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ABSTRACT

This paper proposes a new general technique for maximal subgraph

enumeration which we call proximity search, whose aim is to design

efficient enumeration algorithms for problems that could not be

solved by existing frameworks. To support this claim and illustrate

the technique we include output-polynomial algorithms for several

problems for which output-polynomial algorithms were not known,

including the enumeration of Maximal Bipartite Subgraphs, Max-

imal 𝑘-Degenerate Subgraphs (for bounded 𝑘), Maximal Induced

Chordal Subgraphs, and Maximal Induced Trees. Using known tech-

niques, such as reverse search, the space of all maximal solutions

induces an implicit directed graph called “solution graph” or “su-

pergraph”, and solutions are enumerated by traversing it; however,

nodes in this graph can have exponential out-degree, thus requir-

ing exponential time to be spent on each solution. The novelty of

proximity search is a formalization that allows us to define a better

solution graph, and a technique, which we call canonical reconstruc-
tion, by which we can exploit the properties of given problems to

build such graphs. This results in solution graphs whose nodes have

significantly smaller (i.e., polynomial) out-degree with respect to

existing approaches, but that remain strongly connected, so that

all solutions can be enumerated in polynomial delay by a traversal.

A drawback of this approach is the space required to keep track of

visited solutions, which can be exponential: we further propose a

technique to induce a parent-child relationship among solutions

and achieve polynomial space when suitable conditions are met.
1
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1 INTRODUCTION

Given a universe of elements, such as the vertices or edges of a

graph, and a property on them, such as being a clique or a tree,

1
A preliminary version of this paper has been presented in [16], containing some of the

exponential-space algorithms. In this extended version, we factorize the fundamental

principles of algorithms in [16] to define a general guide for designing a proximity

search algorithm, which we call canonical reconstruction. We also introduce a general

technique to obtain proximity search algorithms that use polynomial space, as well

as proximity search algorithms for new problems, both with exponential-space and

polynomial-space requirements. A draft of this extended version is also available

at [15].

a listing problem asks to return all subsets of the universe which

satisfy the given property.

Listing structures, within graphs or other types of data, is a basic

problem in computer science, and it is at the core of data analysis.

While many problems can be solved by optimization approaches

for the best solution, e.g., by finding the shortest path, or the largest

clique, others require finding several solutions to the input prob-

lem: in community detection, for example, finding just one “best”

community only gives us local information regarding some part

of the data, so we may want to find several communities to make

sense of the input. Furthermore, many real-world scenarios may

not have a clear objective function for the best solution: We may

define an algorithm to optimize some desired property, but the op-

timal solution found may be lacking further properties that emerge

during listing or simply not be practical. We may want instead to

quickly list several solutions, suitable according to some metrics,

then analyze them a posteriori to find the desired one.

In these scenarios, listing only the solutions that are maximal
under inclusion is a common-sense requirement whenever it can be

applied,
2
as maximal solutions subsume the information contained

in all others, and can be exponentially fewer: For example, a graph

may have up to 2
𝑛
cliques, but only 3

𝑛/3
maximal ones [36]. For

brevity, we call maximal listing problem a listing problem where

only the inclusion-maximal solutions should be output.

From a theoretical point of view, listing provides many chal-

lenging problems, especially when maximality is required. When

dealing with listing algorithms, we are often interested in their

complexity with respect to both 𝑛, the input size, and N , the size

of the output. Algorithms whose complexity can be bounded by

a polynomial of these two factors are called output polynomial or
polynomial total time [27]. Interestingly, the hardness of listing

problems does not seem to be correlated with that of optimiza-

tion: there are several np-hard maximum optimization problems

whose corresponding maximal listing problem admits an output-

polynomial solution (see, e.g., [1, 46]); on the other hand, there are

problems for which one maximal (or maximum) solution can be

identified in polynomial time, but an output-polynomial algorithm

for listing maximal solutions would imply p=np [34].

A long-standing question in the area is to find a characterization

of which listing problems allow for output-polynomial solutions

2
In other problems, we may wantminimal solutions instead, although this is usually an
equivalent concept, as it corresponds to the complement of a solution being maximal.
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and which do not. Furthermore, within output-polynomial algo-

rithms stricter complexity classes exist, such as incremental polyno-
mial time, where the time to output the 𝑖-th solution is polynomial

in 𝑛 and 𝑖 , and polynomial delay, where the time elapsed for out-

putting the next solution is upper bounded by a polynomial in 𝑛.

The latter class is of particular interest in practical scenarios, as it

guarantees that solutions are output at a regular pace.

In this paper we add a few points to the latter class, by showing

that there exist polynomial delay algorithms for some subgraph

listing problems. More formally, we prove Theorem 1.1.

Theorem 1.1. The following problems allow polynomial delay
listing algorithms by proximity search:

problem delay
maximal induced bipartite sg. 𝑂 (𝑛 (𝑚 + 𝑛𝛼 (𝑛)))

maximal connected induced bipartite sg. 𝑂 (𝑚𝑛)
maximal bipartite edge-induced sg. 𝑂 (𝑚3)
maximal induced 𝑘-degenerate sg. 𝑂 (𝑚𝑛𝑘+2)

maximal edge-induced 𝑘-degenerate sg. 𝑂 (𝑚3𝑛𝑘−1)
maximal induced chordal sg. 𝑂 (𝑚2𝑛)

maximal connected induced chordal sg. 𝑂 (𝑚2𝑛)
maximal edge-induced chordal sg. 𝑂 (𝑚4𝑛)
maximal induced proper interval sg. 𝑂 (𝑚2𝑛3)

maximal connected induced proper interval sg. 𝑂 (𝑚𝑛3)
maximal connected obstacle-free convex hulls 𝑂 (𝑛4)

maximal induced trees 𝑂 (𝑚2)
maximal connected induced directed acyclic sg. 𝑂 (𝑚𝑛2)

maximal connected edge-induced directed acyclic sg. 𝑂 (𝑚3)
Where “sg.” stands for subgraphs, 𝑛 and𝑚 are the number of vertices and

edges, 𝛼 ( ·) is the functional inverse of the Ackermann function [44].
All the algorithms use𝑂 (N𝑛) space, where N is the number of solutions.

To the best of our knowledge, no output-polynomial result was

previously known for these problems. For completeness, we con-

sider both induced subgraphs (i.e., sets of vertices) and edge-induced
subgraphs (i.e., sets of edges), as well as the connected case where

solutions are required to be connected, as the structure of such

variants can differ significantly.

Furthermore, we abstract a general technique that can be used

to obtain similar results on other problems. We do so by defining

a graph whose vertices are the maximal solutions to the listing

problem, and with directed edges between pairs of solutions, which

we call solution graph. The listing problem is solved by traversing

the solution graph, and proving that all solutions are found this way.

The concept of solution graph is common to existing approaches,

and general techniques already exist for building them, e.g., [11].

However, the solution graph built with known approaches such

as [11] may have too many edges, resulting in a traversal with

exponential delay.

The key concept given in this paper is a technique to build a

solution graph with fewer edges, while proving that all solutions are

still found by its traversal. An interesting property of this approach

is that the resulting algorithms are remarkably simple to implement,

while the complexity lies in proving their correctness. We call this

technique proximity search since at its core lies a problem-specific

notion of proximity. This notion acts as a sort of compass on the

solution graph built by our algorithm, as given any two solutions

𝑆 and 𝑆∗, we will show that we always traverse an edge from 𝑆

to another solution 𝑆 ′ that has higher proximity to 𝑆∗; as 𝑆∗ has
the highest proximity to itself, this implies that a traversal of the

solution graph from any solution finds all others. While others,

such as [11, 42], already used the principle of reachability in the

solution graph, we aim to define a looser set of necessary condition

in order to guarantee this reachability, allowingmore freedom in the

design of algorithms, while at the same time formalize a technique

called canonical reconstruction that is effective in decomposing the

structure of several problems to fit these rules. The combination of

these two parts creates algorithms that overcome the exponential

burden imposed by the so-called input-restricted problem, a reduced

instance of the original problem that dominates the cost per solution

of such approaches whose cost may be inherently exponential.

While the space required for a traversal of the graph is inherently

proportional to the number of solutions, i.e., can be exponential in𝑛,

some output-polynomial techniques such as reverse search are able

to work in polynomial space by inducing a tree-like structure on

the solution graph, provided that the problem at hand is hereditary

(i.e. its property holds for the induced subgraphs) and the input-

restricted problem is solvable efficiently.

By adding suitable constraints to the problems considered, we

show a technique that combines proximity search with a recent

generalization of reverse search to non-hereditary problems [13],

obtaining algorithms with both polynomial-delay and polynomial

space for some instances of proximity search. In particular, we

prove that:

Theorem 1.2. The following problems allow polynomial delay
listing and polynomial space algorithms by proximity search, with
the following bounds:

problem delay space
maximal induced bipartite sg. 𝑂 (𝑛2 (𝑚 + 𝑛𝛼 (𝑛))) 𝑂 (𝑚)

maximal connected induced bipartite sg. 𝑂 (𝑚𝑛2) 𝑂 (𝑚)
maximal obstacle-free convex hulls 𝑂 (𝑛4) 𝑂 (𝑛)

maximal induced trees 𝑂 (𝑚2𝑛2) 𝑂 (𝑚)
maximal induced forests 𝑂 (𝑚2𝑛2) 𝑂 (𝑚)

Where notation is as in Theorem 1.1.

1.1 Related Work

The listing problems considered in this paper model solutions as

sets of elements (e.g., sets of vertices or edges of a graph), and

consist in listing sets of elements with some required property,

e.g., inducing a bipartite subgraph, or a tree. We observe that the

output is a family of sets, we can associate properties with the

corresponding set systems: for example, a property is hereditary

when each subset of a solution is a solution, which corresponds to

the well-known independence systems [34].

In this context, a simple yet powerful technique is recursively

partitioning the search space into all solutions containing a certain

element, and all that do not. This technique, usually called binary

partition or simply backtracking, proves efficient when listing all

solutions [40], and can be used to design algorithms that are fast in

2



practice,
3
or that can bound the number of solutions in the worst-

case [21]. On the other hand, this strategy rarely gives output-

polynomial algorithms when dealing with maximal solutions, as

we may spend time exploring a solution subspace that contains

many solutions but no maximal one.

To obtain output-polynomial algorithms for maximal solutions,

many algorithms rely on the following idea: given a maximal solu-

tion 𝑆 , and some element 𝑥 ∉ 𝑆 , the hardness of listing solutions

maximal within 𝑆 ∪ {𝑥} is linked to the hardness of listing them in

a general instance. One of the earliest mentions of the idea can be

found in the seminal paper by Lawler et al. [34], that generalizes

ideas from Paull et al. [38] and Tsukiyama et al. [46], and has been

formally defined as input-restricted problem by Cohen et al. [11].

The intuition is that the solutions obtained this way, using a max-

imal solution 𝑆 and an element not in 𝑆 , can be used to generate new

maximal solutions of the original problem. We can thus traverse

an implicit directed graph, which we will call solution graph, where
the vertices are the maximal solutions and the out-neighbors are

obtained by means of the input-restricted problem.

In particular, [34] showed how solving this problem could yield

an output-polynomial and polynomial space listing algorithm for

properties corresponding to independence systems, assuming the

input-restricted problem has a bounded number of solutions. [11]

showed that the strategy could be extended to the more challeng-

ing connected-hereditary graph properties (i.e., where connected
subsets of solutions are solutions) using exponential space, and

recently, [13] showed that the same result can be obtained in poly-

nomial space for commutable set systems (which include connected-

hereditary properties).

A clear limitation of this approach is that, in order to obtain

polynomial-delay algorithms, the input-restricted problem needs

to be solved in polynomial time. This is possible for some problems

(e.g., cliques and independent sets), but impossible for others, simply

because their input-restricted problems may have exponentially

many solutions. Figure 1 shows an example for maximal bipartite

subgraphs.

The literature contains many more results concerning the enu-

meration of maximal/minimal solutions, e.g., [1, 8, 23, 24, 31, 42],

and in particular regarding challenging problems such as the well-

known minimal hypergraph transversals/dominating sets prob-

lem [19, 25, 28]. However, to the best of our knowledge, the only

two effective general techniques for listing maximal solutions in an

output-sensitive fashion are the extension problem (binary parti-

tion, flashlight search), and the input-restricted problem: proximity

search can be a valuable tool when the previous two fail. We mo-

tivate this by showing the first polynomial delay algorithms for

several maximal listing problems whose associated input-restricted

problem is not solvable in polynomial time.

As mentioned above, a preliminary version of this paper contain-

ing some of the exponential-space algorithms has appeared in [16].

Since its publication, some preprints [6, 7, 33] have appeared that

apply the technique to obtain new output-polynomial algorithms. In

particular, [7] solves the enumeration of Maximal Induced Interval

Subgraphs by proposing some variations to proximity search [16].

3
E.g., implementations of the Bron-Kerbosh [45] algorithm tend to be faster than those

of output-polynomial algorithms [12] for listing maximal cliques.

1.2 Overview

The main contribution of the paper is presenting proximity search,
a general technique that can be used to solve several enumeration

problems in polynomial delay, and canonical reconstruction, a way
to design a proximity search algorithm by exploiting orderings of

solutions of the problem at hand. exponentially many solutions.

By using this technique we show polynomial delay algorithms

for several maximal listing problems such as maximal bipartite

subgraphs and the others mentioned in Theorem 1.1. Other than

providing efficient algorithms, we remark that the technique may

help gain further insight on which classes of problems allow output-

polynomial listing algorithms and which do not.

The paper is organized as follows: First, we introduce some basic

concepts and notation in Section 2. We then explain the proximity

search technique, and formally define a class of problems, called

proximity searchable, which allow for a polynomial delay algorithm

by its application.

Generality comes sometimes at the expense of efficiency but

allows for a more intuitive understanding of the concepts at hand.

For this reason, we divide the explanation in two parts: the first one,

in Section 3, formalizes the constraints required for a proximity

search algorithm. The second, Section 4, introduces a technique

which we call canonical reconstruction for implementing proximity

search.While canonical reconstruction is not the only way to obtain

a proximity search algorithm, we observed that is often a powerful

and elegant way to model the problem at hand.

Following, Sections 5-10, shows how to prove that the problems

in Theorem 1.1 are proximity searchable and thus allow polynomial-

delay algorithms.

As a drawback of the above algorithms is an exponential space

requirement, we then propose a technique to address this issue,

when suitable conditions are met: define a parent-child relation

between solutions, in the style of reverse-search, as detailed in

Section 11, and give the algorithms in Section 12. The resulting

bounds are shown in Theorem 1.2. While this technique does not

apply to all problems in Theorem 1.1, when it does it allows us

to obtain polynomial-delay and polynomial-space algorithms for

several problems whose input-restricted problem cannot be solved

in polynomial time, including non-hereditary ones.

2 PRELIMINARIES

Most of the enumeration problems addressed in this paper consider

a simple undirected graph 𝐺 , whose vertex set is denoted as 𝑉 (𝐺)
and edge set as 𝐸 (𝐺), or simply 𝐺 = (𝑉 , 𝐸) when it is clear from

the context. The neighborhood of a vertex 𝑣 is denoted as 𝑁 (𝑣). For
brevity, we refer to |𝑉 (𝐺) | as the number 𝑛 of vertices, to |𝐸 (𝐺) | as
the number𝑚 of edges, and to the maximum degree of a vertex in

𝐺 as Δ = max𝑣∈𝑉 |𝑁 (𝑣) |. Furthermore, we assume the vertices to

be labeled arbitrarily in increasing order 𝑣1, . . . , 𝑣𝑛 , and say that 𝑣𝑖
is smaller than 𝑣 𝑗 if 𝑖 < 𝑗 . We say that a neighbor of 𝑣𝑖 is a forward
neighbor if it comes later than 𝑣𝑖 in the order, and a backward
neighbor otherwise.

For a set of vertices 𝐴 ⊆ 𝑉 (𝐺), 𝐸 [𝐴] denotes the edges of 𝐺

whose endpoints are both in 𝐴, and 𝐺 [𝐴] the graph (𝐴, 𝐸 [𝐴]), i.e.,
the subgraph induced in𝐺 by𝐴. Similarly, for a set 𝐵 of edges,𝑉 [𝐵]
denotes the vertices incident to an edge in 𝐵 and𝐺 [𝐵] = (𝑉 [𝐵], 𝐵).

