 F ]) = rank

[
E EE+D
0 (I−EE+)D
0 F

]
= rankE + rank

[
(I−EE+)D

F

]
= rankE + rankF .

(36)
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Furthermore,

rank [DF ] = rank
(
[DF ] [F

+
F I − F

+
F ]
)
=

rank
[
DF

+
F D̃

F 0

]
= rankF + rankD̃.

(37)

Then, it follows from (35)-(37) that (7a) ⇐⇒ (34). 2

Lemma 3. Matrices Ẽ, Ã, C̃, D̃ satisfy (7b) iff for ma-
trices E,A,C,D, F the following equation holds

rank
[
sE−A −D

C F

]
= n+ rank [DF ] , ∀ s ∈ C+. (38)

Proof. Let S15 = diag{S6, I}, S16 = diag{I, [F+
F I −

F
+
F ]} and S17 =

[
I D F

+

0 I

]
, and for any s ∈ C+ we have

rank
[
sE−A −D

C F

]
= rank

(
S17S15

[
sE−A −D

C F

]
S16

)
= rank

[
sẼ−Ã 0 −D̃

C F 0

]
= rank

(
S12

[
sẼ−Ã 0 −D̃

C F 0

]
S13

)
= rank

[
sẼ−Ã 0 −D̃

0 F 0

C̃ 0 0

]
= rank

[
sẼ−Ã −D̃

C̃ 0

]
+ rankF

(39)

which together with equation (36) implies that (7b) ⇐⇒
(38). 2

Following the discussions on the existence of the SMO
(19)-(22) in Lemmas 2 and 3, it can be concluded that
for the NIO descriptor system (1), there exists a SMO in
the form of (19)-(22) that is able to estimate the state x
and the UI f iff the conditions (34) and (38) are satisfied.

Now, we summarize the SMO design procedure in Algo-
rithm 1.

Algorithm 1:
Step 1. Check if (34) and (38) are satisfied. If so, go to
Step 2; otherwise, the observer design fails.
Step 2.According to the transformations defined in (2)-

(6), compute matrices Ẽ, Ã, B̃, C̃, D̃, and then choose

matrices W, T̃ , H̃ according to [4].

Step 3. Compute matrices Ê, Â, B̂, D̂, ∆̂ and obtain
their decompositions according to (9).
Step 4. Based on Remark 2, considering (12) and solv-

ing the LMI P̃ Υ̃ + Υ̃T P̃ < 0 with the definition of Υ̃ in

(13) gives P̃ , J̃ . Then, compute P̂ , Ĵ and their decompo-

sitions P̂1, P̂2, Ĵ1, Ĵ2 given by (16), and finally compute

L̂ according to (17).
Step 5. Construct SMO (19)-(22) and get the state and

UI estimates as x̂ = W
[
x̂1

x̂2

]
and f̂ given by (32).

Remark 7. This paper has presented a new SMO
scheme to circumvent the IOC required in [9–15]. Ex-
isting works that overcame the IOC restriction [18–22]

considered only UIs in the state equation, and could
only develop sufficient conditions (and not necessary
conditions) for the stability condition (which is also
known as the minimum phase condition in SMO re-
search) to be satisfied, whereas this paper considers a
more general case of faults in the output, and has de-
veloped the necessary and sufficient conditions for the
stability condition. Moreover, the proposed reformula-
tion of the NIO descriptor system did not treat certain
states as UIs (as in [18–22]) and thus is a more feasible
approach to yield a successful SMO design.

Remark 8. In [26], for descriptor systems containing UI
f in both the state and output equations, the authors
proposed a high-order sliding mode observer (HOSMO)
technique which can also estimate simultaneously the
state and the UI. The main idea of [26] is to express
the estimate as a function of ẏ, ÿ, . . . , y(s̄), which are
the high-order derivatives of y (where s̄ is a positive
integer). However, if output y contains f , and if f (s̄)

does not exist, then y(s̄) does not exist either, and hence
the HOSMO technique [26] will fail to estimate x and
f . By comparison, the proposed SMO technique in this
paper does not need the assumption that f (s̄) exists, and
thus can estimate more general types of UIs such as the
square wave signal. This point will be further elaborated
in the simulation as a comparison.