3
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Figure 1: Instances of input-restricted problem for maximal bipartite subgraphs. On the left: the black dots define a maximal

bipartite induced subgraph; adding the vertex 𝑣 creates a graphwith exponentiallymanymaximal induced bipartite subgraphs,

as we can obtain one by removing a vertex from each connected pair in the bottom in any combination. On the right: the black

edges define a maximal bipartite subgraph, and the addition of edge 𝑒 creates a graph with exponentially manymaximal edge-

induced bipartite subgraphs: every vertex on the bottom is incident to two edges; removing exactly one for each vertex yields

a maximal edge-induced bipartite subgraph.

As common in the literature, we call induced subgraphs those of
the former kind, defined by a set of vertices, and edge-induced
subgraphs (or simply subgraphs) those of the latter, defined by a

set of edges. When dealing with subgraphs defined by a set of

vertices (resp. edges) 𝐴, we will sometimes use 𝐴 to refer to both

the vertex set (resp. edge set) and the subgraph 𝐺 [𝐴] it induces,
when this causes no ambiguity. We will also use cc𝑣 (𝐴) to refer to

the connected component of 𝐺 [𝐴] which includes the vertex 𝑣 . For

further notation, we refer to the standard terminology in [18].

For a set of vertices 𝐴 ⊆ 𝑉 (𝐺) which corresponds to a solution

of the problem at hand, we say that 𝐴 is maximal if there is no

𝐴′ ⊆ 𝑉 (𝐺) such that 𝐴′ ⊃ 𝐴 and 𝐴′ is also a solution. While not

strictly necessary for the proximity search technique, in the fol-

lowing we will often rely on a simple “maximalization” function,

named comp(𝐴): this function takes a (not necessarily maximal)

solution 𝐴 and “completes” it, returning some maximal solution

𝐴′ ⊇ 𝐴. We will refer to the computational cost of this function as

C𝑡 . Note that it is always possible to devise a polynomial-time com-

putable comp(·) function for hereditary and connected-hereditary

properties where solutions can be recognized in polynomial time,

by simply trying to add vertices until no longer possible [11].

For simplicity, we disregard the presence of isolated vertices

in the complexity analysis of the algorithms provided: these are

trivially handled for the problems considered in this paper (either

they can all be added “in bulk” to every solution, as for bipartite

subgraphs, or each constitutes a maximal solution by itself, as for

connected bipartite subgraphs), can be removed with an 𝑂 (𝑛) time

preprocessing; this means we are able to perform operations like a

visit of the graph in 𝑂 (𝑚) time rather than 𝑂 (𝑚 + 𝑛) time.

3 PROXIMITY SEARCH OUTLINE

Proximity search is based on traversing an implicit solution graph,

where the vertices are all the solutions to be listed and each di-

rected arc goes from a solution to another using a neighboring

function. Several solution graphs are possible, depending on how

the neighboring function is defined. Apart from the fact that the

resulting solution graphs are not necessarily strongly connected

and some care should be taken to list all the solutions, the main

hurdle is that the degree of the solution graphs can be exponential

(as the number of solutions can be exponentially large in the input

size), thus preventing to achieve polynomial delay when running

a simple traversal. Proximity search circumvents these issues by

designing a suitable neighboring function, denoted neighbors(·),

that guarantees that the resulting solution graph it implicitly de-

fines is strongly connected and of polynomial degree. Both these

properties cannot be guaranteed with the current state of the art

for a number of problems discussed later.

We devote this section to formalize the general structure of prox-

imity search, and the class of problems to which the technique can

be applied. Also, we introduce the notion of proximity, symbolized

by ∩̃, to act as a sort of oracle for navigating the solution graph.

For reference inwhat we discuss next, we give the pseudo-code of

the generic traversal of a solution graph based on the neighbors(·)
function, as shown in Algorithm 1. As noted earlier, the algorithms

obtained by specializing this generic traversal are remarkably sim-

ple: In a depth-first search traversal where the set S keeps track

of just the last visited solution, we only need to implement the

neighbors(·) function. On the other hand, the complexity is mostly

hidden behind proving their completeness: Notably, the very no-

tion of proximity ∩̃ is only used in the proofs, and never actually

appears in Algorithm 1.

Algorithm 1: Traversal of the solution graph by proximity

search.

input :Graph 𝐺 = (𝑉 , 𝐸) and listing problem P
output :All (maximal) solutions of P in 𝐺

global :Set S of solutions found, initially empty

1 𝑆 ← an arbitrary solution of P /* (e.g. comp(∅)) */

2 Call enum(𝑆)
3 Function enum(𝑆)
4 Add 𝑆 to S

/* Output 𝑆 if recursion depth is even */

5 foreach 𝑆 ′ ∈ neighbors(𝑆) do
6 if 𝑆 ′ ∉ S then enum(𝑆 ′)

/* Output 𝑆 if recursion depth is odd */

In order to start the algorithm, we need one arbitrary maximal

solution 𝑆 . We remark that identifying one maximal (not maxi-

mum) solution is typically trivial, and can be achieved for example

by running comp(∅) when the comp(·) function is computable in

polynomial time.

We formally define the class of problems which allow for a poly-

nomial delay algorithm using this structure as proximity searchable.

4



Definition 3.1 (Proximity searchable). Let P be a listing problem

over a universe U with set of solutions S ⊆ 2
U
, where each

solution is a subset of the universe. P is proximity searchable if there
exists a proximity function ∩̃ : S × S → 2

U
and a neighboring

function neighbors(·) : S → 2
S
, such that the following holds:

(1) One solution of P can be identified in time polynomial in

|U|.
(2) neighbors(·) is computable in time polynomial in |U|.
(3) Given any two distinct solutions 𝑆, 𝑆∗ ∈ S, there exists

𝑆 ′ ∈ neighbors(𝑆) such that |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |.
The above conditions imply the following one, which is reported

for the sake of clarity.

(4) For any fixed 𝑆∗, |𝑆∩̃𝑆∗ | is maximized for (and only for)

𝑆 = 𝑆∗.

If a problem is proximity searchable, then it is straightforward

to see that we obtain a polynomial delay algorithm for it by using

the corresponding neighbors(·) function in Algorithm 1. Let us

formally prove it.

Theorem 3.2. All proximity searchable listing problems have a
polynomial delay listing algorithm.

Proof. We first show that if a neighbors(·) function satisfies

Definition 3.1, the implicit solution graph it induces is strongly

connected. Given any two distinct solutions 𝑆, 𝑆∗ ∈ S, we know
by Definition 3.1.(3) that there exists 𝑆 ′ ∈ neighbors(𝑆) such that

|𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |. By induction on 𝑆 and 𝑆 ′, it follows that we will
eventually reach a solution 𝑆 that globally maximizes | · ∩̃𝑆∗ |, which
by Definition 3.1.(4) is precisely 𝑆∗.

Based on the above properties, we next show that Algorithm 1

outputs (all and only) the solutions of any proximity searchable

problem with no duplication. Firstly, Algorithm 1 returns only

maximal solutions, as it only outputs the initial maximal solution

found on line 1, found polynomial time by Definition 3.1.(1), and the

output of calls to neighbors(𝑆) which contain maximal solutions.

We say that a solution is visited when enum(𝑆) is called. In Algo-

rithm 1 all solutions added to S are visited at most once, thanks to

the membership test in the set S; this guarantees that the same so-

lution is never output twice. As the graph defined by neighbors(𝑆)
is strongly connected, the traversal done by Algorithm 1 starting

from the solution found on line 1 must find all solutions.

To complete the proof, we show that Algorithm 1 runs in poly-

nomial delay.

Firstly, neighbors(𝑆) requires polynomial time byDefinition 3.1.(2)

and thus can only return a polynomial number of solutions; this

means the out-degree of every node in the implicit solution graph

is polynomial and we can iterate over it in polynomial time.

As a new recursive call is performed only when a new solution

is found, the amortized cost per solution is bound by the cost of a

recursive call, i.e., the cost of lines 4–6. As the cost of neighbors(·)
is polynomial, and S can be easily maintained in polynomial time

(in Appendix A we show this latter cost to be negligible for all

algorithms presented here), it follows that the amortized cost per

solution is polynomial. In order to get polynomial delay, we can

employ the alternative output [47] method, that can be applied to

any recursive algorithm that outputs a solution in each recursive

call: by performing output in pre-order when the recursion depth

is even, and post-order when it is odd, the delay will be bounded by

that of a constant number of recursive calls, i.e., polynomial. □

The following observations are in order:

• ∩̃ is not actually used in Algorithm 1, and does not need to

be computed.

• Proximity search can be applied to all listing domains where

solutions are modeled by set systems, not just graphs.

• Proximity search is mainly intended for maximal listing prob-

lems, however, it is not strictly limited to it.

• Maximal listing problems in which the input-restricted prob-

lem is computable in polynomial time (as well as the comp(·)
function) are proximity searchable.

4

• The polynomiality constraint on neighbors(·) can be re-

laxed: it can be trivially seen how computing neighbors(·)
in Incremental Polynomial Time (resp. Polynomial Total

Time) yields and Incremental Polynomial Time (resp. Poly-

nomial Total Time) algorithm.

• The cost per solution and delay of the algorithm is the com-

plexity of the neighbors(·) function (we show in Appen-

dix A how maintaining S is negligible).

In the rest of the paper, we show how to suitably model several

problems to obtain new polynomial-delay algorithms for problems

that, to the best of our knowledge, could not be previously solved in

polynomial delay. We show these algorithms by providing suitable

∩̃ and neighbors(·) functions, proving that they satisfy Defini-

tion 3.1, which automatically give us a polynomial delay listing

algorithm by Algorithm 1.

We will use a common notation: 𝑆 is an arbitrary solution, and

𝑆∗ the “target” solution.

4 PROXIMITY SEARCH BY CANONICAL

RECONSTRUCTION

We make concrete use of the abstract notion of proximity search

and introduce a technique, which we call canonical reconstruction.
While it is kept separate from the previous section for cohesiveness,

we find this technique to often be the right way to look at maximal

subgraph listing problems. Since we deal with graphs, the universe

U is the vertex set, unless explicitly specified.

To accompany the explanation, we detail its implementation in

the case of Maximal Connected Induced Bipartite Subgraphs in

Section 5.

The technique is based on the definitions of canonical order
and canonical extender for solutions, which depend entirely on the

problem at hand, and it is intuitively a way to harness its structure.

Example. For a Maximal Connected Induced Bipartite Subgraph 𝑆 ,
we will use as canonical order a BFS-order of𝐺 [𝑆] starting from its ver-
tex of smallest id, where ties are broken by vertex id: For the subgraph
in Figure 2 (b) this order is
2, 3, 5, 8, 11, 7, 10, and for the one in (c) it is 2, 3, 8, 12, 11.

4
In essence, we obtain as a special case the same solution graph as known algo-

rithms based on the input-restricted problem [11, 34, 46]: For a solution 𝑆 we compute

neighbors(𝑆) by sequentially taking all elements 𝑣 ∈ U \ 𝑆 , solving the input-

restricted problem for 𝑆 ∪ {𝑣 }, and applying comp( ·) on the results.
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Figure 2: a: a graph. b,c: two maximal connected induced bipartite subgraphs of (a). d,e: two maximal induced bipartite sub-

graphs of (a). f: a maximal edge-induced bipartite subgraph of (a).

Canonical order and proximity. Simply assume that each solu-

tion 𝑆 is given an ordering 𝑠1, . . . , 𝑠 |𝑆 | of its elements which will

satisfy some problem-specific conditions. We require that any pre-
fix 𝑠1, . . . , 𝑠𝑖 of this order corresponds to a (non-maximal) solution

{𝑠1, . . . , 𝑠𝑖 }. In the rest of the paper, we will refer as prefix of the

order to both the sequence 𝑠1, . . . , 𝑠𝑖 and the corresponding set of

elements {𝑠1, . . . , 𝑠𝑖 }. Note that the ordering is not required to be

efficiently computable, as the proximity search algorithm never

actually computes it: it is only used in the correctness proof of the

neighboring function. Moreover, the ordering is adaptive to each

solution, so the same elements can be ranked differently in distinct

solutions.

Given the order, we define the proximity function ∩̃ as follows.

Definition 4.1 (proximity). Given two solutions 𝑆 and 𝑆∗, let
𝑠∗
1
, . . . 𝑠∗|𝑆∗ | be the canonical order of 𝑆∗: the proximity 𝑆∩̃𝑆∗ be-

tween 𝑆 and 𝑆∗ is the longest prefix 𝑠∗
1
, . . . , 𝑠∗

𝑖
of the canonical order

of 𝑆∗ whose elements are all contained in 𝑆 .

It should also be noted that the operation is not symmetric, i.e.,

we may have 𝑆∩̃𝑆∗ ≠ 𝑆∗∩̃𝑆 .

Example. Let 𝑆 be the subgraph shown in Figure 2 (b) and 𝑆∗ the
one shown in (c). Considering the canonical orders mentioned above,
we can see that 𝑆∩̃𝑆∗ = {2, 3, 8}, while 𝑆∗∩̃𝑆 = {2, 3}.

Canonical extender. The goal of a proximity search algorithm is to

exploit Definition 3.1.(3): given 𝑆 , for any 𝑆∗, find some 𝑆 ′ such that

|𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |. Using Definition 4.1, 𝑆∩̃𝑆∗ is a prefix 𝑠∗
1
, . . . , 𝑠∗

𝑖
of the canonical order of 𝑆∗, so we want to find any solution 𝑆 ′ that
contains a longer prefix, i.e., 𝑠∗

1
, . . . , 𝑠∗

𝑖+1 (possibly ordered differently
and interspersed in the canonical order of 𝑆 ′). Since we must at

least add the vertex 𝑠∗
𝑖+1, we call 𝑠

∗
𝑖+1 the canonical extender of 𝑆, 𝑆

∗
.

Armed with this notion, we want to proceed conceptually as follows

for a given solution 𝑆 .

(1) Guess which node 𝑣 ∉ 𝑆 is the canonical extender 𝑠∗
𝑖+1 (try

all possibilities, 𝑛 at most).

(2) Guess a removable set 𝑋 ⊆ 𝑆 from 𝑆 ∪ {𝑣}, i.e., such that

𝑆 \ 𝑋 ∪ {𝑣} is a solution and 𝑋 ∩ {𝑠∗
1
, . . . , 𝑠∗

𝑖
} = ∅.

(3) Obtain 𝑆 ′ as the outcome of comp(𝑆 \ 𝑋 ∪ {𝑣}).

In essence, we want to add 𝑠∗
𝑖+1 to 𝑆 , then turn the result back

into a solution by removing some elements, but without affecting

the proximity 𝑠∗
1
, . . . , 𝑠∗

𝑖
.

Recalling that prefixes of a canonical order are required to be

(non-maximal) solutions, indeed 𝑠∗
1
, . . . , 𝑠∗

𝑖+1 is a solution; hence,

a removable set 𝑋 always exists (e.g., 𝑋 = 𝑆 \ {𝑠∗
1
, . . . , 𝑠∗

𝑖
}). The

key point is that we want to satisfy the proximity requirement for

all 𝑆∗ (that can be exponentially many) using only a polynomial
number of removable sets 𝑋 . While there is no general rule for this,

and indeed, solving this for some problems would imply p=np, we

will observe in this paper how it is possible to do so in some cases

where a canonical order can efficiently decompose the underlying

structure of the solution.

Canonical reconstruction. Now we have all the ingredients to

formalize below the required structure for adopting our strategy.

Definition 4.2. (Proximity search by canonical reconstruction)

Given a maximal listing problem P, in which eachmaximal solution

𝑆 is associated with a canonical ordering 𝑠1, . . . , 𝑠 |𝑆 | , we say that P
admits a canonical reconstruction if the following holds.

(1) Any prefix 𝑠1, . . . , 𝑠𝑖 of the canonical order of any maximal

solution 𝑆 is a (non-maximal) solution of P.
(2) Given amaximal solution 𝑆 and any 𝑣 ∉ 𝑆 , there is setX ⊆ 2

𝑆

of removables, such that

• X = {𝑋1, 𝑋2, . . .} can be computed in polynomial time.

• 𝑆 \ 𝑋𝑖 ∪ {𝑣} is a solution of P for any 𝑋𝑖 ∈ X.
• For any 𝑆∗ such that 𝑣 is the canonical extender of 𝑆, 𝑆∗,
there is at least one 𝑋𝑖 ∈ X such that (𝑆∩̃𝑆∗) ∩ 𝑋𝑖 = ∅. 5

(3) There is a polynomial-time computable function comp(𝐴)
which takes a solution𝐴 of P and returns amaximal solution

𝐴′ ⊇ 𝐴 of P.
We further define the canonical reconstruction function, as

neighbors(𝑆, 𝑣) =
⋃

𝑋𝑖 ∈X
comp((𝑆 \ 𝑋𝑖 ) ∪ {𝑣})

5
Indeed, (𝑆∩̃𝑆∗) ∩ 𝑋𝑖 = ∅, i.e., 𝑋𝑖 does not intersect the proximity, implies that

𝑆 \𝑋𝑖 ∪ {𝑣 } contains (𝑆∩̃𝑆∗) ∪ {𝑣 }, which extends the proximity with 𝑣.
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and this corresponds to the solutions 𝑆 ′ ∈ neighbors(𝑆) for which
𝑣 is the canonical extender of 𝑆, 𝑆 ′. Hence, neighbors(𝑆) is obtained
as

⋃
𝑣∈𝑉 (𝐺) neighbors(𝑆, 𝑣).6

We observe how the removables and the neighboring function

can be derived from one another, so the algorithm can be defined

by providing either one: one can focus on defining removables from

𝑆∪{𝑣} that do not intersect the proximity, or equivalently solutions

contained in 𝑆 ∪ {𝑣} that fully contain the proximity.

We also recall that a polynomial-time computable function comp(·)
trivially exists for all hereditary and connected-hereditary proper-

ties that can be recognized in polynomial time (these include all

the example problems shown in this paper).

Finally, we show how canonical reconstruction immediately

implies the maximal listing problem at hand is proximity searchable,

using the neighbors(·) function defined above:

Theorem 4.3. All maximal listing problems that allow a canonical
reconstruction are proximity searchable.

Proof. Let us show that a listing problem P that satisfies Defini-

tion 4.2 satisfies the four conditions of Definition 3.1. Condition (1)

is trivially satisfied, say, using comp(∅). As for condition (2), recall

that

neighbors(𝑆) =
⋃

𝑣∈𝑉 (𝐺)

⋃
𝑋𝑖 ∈X

(comp(𝑆 \ 𝑋𝑖 ∪ {𝑣})).

Considering that both |𝑉 (𝐺) | and |X| are polynomial, and comp(·)
takes polynomial time, it follows that computing neighbors(𝑆)
takes polynomial time.

For condition (3), consider the canonical extender 𝑣 for 𝑆, 𝑆∗: By
Definition 4.2 there is 𝑋𝑖 ∈ X such that 𝑋𝑖 ∩ (𝑆∩̃𝑆∗) = ∅; it holds
that 𝑆 ′ = comp(𝑆 \ 𝑋𝑖 ∪ {𝑣}) ∈ neighbors(𝑆, 𝑣) ⊆ neighbors(𝑆),
and (𝑆∩̃𝑆∗) ∪ {𝑣} ⊆ 𝑆 ′, thus |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ | because of 𝑣 .

Finally, condition (4) is satisfied by looking at the definition of

proximity in Definition 4.1: fixed 𝑆∗, the proximity 𝑆∩̃𝑆∗ is maxi-

mized if 𝑆 ⊇ 𝑆∗, as we have 𝑆∩̃𝑆∗ = 𝑆∗ = 𝑆 ; however, as this is a
maximal listing problem, all solutions are inclusion-wise maximal,

meaning that 𝑆 ⊇ 𝑆∗ is only true for 𝑆 = 𝑆∗. □

As a final remark, we note a somewhat surprising feature of

this technique: while in general connected-hereditary properties

(e.g., Maximal Connected Induced Bipartite Subgraphs) are more

challenging to deal with than hereditary ones (e.g., Maximal In-

duced Bipartite Subgraphs), in the case of proximity search there

is typically no difference, and in some instances, we even use the

connected case as a starting point for the non-connected one (see,

e.g., Section 5.2).

5 MAXIMAL BIPARTITE SUBGRAPHS

We now illustrate how to apply proximity search to maximal bipar-

tite subgraph enumeration, giving the full details for the example

in the previous section.

A graph 𝐺 is bipartite if its vertices can be partitioned into two

sets 𝑉0,𝑉1, such that 𝑉0 ∩𝑉1 = ∅, 𝑉0 ∪𝑉1 = 𝑉 (𝐺), and both 𝐺 [𝑉0]
and 𝐺 [𝑉1] are edge-less graphs. Equivalently, 𝐺 is bipartite if it

has no cycle of odd length. Maximal bipartite subgraphs have also

6
For completeness, we define neighbors(𝑆, 𝑣) = {𝑆 } for 𝑣 ∈ 𝑆 , as 𝑆 ∪ {𝑣 } = 𝑆 is

already a solution of P.

been studied as minimal odd cycle transversals [32], as one is the
complement of the other.

The problem of listing all bipartite (and induced bipartite) sub-

graphs has been efficiently solved in [48]. However, to the best of

our knowledge, neither the techniques in [48] nor other known ones

extend to efficiently listing maximal bipartite subgraphs, which
poses a challenge. Consider the instance of input-restricted problem

shown in Figure 1 (left). We can exploit the fact that a subgraph

of a bipartite graph is itself bipartite, meaning that the property

is hereditary. Hence, we could take the current solution 𝑆 (which

are the endpoints of the bold edges) and a vertex 𝑣 ∉ 𝑆 , to then

try to list all the maximal solutions contained in the induced sub-

graph 𝐺 [𝑆 ∪ {𝑣}]; however, 𝐺 [𝑆 ∪ {𝑣}] has exponentially many

solutions, meaning we cannot solve the input-restricted problem in

polynomial time and thus we cannot get polynomial delay with the

techniques from [11, 13, 34]. The best we could hope for is solving

the input-restricted problem in polynomial delay or incremental

polynomial time, which would yield an incremental polynomial

time algorithm for the general problem [11]. Figure 1 (right) shows

an analogous situation for edge-induced subgraphs.

We thus turn to proximity search. First, let us introduce some

preliminary notions: We denote an induced bipartite subgraph of

𝐺 as a pair of vertex sets ⟨𝐵0, 𝐵1⟩, with 𝐵0 ∩ 𝐵1 = ∅ and 𝐵0 ∪
𝐵1 ⊆ 𝑉 (𝐺), such that 𝐺 [𝐵0] and 𝐺 [𝐵1] are edge-less graphs. By
convention, 𝐵0 is the side of the bipartition containing the vertex

of smallest label among those in the subgraph. In case 𝐺 [𝐵0 ∪ 𝐵1]
has multiple connected components, this applies to all components.

This way, any bipartite subgraph (connected or not) always has

a unique representation ⟨𝐵0, 𝐵1⟩. We will sometimes use simply

𝐵 to refer to the subgraph 𝐺 [𝐵0 ∪ 𝐵1] induced by ⟨𝐵0, 𝐵1⟩. When

performing comp(𝐵) (defined at the end of Section 2) and 𝐵 is not

connected, this may move some vertices from 𝐵0 to 𝐵1 and vice

versa due to different components becoming connected; even when

𝐵 is connected, if a vertex with smaller label than all others in 𝐵 is

added to 𝐵1, then 𝐵0 and 𝐵1 are immediately swapped to preserve

the invariant of the smallest vertex being in 𝐵0. We define the

intersection between two bipartite subgraphs 𝐵 and 𝐵′ as the set of
all shared vertices, i.e.: 𝐵 ∩ 𝐵′ = (𝐵0 ∪ 𝐵1) ∩ (𝐵′

0
∪ 𝐵′

1
).

We consider the case of connected induced bipartite subgraphs

in Section 5.1. We will later briefly show how this structure can be

adapted to cover the non-connected and non-induced cases with

small changes in Sections 5.2 and 5.3. Their complexity will be

discussed in Section 5.4.

5.1 Listing Maximal Connected Induced

Bipartite Subgraphs

Let 𝐵 = ⟨𝐵0, 𝐵1⟩ be a maximal induced bipartite subgraph of𝐺 , and

𝑣 a vertex not in 𝐵, i.e., in 𝑣 ∈ 𝑉 (𝐺) \𝐵. Looking at Definition 4.2, we
immediately observe that a polynomial-time computable function

comp(·) exists since the problem is connected-hereditary. Then, we

need to define a suitable canonical order, and prove the existence

of the corresponding removables.

Consider a BFS order of𝐺 [𝐵] starting from its vertex of smallest

label, say 𝑏1. In this order, a vertex 𝑢 precedes a vertex 𝑣 if the

distance of𝑢 from 𝑏1 is smaller than that of 𝑣 or, in case the distance

is equal, 𝑢’s label is smaller than 𝑣 ’s.
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𝑆 = {2, 3, 5, 7, 8, 10, 11}, with 𝑆0 = {2, 8, 11}, 𝑆1 = {3, 5, 7, 10}, and 𝑣 = 12

𝑋0 = 𝑁 (𝑣) ∩ 𝑆0 = {8, 11}, 𝑋1 = 𝑁 (𝑣) ∩ 𝑆1 = {5, 7, 10}

𝑆 \𝑋1 ∪ {𝑣 } = {2, 3, 8, 11, 12} (top)

𝑆 \𝑋0 ∪ {𝑣 } = {2, 3, 5, 7, 10, 12}, with vertex 9 added by comp( ·) (bottom)

Figure 3: The steps taken by the neighboring function neighbors(𝑆, 𝑣), for a possible solution 𝑆 of the graph in Figure 2 and

𝑣 = 12. The bottom two lines correspond to the neighboring solutions produced by the function neighbors(𝑆, 12).

Definition 5.1 (canonical order for connected induced bipartite
subgraphs). The canonical order of a connected induced bipartite
subgraph 𝐵 is the sequence 𝑏1, . . . , 𝑏 |𝐵 | given by a BFS order of

𝐺 [𝐵] rooted at the vertex 𝑏1 of smallest label, where ties are broken

by placing the vertex of smallest label first.

For the subgraph in Figure 2 (b) the canonical order is 2, 3, 5, 8, 11, 7, 10,

and for the one in (c) it is 2, 3, 8, 12, 11. The definition of proximity

is then automatically given by Definition 4.1.

Last ingredient for Definition 4.2 is the set X ⊆ 2
𝐵
, that contains

just two removables. In order to get a bipartite graph, it is possible

to make two removables as follows:

• 𝑋0 = 𝑁 (𝑣) ∩ 𝐵0,
• 𝑋1 = 𝑁 (𝑣) ∩ 𝐵1.

That is, remove all the neighbors of 𝑣 in one of the two sides 𝐵𝑖 :

clearly, 𝑣 can be included in 𝐵𝑖 as it is now only adjacent to vertices

of 𝐵1−𝑖 . While this works for the Maximal Induced Bipartite Sub-

graphs problem, we have the further constraint of connectivity, so
we must also discard every vertex that is not in the same connected

component as 𝑣 . The removables become as follows:

• 𝑋0 = 𝐵 \ cc𝑣 ({𝑣} ∪ (𝐵0 \ 𝑁 (𝑣)) ∪ 𝐵1),
• 𝑋1 = 𝐵 \ cc𝑣 ({𝑣} ∪ (𝐵1 \ 𝑁 (𝑣)) ∪ 𝐵0).

That is, we remove all vertices not in the same connected com-

ponent as 𝑣 , after introducing 𝑣 and removing all its neighbors in

either 𝐵0 or 𝐵1.

We can use these to create the neighboring function to be plugged

in Algorithm 1, following Definition 4.2:

Definition 5.2 (neighboring function for maximal connected in-
duced bipartite subgraphs).

neighbors(𝐵, 𝑣) = {comp(cc𝑣 ({𝑣}∪(𝐵𝑖 \𝑁 (𝑣))∪𝐵1−𝑖 )) | 𝑖 = 0, 1}

A graphical example of this procedure is given in Figure 3 (for

simplicity, we adopt an example where the subgraphs are connected

after removing 𝑣 ’s neighbors, so the removables are equivalent to

the simpler ones of the non-connected version).

Lemma 5.3. The problem of listing all Maximal Connected Induced
Bipartite Subgraphs admits a canonical reconstruction.

Proof. For the canonical order given in Definition 5.1, any pre-

fix induces a graph that is connected because of the BFS order, and

bipartite because bipartite subgraphs are hereditary, so condition (1)

of Definition 4.2 is satisfied. As for condition (2), it is evident from

the definition of removables (alternatively, of the neighboring func-

tion) that they can be computed in polynomial time, and that they

produce connected bipartite subgraphs. We only need to show that

the third item holds: given 𝐵, 𝐵∗ and their canonical extender ¤𝑣 , we
have 𝐵∩̃𝐵∗ ∩ 𝑋𝑖 = ∅ for either 𝑖 = 0 or 𝑖 = 1; this will imply that

|𝐵′∩̃𝐵∗ | > |𝐵∩̃𝐵∗ | for 𝐵′ = comp(cc ¤𝑣 ({ ¤𝑣} ∪ (𝐵𝑖 \ 𝑁 ( ¤𝑣)) ∪ 𝐵1−𝑖 )),
so the proximity is successfully increased.

If 𝐵∩̃𝐵∗ = ∅ the claim is trivially true, as we can consider 𝑏∗
1
as

canonical extender. Otherwise, let𝑍 = 𝐵∩̃𝐵∗ = {𝑏∗
1
, . . . , 𝑏∗

ℎ
}, andwe

have ¤𝑣 = 𝑏∗
ℎ+1. By Definition 5.1, 𝑍 is a connected induced bipartite

subgraph, meaning that it allows a unique bipartition 𝑍0, 𝑍1 (with

𝑍0 being the set containing the vertex of smallest label in 𝑍 , that is,

𝑏∗
1
). Since 𝑏∗

1
is the vertex of smallest label in 𝐵∗, it will be in 𝐵∗

0
, so

it follows that 𝑍0 ⊆ 𝐵∗
0
and 𝑍1 ⊆ 𝐵∗

1
.

Let 𝑗 be the value in {0, 1} such that ¤𝑣 ∈ 𝐵∗
𝑗
, and observe that

𝑁 ( ¤𝑣)∩𝑍 𝑗 ⊆ 𝑁 ( ¤𝑣)∩𝐵∗𝑗 = ∅. Furthermore, we know that𝑏∗
1
∈ 𝐵∗

0
and

𝑏∗
1
∈ 𝐵, but we do not know whether 𝑏∗

1
∈ 𝐵0 or 𝑏∗

1
∈ 𝐵0; however,

there exists a value 𝑖 in {0, 1} such that either 𝑏∗
1
∈ (𝐵𝑖 ∩𝐵∗𝑗 ) or 𝑏

∗
1
∈

(𝐵1−𝑖 ∩ 𝐵∗
1−𝑗 ). Observe that 𝑍 𝑗 ⊆ 𝐵∗𝑗 ∩ 𝐵𝑖 and 𝑍1−𝑗 ⊆ 𝐵

∗
1−𝑗 ∩ 𝐵1−𝑖 .

Finally, let 𝐵′ = cc ¤𝑣 ({ ¤𝑣} ∪ (𝐵𝑖 \𝑁 ( ¤𝑣)) ∪𝐵1−𝑖 ), and consequently
we have 𝑋𝑖 = 𝐵 \ 𝐵′. 𝑍 is fully contained in 𝐵′: the only vertices

removed from 𝐵 by𝑋𝑖 are (i) those in 𝑁 ( ¤𝑣)∩𝐵𝑖 , but 𝑁 ( ¤𝑣)∩𝐵𝑖 ∩𝑍 ⊆
𝑁 ( ¤𝑣) ∩ 𝐵𝑖 ∩ 𝑍 𝑗 ⊆ 𝑁 ( ¤𝑣) ∩ 𝑍 𝑗 = ∅, and (ii) the vertices not in the

connected component of ¤𝑣 in 𝐺 [{ ¤𝑣} ∪ (𝐵𝑖 \ 𝑁 ( ¤𝑣)) ∪ 𝐵1−𝑖 ], but no
such vertex can be in 𝑍 as 𝑍 ∪ {¤𝑣} is a prefix of the canonical order
of 𝐵∗, so it induces a connected subgraph.