4 Simulation results

In this section, a modified version of the chemical mixing
tank system [9,20] is employed for simulation to show
the effectiveness of the proposed methods and their su-
periority over the existing methods.

Table 1
Variables of the chemical mixing tank system

Variable Variable type Unit

c3 Connection mol/l

q3 Flow rate l/s

c5 Connection mol/l

q5 Flow rate l/s

q1 Flow rate l/s

q1,e Flow rate reference l/s

q4 Flow rate l/s

f1 Fault signal l/s

f2 Fault signal l/s

f3 Fault signal mol/l

From [20], for the chemical mixing tank system the ac-
tuator signal q1 is affected by a fault f1, and the leak-
age volume from the pipe connecting the two tanks is
f2. Besides, it is assumed that the sensor fault f3 occurs
in the measurement of the concentration c5. Thus, with
the variables described in Table 1, the dynamics of the
chemical mixing tank system can be written in the no-

tation of (1) with x = [ cT3 qT3 cT5 qT5 qT1 ]
T
, u = [ qT1,e qT4 ]

T
,
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y = [ qT3 cT5 qT1 ]
T
, f = [ fT

1 fT
2 fT

3 ]
T
and matrices

E =

[
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

]
, B =

[
0 0
0 0
0 0.02
0 1
2 0

]
, D =

[
0 0 0
0 −1 0
0 0 0
0 0 0
1 0 0

]
, F =

[
0 0 0
0 0 1
0 0 0

]
,

A =

[−0.3750 −0.0667 0 0 0.1
0 −1 0 0 1
0.3 0.0533 −0.5 −0.04 0
0 1 0 −1 0
0 0 0 0 −2

]
, C =

[
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

]
.

Obviously, here rank [EC ] = 4 < 5, and thus it is an NIO
system indicating that the traditional SMOmethods [9–
15] cannot be used. On the other hand, the works in [18–
22] also cannot be applied because they do not consider
the UIs in the output. However, it is shown next that
the proposed method in this paper can still estimate the
states and UIs. On the other hand, we will also show
the superiorities of the proposed SMO method over the
HOSMO scheme [26] in estimating more general types
of UIs f when f (s̄) does not exist. By following the steps
in Algorithm 1, the construction of the SMO (19)-(22)
will be given in the following.

Step 1. It is examined that the conditions (34) and (38)
are satisfied.

Step 2. After performing the specified operations pre-
sented in Section 3.1, we obtain

Ẽ =

[
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

]
, Ã =

[−0.3750 −0.0667 0 0 0.1
0 0 0 0 0
0.3 0.0533 −0.5 −0.04 0
0 0 0 0 0
0 0 0 0 −2

]
,

B̃ =

[
0 0
0 0
0 0.02
0 0
2 0

]
, D̃ =

[
0
0
0
0
1

]
, C̃ =

[
0 1 0 −1 0
0 1 0 0 0
0 0 0 0 1

]
. Choose

T̃ = I5, W =

[
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

]
and H̃ =

[
0 0 0
0 1 0
0 0 0
−1 1 0
0 0 0

]
.

Step 3. Compute matrices

Ê =

[
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

]
, Â =

[−0.375 0 −0.0667 0 0.1
0.3 −0.5 0.0533 −0.04 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −2

]
,

B̂ =

[
0 0
0 0.02
0 0
0 0
2 0

]
, D̂ =

[
0
0
0
0
1

]
and ∆̂ = 05×8.