We thus have that 𝑍 ∪ {¤𝑣} ⊆ 𝐵′, meaning that 𝑋𝑖 ∩ 𝑍 = ∅,
which proves the claim. Constructively, we can finally observe

how the maximal solution 𝐵′′ = comp(𝐵′) is the one produces

by the algorithm which increases the proximity to 𝐵∗, as we have
{𝑏∗

1
, . . . , 𝑏∗

ℎ
, 𝑏∗

ℎ+1} ⊆ 𝐵
′′∩̃𝐵∗ and thus |𝐵′′∩̃𝐵∗ | ≥ |𝐵∩̃𝐵∗ | + 1. □
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From this, we immediately obtain the correctness of the algo-

rithm.

Theorem 5.4. A proximity search algorithm (Algorithm 1), using
the
neighbors(·) function from Definition 5.2 outputs all Maximal Con-
nected Induced Bipartite Subgraphs of a graph 𝐺 without duplication
with 𝑂 (𝑛𝑚) delay.

Proof. The correctness follows from Theorem 4.3. The delay is

dominated by the cost of the neighbors(𝐵) function, i.e., calling
𝑂 (𝑛) times neighbors(𝐵, 𝑣). The cost of the latter is 𝑂 (𝑚) time to

compute cc𝑣 (·), and𝑂 (𝑚) time to compute the comp(·) function by
Lemma 5.9 (delayed to Section 5.4 for compactness). The statement

follows. □

5.2 Listing Maximal Induced Bipartite

Subgraphs

We can extend our solution to the non-connected case by building

one connected component at a time. We obtain the canonical order

by Definition 11.6, that is, a BFS order of each component:

Definition 5.5 (canonical order for induced bipartite subgraphs).
The canonical order of an induced bipartite subgraph 𝐵 is the se-

quence 𝑏1, . . . , 𝑏 |𝐵 | obtained by first ordering the connected com-

ponents of 𝐺 [𝐵] by incremental order of smallest-id vertex, then

ordering each component by a BFS order (given in Definition 5.1)

rooted in its smallest-id vertex.

In essence, this corresponds to ordering each connected compo-

nent as in the connected case (Definition 5.2), and placing earlier

components whose smallest-id vertex is smaller. Looking again at

Figure 2, and letting 𝐵 be the subgraph shown in (d) and 𝐵∗ as that
shown in (e), the canonical order of 𝐵 is ⟨1, 2, 7, 8, 11, 10⟩, that of
𝐵∗ is ⟨1, 2, 7, 9, 12, 10⟩. By the definition of proximity for canonical

reconstruction, we also obtain 𝐵∩̃𝐵∗ = {1, 2, 7}.
The removables become simpler for this case, as we can simply

remove 𝑁 (𝑣) ∩ 𝐵𝑖 for 𝑖 = 0, 1. As a result, the neighboring function

is essentially the same as the connected case (Definition 5.2), with

minor changes as we do not require the connectivity:

Definition 5.6 (neighboring function for maximal induced bipartite
subgraphs).

neighbors(𝐵, 𝑣) = {comp({𝑣} ∪ (𝐵𝑖 \ 𝑁 (𝑣)) ∪ 𝐵1−𝑖 ) | 𝑖 = 0, 1}

We can then proceed to prove correctness and complexity of this

case:

Theorem 5.7. A proximity search algorithm (Algorithm 1), using
the
neighbors(·) function from Definition 5.6 outputs all maximal in-
duced bipartite subgraphs of a graph 𝐺 without duplication with
𝑂 (𝑛(𝑚 + 𝑛𝛼 (𝑛))) delay.

Proof. Consider the solutions 𝐵 and 𝐵∗. Let 𝑏∗
1
, . . . , 𝑏∗|𝐵∗ | be

the canonical ordering of 𝐵∗ by Definition 5.6, 𝐵∩̃𝐵∗ = 𝑏∗
1
, . . . , 𝑏∗

𝑖
,

and 𝑢 = 𝑏∗
𝑖+1 the canonical extender for 𝐵, 𝐵∗. Let 𝐶 be the con-

nected component of 𝐵∗ containing 𝑢. Since all the neighbors

of 𝑢 in 𝐵∗ must be in its same connected component 𝐶𝐵∗
𝑥 , and

the neighbouring function (Definition 5.6) only removes neigh-

bors of 𝑢 from 𝐵, the function may not remove from 𝐵 any ver-

tex of 𝐵∗ that is not in 𝐶 . As for vertices in 𝐶 , 𝐵∩̃𝐵∗ contains
a (possibly empty) prefix of its BFS order, which is itself a con-

nected bipartite subgraph in canonical order. By the correctness of

Lemma 5.3, for either 𝐵′ = comp(cc𝑣 ({𝑣} ∪ (𝐵0 \ 𝑁 (𝑣)) ∪ 𝐵1)) or
𝐵′ = comp(cc𝑣 ({𝑣} ∪ (𝐵1 \ 𝑁 (𝑣)) ∪ 𝐵0)), this prefix is expanded

with 𝑢, giving us 𝐵′∩̃𝐵∗ ⊇ (𝐵∩̃𝐵∗) ∪ {𝑢} and proving correctness.

As for the delay, we can see that the cost of neighbors(𝐵)
is bounded as for the connected case by 𝑂 (𝑛) times the cost of

neighbors(𝐵, 𝑣), which is in turn bounded by 𝑂 (𝑚 + 𝑛𝛼 (𝑛)) by
Lemma 5.9, proving the statement.

□

5.3 Maximal Edge Bipartite Subgraphs

Finally, we show how to adapt the above algorithm to Maximal Edge
Bipartite Subgraphs, where edge-induced subgraphs are denoted

by a set of edges, rather than vertices. In the following, given two

sets of vertices 𝐴 and 𝐵, let 𝐸 (𝐴, 𝐵) be the set of edges with one

endpoint in𝐴 and the other in 𝐵. We observe that theMaximal Edge
Bipartite Subgraphs of a connected graph are always connected,

otherwise some edge could be added to joint components without

creating cycles; by the same logic they span all vertices, and may

thus be represented by simply a bipartition ⟨𝐵0, 𝐵1⟩ of𝑉 (𝐺), where
the bipartite subgraph corresponds to the edges in 𝐸 (𝐵0, 𝐵1). For
readability, we use the shorthand 𝐸𝐵 ≡ 𝐸 (𝐵0, 𝐵1) to refer to the

edges of the bipartite subgraph 𝐵.

We also observe that the problem is hereditary and allows for a

polynomial time computable comp(·) function.We define the canon-

ical order of a solution 𝐵 by taking the canonical order 𝑏1, . . . , 𝑏 |𝐵 |
of the vertices of𝐺 [𝐵] according to Definition 5.1,

7
then taking the

edges of 𝐵 in increasing order of their latter vertex in the vertex

order, and breaking ties by increasing order of the earlier endpoint.

This essentially corresponds to “building” 𝐵 in a similar fashion as

in the induced version, but adding one edge at a time incident to

the newly selected vertex. The removables for an edge 𝑒 = {𝑎, 𝑏},
where 𝑎 < 𝑏, are as follows.

• 𝑋0 = (𝐸𝐵 \ 𝑁𝐸 (𝑎)) ∪ {𝑒}),
• 𝑋1 = (𝐸𝐵 \ 𝑁𝐸 (𝑏)) ∪ {𝑒}).

The principle behind the neighboring function is different but

inspired by the induced case: rather than taking a vertex out of the

solution and trying to add it to 𝐵0 or 𝐵1, we take an edge 𝑒 = {𝑎, 𝑏}
with both endpoints in the same 𝐵𝑖 , and try to move the two vertices

𝑎 and 𝑏 to opposite sides of the bipartition.

This can be achieved by including the edge 𝑒 in the solution,

and then, to preserve the subgraph being bipartite, removing either

𝑁𝐸 (𝑎) or 𝑁𝐸 (𝑏) from it. Finally we apply the comp(·) function to

obtain a solution that is maximal.

More formally, recalling𝐸𝐵 ≡ 𝐸 (𝐵0, 𝐵1), we define neighbors(𝐵)
as ⋃
𝑒={𝑎,𝑏 }∈𝐸 (𝐺)\𝐸𝐵

{comp((𝐸𝐵\𝑁𝐸 (𝑎))∪{𝑒}), comp((𝐸𝐵\𝑁𝐸 (𝑏))∪{𝑒})}

7
Note that the vertices of𝐺 [𝐵 ] are all of𝑉 (𝐺) , but to compute the canonical order

we need to consider only the edges in the bipartite subgraph𝐺 [𝐵 ].
9



Consider two solution 𝐵 and 𝐵∗, with 𝑒1, . . . , 𝑒 |𝐸 (𝐵∗
0
,𝐵∗

1
) | being

the canonical order of 𝐵∗. Furthermore, let 𝐵∩̃𝐵∗ = {𝑒1, . . . , 𝑒ℎ} and
¤𝑒 = 𝑒ℎ+1 = {𝑎, 𝑏} the canonical extender, i.e., the first edge in the

ordering of 𝐵∗ which is not in 𝐵.

By the definition of the canonical ordering, we have that {𝑒1, . . . , 𝑒ℎ}
is a connected bipartite subgraph, meaning that it allows a unique

bipartition 𝐵′ = 𝐵′
0
, 𝐵′

1
of its incident vertices. As {𝑒1, . . . , 𝑒ℎ} ∪ { ¤𝑒}

is also a connected bipartite subgraph, for some 𝑗 ∈ {0, 1} we must

have both 𝑁 (𝑎) ∩ 𝐵′
𝑗
= ∅ and 𝑁 (𝑏) ∩ 𝐵′

1−𝑗 = ∅.
Since 𝐵′ is included in 𝐵, we must have either (i) 𝐵′

𝑗
⊆ 𝐵𝑖 and

𝐵′
1−𝑗 ⊆ 𝐵1−𝑖 or (ii) 𝐵

′
1−𝑗 ⊆ 𝐵𝑖 and 𝐵

′
𝑗
⊆ 𝐵1−𝑖 . Recall now that both

𝑎 and 𝑏 are assumed wlog to be in 𝐵𝑖 , meaning that 𝑁 (𝑎) ∩ 𝐵𝑖 =
𝑁 (𝑏) ∩ 𝐵𝑖 = ∅. In the (i) case, we have 𝑁 (𝑏) ∩ 𝐵1−𝑖 ∩ 𝐵′

1−𝑗 = ∅,
so removing 𝑁𝐸 (𝑏) from 𝐵 may not remove any edge of 𝐵′. Thus
comp((𝐸𝐵 \ 𝑁𝐸 (𝑏)) ∪ { ¤𝑒}), which belongs to neighbors(𝐵), will
contain (𝐵∩̃𝐵∗) ∪ {𝑒}.

In the (ii) case, we have 𝑁 (𝑎) ∩𝐵1−𝑖 ∩𝐵′
1−𝑗 = ∅, removing 𝑁𝐸 (𝑎)

may not remove any edge of 𝐵′. Thus comp((𝐸𝐵 \ 𝑁𝐸 (𝑎)) ∪ { ¤𝑒}),
which also belongs to neighbors(𝐵), will contain (𝐵∩̃𝐵∗) ∪ {𝑒}.

This means that in both cases, neighbors(𝐵) will yield a solution
𝑆 ′ that contains (𝐵∩̃𝐵∗) ∪ {𝑒}, i.e., such that |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |.

As the complexity is bounded by𝑂 (𝑚) calls to the neighbors(𝐵𝑖 , 𝐵1−𝑖 , 𝑒)
function, whose cost is again bounded by that of comp(·), that is
𝑂 (𝑚2) time (By Lemma 5.9), the following theorem holds:

Theorem 5.8. Maximal (edge-induced) Bipartite Subgraphs can
be listed in 𝑂 (𝑚3) time delay.

5.4 Complexity

In order to complete the analysis, let us look at the cost C𝑡 for the
three variants considered:

Lemma 5.9. C𝑡 is 𝑂 (𝑚) for Maximal Connected Induced Bipartite
Subgraphs, 𝑂 (𝑚 + 𝑛𝛼 (𝑛)) for Maximal Induced Bipartite Subgraphs,
and 𝑂 (𝑚2) for Maximal Edge-induced Bipartite Subgraphs, where 𝑛
and𝑚 are the number of vertices and edges, and 𝛼 (·) is the functional
inverse of the Ackermann function [44].

Proof. C𝑡 is a bound for computing the comp(𝑆) function as

well as a canonical order. As the latter is computed by a BFS, it

takes 𝑂 (𝑚) time in all three cases, let us then focus on comp(𝑆):
Firstly, observe that using 𝑂 (𝑛) space and standard data struc-

tures, we can mark to which bipartition each vertex of 𝑆 belongs to

(using𝑂 (𝑚) time to compute the initial bipartition of 𝑆), and which

vertices have been already tested for addition, in 𝑂 (1) time per

vertex. If a vertex fails the test to be added, it will not be possible

to add it later on, so the total cost of comp(𝑆) comes from selecting

which vertices to test, and testing each of these vertices once.

For the connected case, we must test only vertices adjacent to

𝑆 (in no particular order): we can find these initial “candidates” in

𝑂 (∑𝑥 ∈𝑆 |𝑁 (𝑥) |) = 𝑂 (𝑚) time, marking each vertex as tested the

first time so it is not tested again. Whenever trying to add a vertex

𝑣 to 𝑆 , we must pay 𝑂 ( |𝑁 (𝑣) |) time to check that all its neighbors

belong to the same bipartition of 𝑆 , in which case 𝑣 belongs to the

other one. If 𝑣 is not addible, we immediately discard it. If instead

we add it to 𝑆 , we mark it with the correct bipartition, and update

the list of candidate with its neighbors in 𝑂 ( |𝑁 (𝑣) |) time. As each

vertex is only tested once and only added once, the total cost of C𝑡
is bounded by 𝑂 (𝑚).

For the non-connected case, we further keep track of connected

components via union-find [44] (actually, for each connected com-

ponent we will keep track of its two partitions). To test a vertex

𝑣 we must just check that it does not connect to two vertices in

different partitions 𝐶0 and 𝐶1 of the same connected component 𝐶

of 𝑋 : this can be done in 𝑂 ( |𝑁 (𝑣) |). Updating the union-find can

be done in total 𝑂 (𝑛𝛼 (𝑛)), where 𝛼 (·) is the functional inverse of
the Ackermann function [44].
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Once we tested a vertex, if this was not addible, it will never

become addible, thus we only need to test each vertex once. The

cumulative cost for testing will be the sum of the degrees of all

tested vertices, that is bounded by 𝑂 (𝑚). The total time is thus

𝑂 (𝑚 + 𝑛𝛼 (𝑛)).
Finally, for Maximal Edge-induced Bipartite Subgraphs, we need

to test each edge for addition just once as the property is hereditary.

For each test we can simply check if the resulting graph is bipartite,

which takes 𝑂 (𝑚) time, for a total cost of 𝑂 (𝑚2). □

6 MAXIMAL K-DEGENERATE SUBGRAPHS

We here consider the enumeration of maximal 𝑘-degenerate sub-

graphs, giving an algorithm that has polynomial delay when 𝑘 is

bounded.

A graph𝐺 is 𝑘-degenerate if it allows an elimination order where

each vertex has degree at most 𝑘 when deleted. Equivalently, it is 𝑘-

degenerate if no subgraph of𝐺 is a (𝑘+1)-core, that is a graphwhere
each vertex has degree greater or equal to 𝑘 + 1. The degeneracy 𝑑
of 𝐺 is the smallest 𝑘 for which 𝐺 is 𝑘-degenerate.

A degeneracy ordering of 𝐺 is an order of its vertices in which

each vertex 𝑣 has at most 𝑑 neighbors occurring later than 𝑣 , where

𝑑 is the degeneracy of𝐺 . It is well known that a degeneracy ordering

can be found in 𝑂 (𝑚) time by iteratively removing the vertex of

smallest degree [2]. To remove ambiguity, when multiple vertices

have the same degree we can remove the one with smallest label.

The degeneracy is a well-known sparsity measure [20]; its defi-

nition generalizes that of independent sets (0-degenerate graphs)

and trees and forests (connected and non-connected 1-degenerate

graphs). Furthermore, degeneracy is linked to planarity as all planar

graphs are 5-degenerate, while outerplanar graphs are 2-degenerate [35].

We are interested in listing all maximal 𝑘-degenerate subgraphs

of a graph 𝐺 . An output-polynomial algorithm is known for max-

imal induced 𝑘-degenerate subgraphs if 𝐺 is chordal [14], but no

output-polynomial results are known for general graphs.

6.1 Maximal Induced k-Degenerate Subgraphs

A subgraph of a 𝑘-degenerate graph is 𝑘-degenerate so the property

is hereditary, and degeneracy can be computed in linear time so we

can implement the comp(·) function in polynomial time.

Given a maximal induced 𝑘-degenerate subgraph 𝑆 , we define its

canonical order as the reverse of its degeneracy ordering, i.e., an or-

dering 𝑠1, . . . , 𝑠 |𝑆 | , such that 𝑠 |𝑆 |, . . . , 𝑠1 is the degeneracy ordering

8
As 𝛼 (𝑛) grows extremely slowly, we remark that 𝛼 (𝑛) is in essence𝑂 (1) on real,

finite, graphs.
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of 𝑆 . In the case of non connected subgraphs, this is adapted by con-

sidering the connected components one at a time in lexicographical

order. Then, the proximity is defined by Definition 4.1.

In the resulting ordering we have |𝑁 (𝑠𝑖 ) ∩ {𝑠1, . . . , 𝑠𝑖−1}| ≤ 𝑘 ,
i.e., the neighbors of 𝑠𝑖 in 𝑆 that precede 𝑠𝑖 in the canonical order

are at most 𝑘 . This is the key property that gives us the intuition for

the algorithm: the removables correspond to all neighbors of the

canonical extender except a set of size at most 𝑘 . The neighboring

function is obtained as follows.

Definition 6.1 (Neighboring function forMaximal Induced𝑘-Degenerate
Subgraphs).

neighbors(𝑆) =
⋃

𝑣∈𝑉 (𝐺)
neighbors(𝑆, 𝑣)

Where neighbors(𝑆, 𝑣) = {comp({𝑣} ∪ 𝑆 \ (𝑁 (𝑣) \ 𝐾) : 𝐾 ⊆
(𝑆 ∩ 𝑁 (𝑣)) and |𝐾 | ≤ 𝑘}

Less formally, when computing neighbors(𝑆, 𝑣), we try to add

𝑣 to 𝑆 as canonical extender. Since 𝑆 is maximal, this violates the

degeneracy constraint, so we remove all neighbors of 𝑣 except at

most 𝑘 (the removable set being 𝑁 (𝑣) \ 𝐾 ). The resulting subgraph

𝐷 = {𝑣} ∪𝑆 \ (𝑁 (𝑣) \𝐾) is 𝑘-degenerate: as 𝐷 \ {𝑣} is 𝑘-degenerate
as it is a subgraph of 𝑆 , and any degeneracy ordering of 𝐷 \ {𝑣}
becomes a 𝑘-degenerate ordering for 𝐷 if we prepend 𝑣 in the

beginning, because 𝑣 has at most 𝑘 neighbors in 𝐷 . This means

𝑁 (𝑣) \ 𝐾 is a suitable removable according to Definition 4.2.

We now show how these choices for 𝐾 satisfy Definition 4.2:

we iteratively try for 𝐾 all possible subsets of 𝑆 ∩ 𝑁 (𝑣) of size at
most 𝑘 . These combinations, i.e., the number of removables, are

𝑂 (∑𝑖∈{1,...,𝑘 }
( |𝑁 (𝑣) |

𝑖

)
) = 𝑂 (𝑛𝑘 ), which is polynomial when 𝑘 is

bounded.

Let us now look at a target solution 𝑆∗ such that 𝑣 is the canonical
extender for 𝑆, 𝑆∗, and let 𝑠∗

1
, . . . , 𝑠∗|𝑆∗ | be the canonical order of 𝑆

∗
:

if 𝑣 = 𝑠𝑖 in this order, it follows that 𝑆∩̃𝑆∗ = {𝑠∗
1
, . . . , 𝑠∗

𝑖−1}, and
|𝑁 (𝑣) ∩ {𝑠∗

1
, . . . , 𝑠∗

𝑖−1}| ≤ 𝑘 .
We also have that {𝑠∗

1
, . . . , 𝑠∗

𝑖−1} ⊆ 𝑆 , so 𝑁 (𝑣) ∩ {𝑠
∗
1
, . . . , 𝑠∗

𝑖−1} ⊆
𝑁 (𝑣) ∩ 𝑆 : since we try as 𝐾 all possible subsets of 𝑁 (𝑣) ∩ 𝑆 of size

at most 𝑘 , we will eventually have 𝐾 = 𝑁 (𝑣) ∩ {𝑠∗
1
, . . . , 𝑠∗

𝑖−1}.
At this point the neighboring functionwill yield 𝑆 ′ = comp({𝑣}∪

𝑆 \ (𝑁 (𝑣) \ 𝐾) = comp({𝑣} ∪ 𝑆 \ (𝑁 (𝑣) \ (𝑆∩̃𝑆∗)). In other words,

we only remove some neighbors of 𝑣 from 𝑆 , but all the neighbors

that are part of 𝑆∩̃𝑆∗ are not removed, thus 𝑆 ′ ⊇ {𝑣} ∪ (𝑆∩̃𝑆∗),
meaning |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |.

As for the running time, let us consider the cost C𝑡 of a comp(𝑋 )
call.𝑘-degenerate graphs are hereditary, i.e., if a vertex is not addible

it will not become addible later, so we need to test each 𝑣 ∈ 𝑉 (𝐺) \𝑋
for addition at most once. As testing the degeneracy takes 𝑂 (𝑚)
time, C𝑡 = 𝑂 (𝑚𝑛) time.

Consider now neighbors(𝑆, 𝑣): firstly, we enumerate each possi-

ble𝐾 ⊆ 𝑁 (𝑣)∩𝑆 , which takes𝑂 (∑𝑖∈{1,...,𝑘 }
( |𝑁 (𝑣) |

𝑖

)
) = 𝑂 ( |𝑁 (𝑣) |𝑘 )

time. For each, we run comp({𝑣} ∪ (𝑆 \ 𝑁 (𝑣)) ∪ 𝐾), which takes

𝑂 (𝑚𝑛) time. The total cost is 𝑂 (𝑛𝑘+1𝑚) time.

The problem is thus proximity searchable, and the delay of the

listing algorithm is the cost of neighbors(𝑆), i.e., running 𝑂 (𝑛)
times neighbors(𝑆, 𝑣) (maintainingS is negligible). More formally:

Theorem 6.2. Maximal Induced 𝑘-degenerate Subgraphs are prox-
imity searchable when 𝑘 is constant, and can be enumerated in
𝑂 (𝑚𝑛𝑘+2) time delay.

We now observe that 1-degenerate subgraphs are exactly forests,

and the connected ones are trees; setting 𝑘 = 1 we immediately

obtain polynomial-delay algorithms for listing Maximal Induced

Forests that could be easily adapted to Maximal Induced Trees.

However, an ad-hoc analysis, delayed to Section 12.2, shows we

can obtain algorithms with better delay, and even reduce the space

usage to polynomial for these problems.

6.2 Maximal Edge-induced k-Degenerate
Subgraphs

We now consider Maximal Edge-induced k-Degenerate Subgraphs,
i.e., maximal sets of edges𝐸 ⊆ 𝐸 (𝐺) that correspond to a𝑘-degenerate
subgraph of 𝐺 . An algorithm for this case can be obtained by ex-

ploiting the structure of the induced one. In the following, let 𝑁𝐸 (𝑣)
be the edge neighborhood of 𝑣 , i.e., the set of edges of 𝐺 incident to

the vertex 𝑣 . Note that edge-induced 𝑘-degenerate subgraphs are

also hereditary, and so comp(·) takes polynomial time.

Let 𝑆 be an edge-induced𝑘-degenerate subgraph, and let 𝑣1, . . . , 𝑣𝑙
be the canonical order of the vertices of𝐺 [𝑆] (i.e., the graph contain-
ing only edges in 𝑆 and vertices incident to them), as in Section 6.1.

The canonical ordering of 𝑆 is obtained by selecting the edges of

𝐵 by increasing order w.r.t. their later endpoint in the vertex order,

breaking ties by order of the other (earlier) endpoint.

This corresponds to selecting the vertices 𝑣1, . . . , 𝑣𝑙 in order, and

for each adding the edges towards the preceding vertices one by

one. Whenever all the edges from 𝑣𝑖 to the preceding vertices have

been added, we can observe that the graph corresponds to that

induced in𝐺 [𝑆] by the vertices {𝑣1, . . . , 𝑣𝑖 }. By the canonical order

of the vertices defined in Section 6.1, this means 𝑣𝑖 has at most 𝑘

neighbors in {𝑣1, . . . , 𝑣𝑖−1}.
Again, the proximity ∩̃ is given by Definition 4.1.

We can now define the neighboring function:

Definition 6.3 (Neighboring function for Maximal Edge-induced
𝑘-Degenerate
Subgraphs). Let 𝑆 be a maximal edge-induced 𝑘-degenerate sub-

graph, and 𝑒 = {𝑎, 𝑏} an edge not in 𝑆 . We define:

neighbors(𝑆) =
⋃

𝑒={𝑎,𝑏 }∈𝐸\𝑆
neighbors(𝑆, 𝑎, 𝑏)∪neighbors(𝑆, 𝑏, 𝑎)

Where neighbors(𝑆, 𝑎, 𝑏) = {comp({𝑒} ∪ (𝑆 \ 𝑁𝐸 (𝑎)) ∪ 𝐾) : 𝐾 ⊆
(𝑆 ∩ 𝑁𝐸 (𝑎)) and
|𝐾 | ≤ 𝑘 − 1}

In other words, we add an edge 𝑒 = {𝑎, 𝑏} to 𝑆 , then force 𝑎 (or,

respectively, 𝑏) to have degree at most 𝑘 , by removing all other

edges incident to it except at most 𝑘 − 1, as well as adding 𝑒 . The
resulting graph is 𝑘-degenerate as 𝑎 (respectively 𝑏) has degree 𝑘 ,

and the residual graph is a subgraph of 𝑆 , which is 𝑘-degenerate,

so it is possible to compute a degeneracy ordering.

Consider now two solutions 𝑆 , 𝑆∗, with 𝑆∩̃𝑆∗ = {𝑒1, . . . , 𝑒ℎ}, and
let ¤𝑒 = {𝑥,𝑦} be the earliest edge in the canonical order of 𝑆∗ that
is not in 𝑆 , i.e, 𝑒ℎ+1. Assume wlog that 𝑥 comes before 𝑦 in the

canonical (vertex) ordering of 𝑆∗. In this ordering, 𝑦 has at most 𝑘
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neighbors preceding it, i.e, |{𝑒1, . . . , 𝑒ℎ}∩𝑁𝐸 (𝑦) | ≤ 𝑘 . Furthermore,

by the same definition, all edges incident to 𝑦 that precede ¤𝑒 in
the ordering must be between 𝑦 and another vertex which comes

earlier than 𝑥 , and thus than 𝑦, in the ordering, thus they may be

at most 𝑘 − 1 (𝑘 , including ¤𝑒 itself, from 𝑦 to 𝑥 ). Let 𝐾 ′ be the set of
these edges (not including ¤𝑒).

When computing neighbors(𝑆,𝑦, 𝑥), we consider all subsets of
edges in 𝑆 incident to 𝑦 of size at most 𝑘 − 1. By what stated above,

at some point we will consider exactly 𝐾 ′. In this case, we will

obtain 𝑆 ′ = comp({ ¤𝑒} ∪ (𝑆 \ 𝑁𝐸 (𝑦)) ∪ 𝐾 ′). This must contain all

edges in {𝑒1, . . . , 𝑒ℎ}, as we only removed edges neighboring 𝑦, but

all those in {𝑒1, . . . , 𝑒ℎ} were in 𝐾 ′. Thus we have {𝑒1, . . . , 𝑒ℎ} ∪ ¤𝑒 =
{𝑒1, . . . , 𝑒ℎ, 𝑒ℎ+1} ⊆ 𝑆 ′, which implies |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |. The case
in which 𝑥 comes after 𝑦 in the ordering is similarly satisfied by

neighbors(𝑆, 𝑥,𝑦).
Finally, we only need to show that neighbors(𝑆) takes poly-

nomial time to compute: indeed this is 𝑂 (𝑚) times the cost of

neighbors(𝑆,𝑦, 𝑥), which in turn has the cost of computing comp(·)
once for each possible considered set𝐾 . These latter are𝑂 (

(𝑁𝐸 (𝑦)
𝑘−1

)
),

and the comp(·) can be easily implemented in 𝑂 (𝑚2) (as above,
testing degeneracy takes𝑂 (𝑚) time and each edge needs to be con-

sidered at most once for addition since the problem is hereditary),

for a total cost that is polynomial when 𝑘 is constant. We can thus

state the following:

Theorem 6.4. Maximal Edge-induced 𝑘-degenerate Subgraphs are
proximity searchable when 𝑘 is constant, and can be enumerated with
delay 𝑂 (

( 𝑛
𝑘−1

)
𝑚3).

7 MAXIMAL CHORDAL SUBGRAPHS

7.1 Maximal Induced Chordal Subgraphs

A graph𝐺 is chordal if every cycle in𝐺 of length greater than 3 has

a chord, i.e., an edge between two non-consecutive vertices in the

cycle. Chordal graphs have been widely studied, and it is known

that several problems which are challenging on general graphs

become easier on chordal graphs (see, e.g., [3, 10, 37]). While the

problem of finding a largest chordal subgraph has been studied [4],

to the best of our knowledge there are no known enumeration

results.

We here aim at listing Maximal Induced Chordal Subgraphs of

𝐺 . The problem is hereditary, and chordality can be tested in 𝑂 (𝑚)
time [39], thus comp(·) takes 𝑂 (𝑚𝑛) time.

A (sub)graph is chordal iff it allows a perfect elimination or-
dering {𝑣1, . . . , 𝑣𝑛} of its vertices, i.e., such that for all 𝑖 , 𝑁 (𝑣𝑖 ) ∩
{𝑣𝑖+1, . . . , 𝑣𝑛} is a clique [14]. We can obtain this by recursively

removing simplicial vertices, i.e., vertices whose neighborhood in

the residual graph is a clique.
9

As the neighbors of a simplicial vertex form a clique, we ob-

serve that removing a simplicial vertex cannot disconnect the

residual graph. It is also known that a chordal graph has 𝑂 (𝑛)
maximal cliques, and a vertex 𝑣 participates in 𝑂 ( |𝑁 (𝑣) |) maximal

cliques [14].

We use this to define the canonical order, which is then combined

with Definition 4.1 to obtain the proximity function ∩̃.

9
To remove ambiguity, we can remove the lexicographically smallest when multiple

simplicial vertices are present.

Definition 7.1 (Canonical Order for Maximal (Connected) Induced
Chordal Subgraphs). The canonical order {𝑠1, . . . , 𝑠 |𝑆 |} of 𝑆 is the re-
verse of its perfect elimination ordering, i.e., such that {𝑠 |𝑆 |, . . . , 𝑠1}
is the perfect elimination ordering.

This way, the neighbors of 𝑣 that precede 𝑣 in the ordering form

a clique. Furthermore, when 𝑆 is a connected subgraph, any prefix

{𝑠1, . . . , 𝑠 𝑗≤ |𝑆 |} of the canonical order induces a connected sub-

graph, because we can iteratively remove the last vertex, which

is always simplicial. This means the canonical order satisfies con-

dition (1) of Definition 4.2, in the case of both Maximal Induced

Chordal Subgraphs and Maximal Connected Induced Chordal Sub-

graphs. The neighboring function is defined as follows.

Definition 7.2 (Neighboring function for Maximal (Connected) In-
duced
Chordal Subgraphs).

We define neighbors(𝑆) = ⋃
𝑣∈𝑉 (𝐺)\𝑆

neighbors(𝑆, 𝑣).