Step 4. According to Remark 2, substituting (12) into

(11b) and solving it gives P̃ =

[
2.7232 0 0.163 0 0

0 2.5 0 0 0
0.1630 0 2.3979 0 0

0 0 0 2.5 0
0 0 0 0 2.5

]
,

J̃ =

[
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1

]
. Then, compute P̂1 = [ 2.7232 0.1630

0.1630 2.3979 ],

P̂2 = 02×3, Ĵ1 = 02×3 and Ĵ2 =
[
0 0 0
0 0 0
0 0 1

]
, and then

according to (17) compute L̂ = 02×3.
Step 5. Constructing SMO (19)-(22) gives the estima-

tions of the states and UIs according to Algorithm 1.

Since the control input u does not change the observ-
ability for linear systems, for the purpose of simulation,
we set u = 0. Moreover, in order to compare the perfor-
mance of the proposed SMO with the HOSMO in [26],
for f = [f1 f2 f3]

T , the case when f (s̄) exists and the
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Fig.1 Estimates of xi by HOSMO and SMO (Case I).
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Fig.2 Estimates of fi by HOSMO and SMO (Case I).

case when f (s̄) does not exist will be tested, respectively
(according to [26], here s̄ = 1).

Case I: When f (s̄) exists (s̄ = 1)
For the case when f (s̄) exists, suppose that f1 = −0.6t+
6 + 3 sin(t), f2 = 4 cos(t) and f3 = 0.6t − 5 + 3 sin(2t).

With the initial conditions x0 = [ 5 2 −5 5 5 ]
T
, ζ1 =

[−1 1 ]
T
and ζ2 = [−3 4 −5 ]

T
, the simulation results are

shown in Figs. 1-2, where the solid lines in red are the
actual states or UIs, the dotted lines in green are the es-
timated ones by HOSMO given in [26], and the dotted
lines in blue are the estimated ones by the proposed S-
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MO in the present paper. The results show that although
the SMO methods in [18–22] cannot work for this sys-
tem, the HOSMO and the proposed SMO scheme can
still estimate the states and the UIs successfully.

Case II: When f (s̄) does not exist (s̄ = 1)
For the case when f (s̄) does not exist, suppose that

f1 =

{
5 sin(2.7t) + 3.5, 4(N− 1)/3 ≤ t ≤ (4N− 2)/3

5 sin(2.7t)− 3.5, (4N− 2)/3 ≤ t < 4N/3

f2 =

{
3, 5(N− 1)/3 ≤ t ≤ (10N− 5)/6

−3, (10N− 5)/6 ≤ t < 5N/3,

N = 1, 2, . . . and f3 = 5.2sin(t). It is clear that f1 and f2
experience discontinuities and their first derivatives do
not exist at certain time instants. In this scenario, for
the SMO (19)-(22), we use the adaptive gain ρ(t) given
in (33) to replace the fixed gain ρ with the adaptive pa-
rameters being selected as ρ(0) = 0 and α0 = 2. For the
identical initial conditions with the case when f (s̄) ex-
ists, we exhibit the simulation results in Figs. 3-4, from
which we can see that under the adaptive gain the pro-
posed SMOmethod can still estimate both the state and
UI, but the HOSMO method by [26] fails to reconstruct
the UI f1 in this case. Besides, in order to analyse the
evolution of the adaptive gain, we also plot the curve of
ρ(t) in Fig. 5 which indicates that before t = 1s or so,
ρ(t) keeps increasing, and after the moment when slid-
ing motion eỹ = 0 is achieved, ρ(t) maintains the val-
ue, which also validates the correctness of the proposed
methods.
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Fig.3 Estimates of xi by HOSMO and SMO (Case II).
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Fig. 5 Evolution of the adaptive gain ρ(t).

5 Conclusions

In this paper, we have proposed a SMO scheme to esti-
mate states and UIs for NIO descriptor systems where
the UIs exist in both state and output equations. By
reformulating the original system and introducing new
UIs an equivalent descriptor system is obtained where
both the NIO constraint and UIs in the outputs have
been removed. Based on the equivalent descriptor sys-
tem, a SMO is developed to estimate the states and UIs.
Also, the necessary and sufficient conditions for the ex-
istence of the SMO are discussed in detail and given in
terms of the original system matrices. Future work could
consider the sliding mode functional observer design for
descriptor systems.
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