For the non connected case we define

neighbors(𝑆, 𝑣) = {comp(𝑆 ∪ {𝑣} \ (𝑁 (𝑣) \𝑄)) :
𝑄 is a maximal clique of 𝐺 [𝑆 ∪ {𝑣}] containing v}

While for the connected case we define

neighbors(𝑆, 𝑣) = {comp(cc𝑣 (𝑆 ∪ {𝑣} \ (𝑁 (𝑣) \𝑄))) :
𝑄 is a maximal clique of 𝐺 [𝑆 ∪ {𝑣}] containing v}

Less formally, we add a vertex 𝑣 to 𝑆 , then remove all its neighbors

except one maximal clique 𝑄 (meaning the removable by definition

of canonical reconstruction will be 𝑁 (𝑣) \𝑄). In the connected case,

we further remove vertices not in the connected component of 𝑣 .

We can easily see that 𝑆∪{𝑣} \ (𝑁 (𝑣) \𝑄) is chordal, by showing
a perfect elimination ordering: 𝑣 itself is simplicial as its neighbors

form a clique, and can be removed; we can then complete the

perfect elimination order as the remaining vertices form an induced

subgraph of 𝑆 , which is chordal as induced chordal subgraphs are

hereditary.

We now need to prove the last condition; let 𝑆 and 𝑆∗ be two
solutions, 𝑆∩̃𝑆∗ = {𝑠∗

1
, . . . , 𝑠∗

ℎ
} and ¤𝑣 = 𝑠∗

ℎ+1 the earliest vertex in

the canonical order of 𝑆∗ not in 𝑆 .
By the canonical order, 𝑁 ( ¤𝑣) ∩ (𝑆∩̃𝑆∗) = 𝑁 ( ¤𝑣) ∩ {𝑠∗

1
, . . . , 𝑠∗

ℎ
} is

a clique. When computing neighbors(𝑆, ¤𝑣), as we try all maximal

cliques, for some𝑄 we will have 𝑁 ( ¤𝑣) ∩ (𝑆∩̃𝑆∗) ⊆ 𝑄 . The resulting
𝑆 ′ will thus contain all neighbors of ¤𝑣 in 𝑆∩̃𝑆∗, and thus all of

𝑆∩̃𝑆∗, plus ¤𝑣 , meaning that |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |, which proves the

correctness the neighbors(·) function.
Finally, neighbors(·) can indeed be computed in polynomial

time. We first need to list all maximal cliques containing 𝑣 in𝐺 [𝑆 ∪
{𝑣}]: these correspond exactly to the maximal cliques of 𝐺 [(𝑆 ∩
𝑁 (𝑣)) ∪ {𝑣}]; as 𝑣 is adjacent to all vertices in (𝑆 ∩ 𝑁 (𝑣)), we can
further say that these correspond exactly to all maximal cliques of

𝐺 [(𝑆 ∩ 𝑁 (𝑣))], to which we then add 𝑣 (𝑣 can clearly be added to

any clique of 𝐺 [(𝑆 ∩ 𝑁 (𝑣))] since it is adjacent to all its vertices).

This correspondence is important, because 𝐺 [(𝑆 ∩ 𝑁 (𝑣))] is an
induced subgraph of 𝑆 , and thus a chordal graph.

Recall now that a chordal graph has𝑂 (𝑛) cliques and they can be
listed in 𝑂 (𝑚) time (e.g., by computing a perfect elimination order-

ing [39]): 𝐺 [𝑆 ∩ 𝑁 (𝑣)] has at most |𝑁 (𝑣) | vertices and 𝑂 ( |𝑁 (𝑣) |2)
edges, so we can list all the maximal cliques of 𝐺 [𝑆 ∩ 𝑁 (𝑣)] –and
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thus all maximal cliques of𝐺 [𝑆 ∪ {𝑣}] containing 𝑣– in𝑂 ( |𝑁 (𝑣) |2)
time, obtaining at most |𝑁 (𝑣) | maximal cliques.

The cumulative cost of listing all cliques for each 𝑣 ∈ 𝑉 (𝐺) \ 𝑆
is thus bounded by 𝑂 ( ∑

𝑣∈𝑉 (𝐺)\𝑆
|𝑁 (𝑣) |2) = 𝑂 (𝑚𝑛) time, and the

process yields 𝑂 ( ∑
𝑣∈𝑉 (𝐺)\𝑆

|𝑁 (𝑣) |) = 𝑂 (𝑚) maximal cliques. For

each clique𝑄 , we must further compute the corresponding comp(·)
call: as the problem is hereditary, again we only need to test each

vertex at most once for addition, and a chordality can be tested in

𝑂 (𝑚) time, the cost C𝑡 of a comp(·) is𝑂 (𝑚𝑛) time (which dominates

the time for checking membership in S). Furthermore, the same

bound applied to the connected case, as we simply need to consider

vertices for addition only when they become adjacent to the current

solution. Scanning the neighborhoods of the vertices that are added

to the solution to find these candidates has an additional cost of

𝑂 (𝑚) which does not affect the 𝑂 (𝑚𝑛) bound. The total cost will
be 𝑂 (𝑚𝑛 +𝑚 ·𝑚𝑛) = 𝑂 (𝑚2𝑛)

We can thus state that:

Theorem 7.3. Maximal Induced Chordal Subgraphs and Maximal
Connected Induced Chordal Subgraphs are proximity searchable, and
can be listed with 𝑂 (𝑚2𝑛) time delay.

7.2 Maximal Edge-induced Chordal Subgraphs

An algorithm for the edge version can be obtained by defining the

canonical order for the edge-induced subgraph in the same way

as for Bipartite Subgraphs, based on the canonical ordering of the

vertices (see Definition 5.5).

In this problem too, note how all Maximal Edge-induced Chordal

Subgraphs of a connected graph are connected, as we can always

add edges to a non-connected subgraph without creating cycles,

so we do not need to separately consider the connected and non-

connected case.

We can then devise a neighboring function neighbors(𝑆, (𝑥,𝑦))
like the first one in Definition 7.2, where we use an edge (𝑥,𝑦) as
canonical extender.

When adding an edge (𝑥,𝑦) to a maximal solution 𝑆 , we try as

𝑄 all maximal cliques containing either 𝑥 or 𝑦 in 𝐺 [𝑆]. In any 𝑆∗

(for which (𝑥,𝑦) is the canonical extender) one between 𝑥 and 𝑦

will occur later in the canonical ordering; wlog, let us say 𝑦. As

the canonical ordering is based on a reversed perfect elimination

ordering, the neighbors of 𝑦 preceding 𝑦 in the canonical order

of 𝑆∗ form a clique (including 𝑥 as well). Thus the neighboring

funciton will eventually consider a clique𝑄 containing 𝑦 and all its

preceding neighbors, and when this happens the proximity with 𝑆∗

is extended. The number of neighboring solutions generated this

way will be 𝑂 (∑(𝑥,𝑦) ∈𝐸 (𝐺) |𝑁 (𝑥) | + 𝑁 | (𝑦) |) = 𝑂 (𝑚𝑛).
The only further requirement is a polynomial time comp(·) func-

tion which needs to be applied to each neighboring solution: this

follows from [26], who prove that edge-induced chordal subgraphs

are sandwich monotone. In other words, if a edge-induced chordal

subgraph 𝑆 ⊆ 𝐸 (𝐺) is not maximal, then there is always a single

edge 𝑒 ∈ 𝐸 (𝐺) \ 𝑆 such that 𝑆 ∪ {𝑒} is a chordal subgraph.
This means comp(·) can be computed in a greedy way by testing,

up to𝑚 times, that any of the 𝑂 (𝑚) remaining edges in the graph

can be added, which takes 𝑂 (𝑚) time, for a total cost C𝑡 = 𝑂 (𝑚3).
The total cost follows.

Theorem 7.4. Maximal Edge-induced Chordal Subgraphs are
proximity searchable, and can be listed with 𝑂 (𝑚4𝑛) time delay.

8 MAXIMAL INDUCED PROPER INTERVAL

SUBGRAPHS

Interval graphs are a well-known subclass of chordal graphs, whose

vertices can be arranged as intervals on a line such that two vertices

are adjacent if and only if their intervals intersect. In this section,

we present a polynomial-delay enumeration algorithm for Max-

imal Proper Interval Subgraphs, a subclass of interval subgraphs
corresponding to interval graphs where no two intervals properly

contain another.

Despite chordal graphs, interval graphs, and proper interval

graphs being closely related to each other, it is interesting to ob-

serve how the three enumeration algorithms proposed here (chordal

subgraphs, proper interval subgraphs) and in [7] (interval sub-

graphs) differ significantly. Furthermore, an interesting open ques-

tion would be to determine whether it is possible to enumerate Max-

imal Interval Subgraphs directly via proximity search, or whether

there is an intrinsic difference inwhat can be achievedwith retaliation-

free paths.

8.1 Maximal Connected Induced Proper

Interval Subgraphs

A proper interval graph is an interval graph where, in the interval

representation, no interval properly contains another. Equivalently,

it can be defined as interval graphs that admit a unit-length repre-

sentation, i.e., where all intervals have length 1 [22]. In this section

we will adopt this latter definition, and all interval representations

considered will be intended as unit-length.

In the following, we show how to enumerate Maximal (Con-

nected) Proper Interval Subgraphs of a graph 𝐺 . We show the

connected version of the problem, and later remark how to adapt it

to the non-connected case.

It is important to observe that every connected proper interval

(sub)graph 𝑆 has two unique interval representation represented

by a sequence 𝑣1, . . . , 𝑣 |𝑆 | , and its reverse.
10

The canonical order
𝑣1, . . . , 𝑣 |𝑆 | of a Maximal Proper Interval Subgraph 𝑆 is defined as

the sequence given by the interval representation of 𝑆 which has

as 𝑠1 the smallest among the two possible values.

A graphical example is given in Figure 4 (a),(b),(d),(e).

In order to generate neighboring solutions, we take each of the

two representations, and for each we proceed as follows. Firstly, we

try all vertices 𝑣 ∈ 𝑉 (𝐺) \𝑆 as canonical extender. Next, we want to
identify the right way of inserting 𝑣 in the interval representation

of 𝑆 . As the interval length is fixed to 1, there are 5|𝑆 | possibilities:
for any other𝑤 ∈ 𝑆 , we can place 𝑣 ending just before / just after

the start of𝑤 , exactly overlapping𝑤 , or starting just before / just

after the end of𝑤 . We can observe how these capture all possible

ways to insert 𝑣 , since given any other placement we can slide 𝑣 in

any direction until it is about to gain or lose an overlap, i.e., one of

the endpoints of 𝑣 will approach the endpoint of another interval,

which puts us into one of the 5|𝑆 | cases above.

10
Ambiguity may be caused by identical vertices, i.e., adjacent and with the same sets

of neighbors, but it can be resolved by taking the smallest-id vertex first.
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Figure 4: a: a proper interval subgraph 𝑆 of the graph in Figure 2. d: another proper interval subgraph𝑇 . b: the unit interval rep-

resentation of 𝑆 , which induces the canonical order 1, 2, 4, 3, 8, 7, 9, 12, 11. e: the representation of𝑇 , which induces the canonical

order 1, 2, 4, 5, 11, 12, 9, 10, 8.

Finally, we have to make the representation consistent, by re-

moving from 𝑆 ∪ {𝑣}:
• All vertices (intervals) coming after 𝑣 in this representation.

• All neighbors of 𝑣 that do not overlap its interval.

• All non-neighbors of 𝑣 that do overlap its interval.

• Finally, all vertices that have become disconnected from

the connected component containing 𝑣 by performing the

previous steps.

The resulting representation is consistent with a proper interval

graph, so the resulting graph is clearly a proper interval graph.

Let us call it 𝑋 , and let us call 𝑆 ′ = comp(cc𝑣 (𝑋 )). The following
example illustrates these operations on the example graphs from

Figure 4.

Example. Looking at the graphs in Figure 4 ((a), (d)) and their
canonical orderings (see (b),(e)) we can give an example of the opera-
tions performed by the neighboring function.

(c): 5 is added as canonical extender and placed “just before” 3; we
remove vertices the dashed vertices 3 and 8 (overlapping 5 but not
neighbors of 5 in 𝐺), and 11 and 12 (not overlapping 5 but neighbors
of 5 in𝐺); 9 and 7 are also removed as not part of the same connected
component as 5. The resulting graph (f) is then is maximalized with
comp(·), and has greater proximity with 𝑏 than 𝑎.

Indeed, 𝑆∩̃𝑇 = {1, 2, 3, 4}, while the maximal solution obtained
maximalizing (f) contains 1, 2, 3, 4, 5.

The set neighbors(𝑆) will be made of the 𝑆 ′ obtained by trying

both representations of 𝑆 , for each all 𝑣 ∈ 𝑉 (𝐺) \ 𝑆 , and for each

all possible insertions, for a total of 𝑂 (𝑛2) neighboring solutions.
We now show that, given 𝑆,𝑇 , we always obtain some 𝑆 ′ ∈

neighbors(𝑆) such that |𝑆 ′∩̃𝑇 | > |𝑆∩̃𝑇 |.
Let the proximity 𝑆∩̃𝑇 be 𝑡1, . . . , 𝑡𝑖−1: this is a prefix of 𝑇 , and

since it is a connected subgraph, its vertices in the same order as in

𝑇 in one of the two representations of 𝑆 . Furthermore, let 𝑣 be our

canonical extender.

Looking at the canonical order of 𝑇 , consider the placement of

𝑡𝑖 relative to the preceding intervals 𝑡1, . . . , 𝑡𝑖−1. Now, consider the

case where 𝑣 = 𝑡𝑖 , the correct one between the two representations

of 𝑆 is considered, and the placement of 𝑣 relative to 𝑡1, . . . , 𝑡𝑖−1 is
the same as 𝑡𝑖 in 𝑇 .

As we try all possible placements for 𝑣 = 𝑡𝑖 , and as 𝑡1, . . . , 𝑡𝑖−1
is a connected subgraph of 𝑇 , we will also try the placement of 𝑡𝑖
considered above. The correct placement of 𝑣 tells us that, when we

remove all intervals coming after 𝑣 from 𝑆 ∪ {𝑣}, we do not remove

vertices from 𝑡1, . . . , 𝑡𝑖−1. The placement also tells us that all neigh-

bors of 𝑣 in 𝑡1, . . . , 𝑡𝑖−1 overlap with 𝑣 in the interval representation,

while all non-neighbors of 𝑣 in 𝑡1, . . . , 𝑡𝑖−1 do not, so vertices of

𝑡1, . . . , 𝑡𝑖−1 are not removed in the remaining steps. It follows that

the set 𝑋 obtained is a proper interval subgraph of 𝐺 containing

𝑡1, . . . , 𝑡𝑖 , and that 𝑆 ′ = comp(𝑋 ) is such that |𝑆 ′∩̃𝑇 | > |𝑆∩̃𝑇 |.

8.2 Induced Proper Interval Subgraphs

The non-connected version is similarly solved: as in previous sec-

tions, we define the canonical order by ordering each connected

component as in the connected case, then ordering the components

by smallest-id vertex.

The proximity is then defined by canonical reconstruction (Defi-

nition 4.1).

Let 𝑆1, . . . , 𝑆 𝑗 be the connected components of 𝑆 , and 𝑇1, . . . ,𝑇𝑘
those of 𝑇 , for some 𝑇 .

We will have that 𝑆∩̃𝑇 consists of some complete connected

components of 𝑇 , as well as a (possibly empty) subset of one com-

ponent 𝑇𝑖 . The canonical extender 𝑡𝑖 will be the earliest vertex of

the canonical ordering of 𝑇𝑖 that is not in 𝑆 . We can also observe

that each of these components is contained itself in some connected

component of 𝑆 .

When we select a canonical extender 𝑣 , we also select a com-

ponent 𝑆𝑖 (of course, trying all possibilities): we aim to find the

component which contains the partially formed 𝑇𝑖 .

As we add 𝑣 to 𝑆 , we can immediately remove from 𝑆 all neigh-

bors of 𝑣 in 𝑆 \ 𝑆𝑖 , as indeed as 𝑡𝑖 only has neighbors in 𝑇𝑖 .

We then proceed as in the connected case, ordering 𝑆𝑖 in the

two possible ways, and trying all𝑂 (𝑛) insert possibilities. However,
14



we must take care of the fact that 𝑆𝑖 may contain more than one

connected component of 𝑇 : components preceding 𝑣 in the order

are preserved (they cannot overlap 𝑣 as they precede the other

elements of 𝑇𝑖 , to which they are not adjacent), but there may be

some following 𝑣 .
For this reason, we must introduce another “guess”, that is we

guess which of the intervals preceding 𝑣 is 𝑡𝑖−1 (as, to obtain the

correct placement of 𝑣 in the interval representation, we may not

have placed it just after 𝑡𝑖−1). Note how the number of possible

𝑡𝑖−1 is at most |𝑁 (𝑣) |. This step, which was not necessary in the

connected version, allows us to effectively compute a safe way of

detaching the intervals following 𝑣 .

Specifically, we remove from 𝑆𝑖 ∪ {𝑣} the following vertices:

• All vertices (intervals) between 𝑡𝑖−1 and 𝑣 .
• All vertices (intervals) coming after 𝑣 in this representation

that are adjacent to 𝑣 or to 𝑡𝑖−1.
• All neighbors of 𝑣 that do not overlap its interval.

• All non-neighbors of 𝑣 that do overlap its interval.

In this way, all the vertices removed could not be part of the

proximity 𝑆∩̃𝑇 : the ones between 𝑡𝑖−1 and 𝑡𝑖 cannot be in the inter-

val representation since 𝑡𝑖−1 and 𝑡𝑖 are consecutive in the interval

representation of 𝑇 ; the others we remove were neighbors of 𝑡𝑖−1
or 𝑡𝑖 , but did not precede them in the interval representation (i.e.,

in the canonical order), so they could not be part of 𝑆∩̃𝑇 . On the

other hand, the remaining intervals following 𝑣 are now in a sepa-

rate connected component, thus the interval representation of the

resulting graph is consistent, contains 𝑡1, . . . , 𝑡𝑖 (for any 𝑇 , when

the correct choices are performed), and we can apply the comp(·)
function to obtain a neighboring solution 𝑆 ′.

8.3 Running time

As for the complexity, the neighboring function tries 𝑂 (𝑛) candi-
dates for 𝑣 , and for each, 5|𝑆 | = 𝑂 (𝑛) possible placements in 𝑆 , in

each of the 2 representations. For each, the cost of the procedure is

dominated by the application of the comp(𝑋 ) call.
Since we can test whether a graph is a proper interval graph

in 𝑂 (𝑚) time [5], the comp(𝑋 ) function can be implemented in

𝑂 (𝑚𝑛) time as for chordal subgraphs, giving us a total cost per

solution of 𝑂 (𝑛3𝑚) time.

For the non-connected version, we must consider two additional

phases: for each 𝑣 , we firstly selected a connected component 𝑆𝑖 of

𝑆 , and secondly we selected the possible 𝑡𝑖−1 among the neighbors

of 𝑣 . We can bound the number of connected components by 𝑂 (𝑛),
and, rather than adding another factor 𝑂 (𝑛) for the choice of 𝑡𝑖−1,
we can observe how each distinct pair 𝑣, 𝑡𝑖−1 corresponds to an

edge, so the number of possible 𝑣 and 𝑡𝑖−1 pairs is 𝑂 (𝑚), for a total
complexity of 𝑂 (𝑛3𝑚2)

Theorem 8.1. Maximal Induced Proper Interval Subgraphs and
Maximal Connected Induced Proper Interval Subgraphs are proximity
searchable, and can be listed with 𝑂 (𝑛3𝑚2) time delay and 𝑂 (𝑛3𝑚)
time delay, respectively.

9 MAXIMAL OBSTACLE-FREE CONVEX

HULLS

In application domains such as robotics planning and routing, a

common problem is finding areas, typically convex, in a given

environment which are free from obstacles (see, e.g., [17, 41]).

In this section we solve the following formulation of the problem:

let 𝑉 and 𝑋 be two sets of elements, which corresponds to points

on a 2-dimensional plane. 𝑉 represents the point of interest for our

application, and 𝑋 represents the obstacles. For short, let |𝑉 | = 𝑗

and |𝑋 | = ℎ, and let 𝑛 = 𝑗 + ℎ be the total number of points. We are

interested in listing all maximal obstacle-free convex hulls (mocs

for short), where an obstacle-free convex hull is a set of elements

𝑆 ⊆ 𝑉 such that the convex hull of 𝑆 does not contain any element

of 𝑋 .

This problem does not concern a graph, but its solutions are

modeled as sets of elements, thus the technique may still be applied.

Furthermore, we can naturally generalize the problem by adding a

graph structure to𝑉 , i.e., adding edges between its points, and con-

sidering the problem of Maximal Connected Obstacle-free Convex

hulls.

9.1 Maximal Obstacle-free Convex Hulls

Again, note that the problem is hereditary, i.e., each subset 𝑆 ′ of a
solution 𝑆 clearly also admits a convex hull which does not include

elements of 𝑋 (since it will be contained in that of 𝑆).

It is worth observing that this is the only problem in this paper

to which we do not apply the canonical reconstruction strategy.

Consider a maximal solution 𝑆 and an element 𝑣 ∈ 𝑉 \ 𝑆 . As
𝑆 is maximal, there is at least one element 𝑥 ∈ 𝑋 included in the

convex hull of 𝑆 ∪ {𝑣}. This element 𝑥 casts two “shadows” 𝑆1 and

𝑆2 on 𝑆 , seen by 𝑣 : consider the straight line between 𝑣 and 𝑥 , 𝑆1
consists of all elements of 𝑆 above this line, and 𝑆2 of all those

below it. It is straightforward to see how both the convex hull of

𝑆1 ∪ {𝑣} and that of 𝑆2 ∪ {𝑣} do not contain 𝑥 . Any element of 𝑆

that falls exactly on the line may not participate in any solution

involving 𝑣 .11 Furthermore, any element 𝑥 ′ ∈ 𝑋 above this line,

and still in the convex hull of 𝑆 ∪ {𝑣}, further casts two shadows

on 𝑆1, as any element below this line casts them on 𝑆2. If we repeat

this process for all elements of 𝑋 in the convex hull of 𝑆 ∪ {𝑣} we
obtain a number of shadows of 𝑆 which is at most linear in the

number of elements of 𝑋 . Let 𝜙 (𝑆, 𝑣) be the set of these shadows.
For each of these shadows 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣), we have that the convex
hull of 𝑆𝑖 ∪ {𝑣} may not include elements of 𝑋 , i.e., 𝑆𝑖 ∪ {𝑣} is a
(possibly not maximal) solution.

The neighboring function is then obtained as follows.

Definition 9.1 (Neighboring function for mocs).

neighbors(𝑆) =
⋃

𝑣∈𝑉 (𝐺)\𝑆
neighbors(𝑆, 𝑣)

Where

neighbors(𝑆, 𝑣) = {comp(𝑆𝑖 ∪ {𝑣}) : 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣)}

Finally, for two solutions 𝑆 and 𝑆∗, we simply define 𝑆∩̃𝑆∗ as the
intersection 𝑆 ∩ 𝑆∗ between their elements.

11
Note that it may not fall between 𝑣 and 𝑥 otherwise the convex hull of 𝑆 would have

included 𝑥 .
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Let 𝐼 = 𝑆∩𝑆∗ = 𝑆∩̃𝑆∗, and 𝑣 any element in 𝑆∗ \𝑆 . Since 𝐼 ∪{𝑣} is
contained in a moc, 𝑆∗, its convex hull cannot contain any element

of𝑋 . It follows that 𝐼 must be fully contained in a single 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣):
indeed, if we take two points 𝑢𝑖 ∈ 𝑆𝑖 and 𝑢 𝑗 ∈ 𝑆 𝑗 , it is evident by
the definition of 𝜙 (𝑆, 𝑣) that the convex hull of {𝑣,𝑢𝑖 , 𝑢 𝑗 } (or any
superset of it) contains at least an element of 𝑋 . We have that

the neighboring function will return 𝑆 ′ = comp(𝑆𝑖 ∪ {𝑣}), with
𝐼 ∪{𝑣} ⊆ 𝑆 ′, which implies |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |. The algorithm is thus

correct.

As for the complexity, the problem is hereditary, so we may

compute a comp(𝑆) call by testing each vertex in 𝑉 \ 𝑆 once. The
convex hull of 𝑆 can be computed in 𝑂 ( |𝑆 | log |𝑆 |) time [9], and

testing a solution consists in checking that each vertex of 𝑋 is not

in this hull, which can trivially be done in𝑂 ( |𝑆 | ·ℎ) time. The cost of

comp(·) is thus𝑂 ( 𝑗 (ℎ + log 𝑗)) time. For each candidate 𝑣 , we have

at most ℎ neighboring solutions, and since we need to consider at

most 𝑗 candidates, the delay of the algorithm will be 𝑗 · ℎ times the

cost of a comp(·) call.
We thus obtain an algorithm with the following complexity:

Theorem 9.2. Maximal Obstacle-free Convex Hulls are proximity
searchable, and can be listed in𝑂 ( 𝑗2ℎ(ℎ+ log 𝑗)) = 𝑂 (𝑛4) time delay.

It could be argued that the neighboring function actually reports

all solutions of the input-restricted problem in this instance, al-

lowing us to induce a parent-child relationship with the structure

of [11, 34], and reducing the space usage to𝑂 (𝑛) by using stateless

iteration [12]. However, it is worth observing that proximity search

required proving a weaker statement, and allows for an arguably

simpler proof.

9.2 Maximal Connected Obstacle-free Convex

Hulls

We now consider an extension of the problem where on top of 𝑉

and 𝑋 we have a graph structure𝐺 = (𝑉 , 𝐸) on the points of𝑉 , and

we are interested in listing all maximal set of points 𝑆 ⊆ 𝑉 such

that the convex hull of 𝑆 is obstacle-free, and 𝐺 [𝑆] is connected.
We consider this a natural extension as, in the applications men-

tioned above, it could model requirements on the structure of the

obstacle-free areas identified.

The algorithm is remarkably similar to the above version, as the

neighboring function still considers 𝑆𝑖 ∪ {𝑣} for all 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣), but
only keeps the connected component of 𝐺 [𝑆𝑖 ∪ {𝑣}] containing 𝑣 .

Definition 9.3 (Neighboring function for mocs).

neighbors(𝑆) =
⋃

𝑣∈𝑉 (𝐺)\𝑆
neighbors(𝑆, 𝑣)

Where

neighbors(𝑆, 𝑣) = {cc𝑣 (comp(𝑆𝑖 ∪ {𝑣})) : 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣)}

For two solutions 𝑆 and 𝑆∗, we define 𝑆∩̃𝑆∗ as the largest con-
nected component of their intersection 𝑆 ∩ 𝑆∗. We now prove that

there is 𝑆 ′ ∈ neighbors(𝑆) such that |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |.
Let 𝐼 = 𝑆 ∩ 𝑆∗ = 𝑆∩̃𝑆∗, and 𝑣 any element in 𝑆∗ \ 𝑆 such that

𝐺 [𝐼 ∪{𝑣}] is connected. Note that a suitable 𝑣 must exist, otherwise

𝐼 would not be connected to the elements of 𝑆∗ \ 𝐼 , contradicting
the fact that 𝑆∗ is a connected solution. Since 𝐼 ∪ {𝑣} is contained

in 𝑆∗, its convex hull cannot contain any element of 𝑋 . It follows

that 𝐼 must be fully contained in a single 𝑆𝑖 ∈ 𝜙 (𝑆, 𝑣). Furthermore,

as 𝐼 ∪ {𝑣} is connected, it must be contained in cc𝑣 (𝑆𝑖 ∪ {𝑣}), the
connected component of 𝐺 [𝑆𝑖 ∪ {𝑣}] containing 𝑣 .

Similarly to the above case, we have that the neighboring func-

tion will return 𝑆 ′ = comp(cc𝑣 (𝑆𝑖 ∪ {𝑣})), with 𝐼 ∪ {𝑣} ⊆ 𝑆 ′, which
implies |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |. The algorithm is thus correct.

The complexity can be also derived from the non-connected

case: the only additional step is applying cc𝑣 (·) before the comp(·)
function. As cc𝑣 (·) takes 𝑂 (𝑚) time, where𝑚 = |𝐸 (𝐺) | = 𝑂 (𝑛2),
we can conclude the following:

Theorem 9.4. Maximal Connected Obstacle-free Convex Hulls are
proximity
searchable, and can be listed in 𝑂 ( 𝑗ℎ(𝑚 + 𝑗 (ℎ + log 𝑗))) = 𝑂 (𝑛4)
time delay.

10 MAXIMAL CONNECTED DIRECTED

ACYCLIC SUBGRAPHS

In this section we consider a directed graph, where each edge has a

head and a tail, and its direction is from the tail to the head. We call

𝑁 + (𝑣) the out-neighbors of the vertex 𝑣 and 𝑁− (𝑣) its in-neighbors.
The goal of this section is listing Maximal Induced Connected

Acyclic Subgraphs (mcais hereafter) of a given directed graph 𝐺 .

The problem is connected-hereditary, and acyclicity can be tested

in 𝑂 (𝑚) time, thus comp(·) can be implemented in 𝑂 (𝑚𝑛) time.

For completeness, we remark that the non-connected version

(Maximal Induced Directed Acyclic Subgraphs), corresponds to list-

ing the complements of Minimal Feedback Vertex Sets in a directed

graph, and is of no interest here as an output-polynomial algorithm

is given in [42]. We thus address the connected version of the prob-

lem, which has no natural counterpart in terms of feedback vertex

set. Let us define the canonical order:

Definition 10.1 (Canonical Order for Maximal Connected Induced
Acyclic Subgraphs). The canonical order of a mcais 𝑆 is the order
{𝑠1, . . . , 𝑠 |𝑆 |} such that, for each 𝑠𝑖 , {𝑠1, . . . , 𝑠𝑖 } is connected, and
either {𝑠1, . . . , 𝑠𝑖−1} ∩ 𝑁 + (𝑠𝑖 ) = ∅ or {𝑠1, . . . , 𝑠𝑖−1} ∩ 𝑁− (𝑠𝑖 ) = ∅. If
multiple orders are possible let it be the lexicographically minimum.

Our algorithm does not need to compute this order or ∩̃, but we
need to show that it always exists.

Firstly, recall that every acyclic graph has at least one source

and one target, and let us observe an important property of acyclic

graphs with a single source (whose proof trivially follows from the

fact that any non-source vertex has a neighbor occurring before

itself in the order):

Lemma 10.2. Let 𝐺 be a single-source acyclic connected graph,
and 𝑣1, . . . , 𝑣𝑛 any topological order of𝐺 . Any prefix 𝑣1, . . . , 𝑣𝑖 of this
order induces a connected subgraph.

Lemma 10.2 also implies that the reversed topological order (i.e.,

where vertices have no forward out-neighbors) of a single-target

acyclic connected graph is such that every prefix induces a con-

nected subgraph. We also remark that both these orders satisfy the

intersection properties of Definition 10.1.

We now use this lemma to show that the defined canonical order

exists for any mcais. In the following, we define collapsing a set
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of vertices 𝐴 ⊆ 𝑆 into 𝑥 as replacing them with a single vertex 𝑥 ,

whose in- and out-neighbors correspond to all vertices in 𝑆 \𝐴 that

were respectively in- and out-neighbors of some vertex in 𝐴.

Lemma 10.3. Every Directed Acyclic Graph allows a canonical
order by Definition 10.1.

Proof. Let 𝑆 be a Directed Acyclic Graph. Let 𝑣1 be a source of

𝑆 , and 𝑆1 be the set of vertices reachable by 𝑣1, including 𝑣1. Let

𝑠1,1, . . . , 𝑠1, |𝑆1 | a topological ordering of 𝑆1.
No vertex in 𝑆1 can have an out-neighbor outside of 𝑆1 as other-

wise said vertex would be in 𝑆1 itself. Let instead 𝑆2 be the set of

all vertices in 𝑆 \ 𝑆1 that can reach some vertex of 𝑆1.

If we collapse 𝑆1 into a vertex 𝑥 , we can observe that 𝑆2 ∪ {𝑥} is
acyclic subgraph with 𝑥 being the only target. Let 𝑥, 𝑠2,1, . . . , 𝑠2, |𝑆2 |
be a reverse topological ordering of 𝑆2 ∪ {𝑥}.

If we replace 𝑥 with the previously computed order of 𝑆1, we

obtain an order 𝑠1,1, . . . , 𝑠1, |𝑆1 |, 𝑠2,1, . . . , 𝑠2, |𝑆2 |} which respects Def-

inition 10.1: Each vertex in 𝑠1,1, . . . , 𝑠1, |𝑆1 | has no backward out-

neighbor by the topological ordering of 𝑆1; each 𝑠2,1, . . . , 𝑠2, |𝑆2 | has
no backward in-neighbor by the reverse topological ordering of 𝑆2,

and because vertices of 𝑆1 can not have out-neighbors outside 𝑆1;

finally, every prefix of 𝑠1,1, . . . , 𝑠1, |𝑆1 |, 𝑠2,1, . . . , 𝑠2, 𝑗 is connected, as
𝑥, 𝑠2,1, . . . , 𝑠2, 𝑗 is connected, meaning that all vertices in 𝑠2,1, . . . , 𝑠2, 𝑗
are connected to some vertex in 𝑆1, that is itself connected.

We may now repeat this step by collapsing 𝑆1 ∪ 𝑆2 into a vertex

𝑥 ′, and since 𝑥 ′ will be a source, take 𝑆3 as all vertices reached by

𝑥 ′ in 𝑆 \ (𝑆1 ∪ 𝑆2), and take a topological order of 𝑆3 ∪ {𝑥 ′}, which
we append to the order obtained so far (excluding 𝑥 ′).

By iterating steps, we obtain an ordering 𝑠1,1, . . . , 𝑠1, |𝑆1 |, 𝑠2,1, . . . , 𝑠2, |𝑆2 |,
𝑠3,1, . . . , 𝑠3, |𝑆3 | . . . , 𝑠𝑘,1, . . . , 𝑠𝑘, |𝑆𝑘 | , with𝑘 ≤ |𝑆 |, that contains all ver-
tices of 𝑆 , and such that any prefixwill induce a connected subgraph,

and any 𝑠𝑖, 𝑗 will have no backward out-neighbors if 𝑖 is odd, and no

backward in-neighbors if 𝑖 is even, thus there exist an ordering sat-

isfying Definition 10.1 (if a feasible order exists, a lexicographically

minimum one must exist too). □

Finally, the proximity ∩̃ follows by Definition 4.1. We define the

neighboring function as follows.

Definition 10.4 (Neighboring Function for Maximal Connected In-
duced Acyclic Subgraphs). For a solution 𝑆 and a vertex 𝑣 ∈ 𝑉 (𝐺)\𝑆 ,
we define

neighbors(𝑆) =
⋃

𝑣∈𝑉 (𝐺)\𝑆
neighbors(𝑆, 𝑣)

Where neighbors(𝑆, 𝑣) = {comp(cc𝑣 ({𝑣}∪𝑆\𝑁 + (𝑣))), comp(cc𝑣 ({𝑣}∪
𝑆 \ 𝑁− (𝑣)))}

In other words, the function will add 𝑣 to 𝑆 . 𝑆 ∪ {𝑣} is not acyclic,
but all cycles must involve 𝑣 , so we make it acyclic by removing

either all the out-neighbors 𝑁 + (𝑣), which makes 𝑣 a target, or all

its in-neighbors 𝑁− (𝑣), which makes 𝑣 a source. It then takes the

connected component containing 𝑣 and feeds the result to comp(·),
to surely obtain a mcais.

Consider now two solutions 𝑆 and 𝑆∗, and again let ¤𝑣 be the

first vertex in the canonical order of 𝑆∗ which is not in 𝑆∩̃𝑆∗. More

formally, let 𝑆∩̃𝑆∗ = {𝑠∗
1
, . . . , 𝑠∗

ℎ
} and ¤𝑣 = 𝑠∗

ℎ+1.
Let 𝑆 ′ = comp(cc ¤𝑣 ({ ¤𝑣} ∪𝑆 \𝑁 + ( ¤𝑣))) and 𝑆 ′′ = comp(cc ¤𝑣 ({ ¤𝑣} ∪

𝑆 \ 𝑁− ( ¤𝑣))) be the two solutions generated by neighbors(𝑆, ¤𝑣).

By the canonical order of 𝑆∗, we have that (𝑆∩̃𝑆∗) ∪ { ¤𝑣} is con-
nected, and either (𝑆∩̃𝑆∗) ∩ 𝑁 + ( ¤𝑣) = ∅ or (𝑆∩̃𝑆∗) ∩ 𝑁− ( ¤𝑣) = ∅.

It follows that if (𝑆∩̃𝑆∗) ∩ 𝑁 + ( ¤𝑣) = ∅, then (𝑆∩̃𝑆∗) ∪ { ¤𝑣} ⊆
cc ¤𝑣 ({ ¤𝑣}∪𝑆\𝑁 + ( ¤𝑣)) ⊆ 𝑆 ′, and otherwise we have (𝑆∩̃𝑆∗)∩𝑁− ( ¤𝑣) =
∅, which means (𝑆∩̃𝑆∗) ∪ { ¤𝑣} ⊆ cc ¤𝑣 ({ ¤𝑣} ∪ 𝑆 \ 𝑁− ( ¤𝑣)) ⊆ 𝑆 ′′.

We thus have that either |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ | or |𝑆 ′′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ |,
which gives us the second necessary condition of proximity search.

Finally, it is straightforward to see that neighbors(𝑆) takes poly-
nomial time, as its cost is bounded by 𝑂 (𝑛) calls to comp(·), which
can be implemented in 𝑂 (𝑚𝑛), meaning that all conditions of Defi-

nition 3.1 are satisfied. Theorem 10.5 follows.

Theorem 10.5. Maximal Connected Induced Directed Acyclic Sub-
graphs are proximity searchable, and can be listed𝑂 (𝑚𝑛2) time delay.

10.1 Maximal Connected Edge-induced

Directed Acyclic Subgraphs

We remark here that the structure can be adapted to the edge case,

i.e., Maximal Connected Edge-induced Directed Acyclic Subgraphs

(mcaes).

As the problem is still hereditary and acyclic subgraphs can be

tested in linear time, we can implement the comp(·) function in

𝑂 (𝑚2) time. The canonical order is as follows.

Definition 10.6 (Canonical order for mcaes). Given a mcaes 𝑆 , let

the canonical ordering of the vertices of 𝐺 [𝑆] according to Defini-

tion 10.1 be 𝑣1, . . . , 𝑣 |𝑉 [𝑆 ] | .
The canonical ordering of 𝑆 is obtained by selecting the edges

of 𝑆 by increasing order with respect to their later endpoint in the

vertex order, and breaking ties by increasing order of the other

(earlier) endpoint.

We obtain a canonical ordering 𝑒1, . . . 𝑒 |𝑆 | of 𝑆 with the following
properties: take an edge 𝑒𝑖 = {𝑣 𝑗 , 𝑣𝑘 }, assuming wlog 𝑗 < 𝑘 . All

edges whose latter endpoint comes earlier than 𝑣𝑘 in the vertex

order are preceding 𝑒𝑖 in the order, thus all edges in the induced

subgraph 𝐺 [{𝑣1, . . . , 𝑣𝑘−1}] will be in the prefix 𝑒1, . . . 𝑒𝑖 of the

canonical ordering of 𝑆 . By Definition 10.1 𝐺 [{𝑣1, . . . , 𝑣𝑘−1}] is
connected. Finally, the only other edges in 𝑒1, . . . , 𝑒𝑖 are those whose

latter endpoint is 𝑣𝑘 , so their earlier endpoint is in {𝑣1, . . . , 𝑣𝑘−1}.
Thus each prefix 𝑒1, . . . 𝑒𝑖 forms a connected (edge) subgraph, which

is also acyclic as it is a subgraph of the acyclic subgraph 𝑆 .

Furthermore, it also holds that, for the latter endpoint 𝑣𝑘 of 𝑒𝑖 , ei-

ther

{𝑣1, . . . , 𝑣𝑘−1} ∩ 𝑁 + (𝑣𝑘 ) = ∅ or {𝑣1, . . . , 𝑣𝑘−1} ∩ 𝑁− (𝑣𝑘 ) = ∅. This
implies that either {𝑒1, . . . , 𝑒𝑖−1} ∩ 𝑁 +𝐸 (𝑣𝑘 ) = ∅, or {𝑒1, . . . , 𝑒𝑖−1} ∩
𝑁−
𝐸
(𝑣𝑘 ) = ∅, which gives us our neighboring function:

Definition 10.7 (Neighboring Function for mcaes).
Let 𝑆 be a mcaes and 𝑒 = (𝑣𝑡 , 𝑣ℎ) a directed edge in 𝐸 (𝐺) \ 𝑆

directed from its tail 𝑣𝑡 to its head 𝑣ℎ . Furthermore, let 𝑁 +
𝐸
(𝑣ℎ)

and 𝑁−
𝐸
(𝑣𝑡 ) be the out-edges and in-edges of 𝑣ℎ and 𝑣𝑡 , respec-

tively. We define neighbors(𝑆, 𝑣𝑡 , 𝑣ℎ) = {comp(cc𝑣𝑡 ({𝑒} ∪ (𝑆 \
𝑁−
𝐸
(𝑣𝑡 ))), comp(cc𝑣ℎ ({𝑒} ∪ (𝑆 \ 𝑁 +𝐸 (𝑣ℎ)))}
And thus

neighbors(𝑆) =
⋃

𝑒=(𝑣𝑡 ,𝑣ℎ) ∈𝐸 (𝐺)\𝑆
neighbors(𝑆, 𝑣𝑡 , 𝑣ℎ)

In other words, we add 𝑒 to 𝑆 , and try each of the two possibilities

to obtain the latter vertex in the canonical order of 𝑆∗: if it is the tail
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𝑣𝑡 of the edge, surely its backward out-neighborhood in the canoni-

cal order of 𝑆∗ is not empty as it contains 𝑣ℎ , so it’s in-neighborhood

must be, thus we can safely remove 𝑁−
𝐸
(𝑣𝑡 ) to make 𝑆 ∪ {𝑒} acyclic.

Conversely, if it is the head 𝑣ℎ we can safely remove 𝑁 +
𝐸
(𝑣ℎ). We

thus obtain |𝑆 ′∩̃𝑆∗ | > |𝑆∩̃𝑆∗ | for some 𝑆 ′ ∈ neighbors(𝑆).
We can observe that the cost C𝑡 of a comp(𝑋 ) call is𝑂 (𝑚2) since

we can test acyclicity in 𝑂 (𝑚) time, which we do up to𝑚 times,

and finding and selecting the edges connected to 𝑋 take in total

𝑂 (𝑚) time as well. As the neighboring function produces 𝑂 (𝑚)
solutions, we obtain:

Theorem 10.8. Maximal Connected Edge-induced Directed Acyclic
Subgraphs are proximity searchable, and can be listed 𝑂 (𝑚3) time
delay.

11 PROXIMITY SEARCH IN POLYNOMIAL

SPACE

Proximity search consists in a graph traversal, where the number of

nodes corresponds to that of solutions. If we store the set of visited

nodes, as done in the algorithms presented until now, it follows

that the space requirement of the algorithm becomes exponential

in 𝑛.

Techniques such as reverse-search are able to turn this graph

into a rooted tree, that can be traversed without keeping track

of visited nodes, by means of a parent-child relationship among

solutions, thus achieving polynomial space. However, known in-

stances of reverse search have de facto relied on the problem at

hand being hereditary, and the input-restricted problem being solv-

able in polynomial time (respectively, polynomial total time) to

obtain polynomial delay (polynomial total time). Recently, a gener-

alization of reverse-search to non-hereditary properties has been

proposed in [13]: this allows us to induce a parent-child relationship

for maximal solutions in any commutable set system (a class of set

systems which includes both hereditary and connected-hereditary

properties), and obtain maximal listing algorithm with polynomial

space, and whose delay is linked to the input-restricted problem.

In this section we show that, when suitable conditions are met,

it is possible to get the best of both worlds: on one hand, using

proximity search to overcome the burden of the input-restricted

problem and achieve polynomial delay; on the other, using [13]

to induce a parent-child relationship among solutions and achieve

polynomial space at the same time.

The final goal of the section is proving the following result.

Theorem 11.1. Let (U, F ) be a commutable set system, and
neighbors(𝑆, 𝑠) a canonical reconstruction function for a proxim-
ity search algorithm (see Definition 4.2). If the canonical order relative
to the function neighbors(𝑆, 𝑠) satisfies the properties of a prefix-
closed order (Definition 11.2), the maximal solutions of (U, F ) can be
enumerated without duplication in polynomial delay and polynomial
space.

11.1 Requirements and notation of [13]

Let us briefly recall the requirements of [13]. In a set system (U, F ),
U is the ground set, i.e., the elements constituting the solutions, and

F defines the solutions, i.e., 𝑆 ∈ F iff 𝑆 ⊆ U satisfies the property

at hand.

A set system is strongly accessible if for any two distinct solutions
𝑆, 𝑆 ′ ∈ F with 𝑆 ⊂ 𝑆 ′, there exists an element 𝑥 ∈ 𝑆 ′ \ 𝑆 such that

𝑆 ∪ {𝑥} ∈ F . This is equivalent to saying that any non-maximal

solution can be extended into a larger solution with a single element.

We say that a set system is commutable if (i) it is strongly acces-

sible, and (ii) it respects the commutable property: for any 𝑆,𝑇 ∈ F
with 𝑆 ⊂ 𝑇 , and any 𝑎, 𝑏 ∈ 𝑇 \𝑆 , we have that 𝑆∪{𝑎} ∈ F ∧𝑆∪{𝑏} ∈
F implies 𝑆∪{𝑎, 𝑏} ∈ F . As mentioned in [13], it is straightforward

to see that both hereditary and connected-hereditary properties

correspond to commutable set systems.

Furthermore, we call 𝑍 the set of “singleton solutions”, i.e., 𝑍 =

{𝑒 ∈ U : {𝑒} ∈ F }, and recall that in any strongly accessible set

system 𝑍 ∩𝑆 ≠ ∅ for any 𝑆 ∈ F . We also define, 𝑆+ = {𝑥 : 𝑆 ∪{𝑥} ∈
F }.

Given any commutable set system, we can obtain a maximal

listing algorithm with two components. Firstly we need an efficient

algorithm for solving the input-restricted problem. Secondly, to

induce a parent-child structure we need what is called a family
of prefix-closed orders for the problem, satisfying the following

properties:

Definition 11.2 (Prefix-closed orders, from [13]). Let Π(𝑋, 𝑣) be a
family of orders parameterized by 𝑋 ∈ F and 𝑣 ∈ 𝑋 ∩ 𝑍 such that

Π(𝑋, 𝑣) yields a permutation of 𝑋 ∪𝑋+. For 𝑋 ∈ F and 𝑣 ∈ 𝑋 ∩ 𝑍 ,
let us denote by 𝑥𝑣

1
, . . . , 𝑥𝑣

𝑘
the elements of 𝑋 ordered according to

Π(𝑋, 𝑣).12 We call the family Π prefix-closed if for all 𝑋 ∈ F and

𝑣 ∈ 𝑋 ∩ 𝑍 , and 𝑖 ∈ {1, . . . , 𝑘 − 1}, the following properties hold:
(first) The minimal element is 𝑣 , i.e., 𝑥𝑣

1
= 𝑣 .

(prefix) The 𝑖-th prefix 𝑋𝑖 = {𝑥𝑣
1
, . . . , 𝑥𝑣

𝑖
} of 𝑋 is a solution,

i.e., 𝑋𝑖 ∈ F .
(greedy) The element 𝑥𝑖+1 is the minimal element of 𝑋+

𝑖
∩ 𝑋

with respect to the order Π(𝑋𝑖 , 𝑣).

As explained in [13], each subset 𝑋 of a maximal solution 𝑆 does

not necessarily belong to F (as the set system is not necessarily

hereditary). The first property indicates that we can build 𝑆 starting

from an element 𝑣 ∈ 𝑆 ∩ 𝑍 , whereas the greedy property indicates

that we can iteratively expand𝑋 = {𝑣} by considering the elements

of 𝑋 ∪ 𝑋+ in a prefix-closed order, so that at any point, the prefix

{𝑥1, . . . , 𝑥 𝑗 } found so far is a solution thank to the prefix property.

We use the shorthand notation ≺𝑡
𝑆
to represent Π(𝑆, 𝑡), where

𝑎 ≺𝑡
𝑆
𝑏 for any two elements 𝑎, 𝑏 ∈ U means that 𝑎 occurs before

𝑏 in Π(𝑆, 𝑡).
Given a solution 𝑆 ∈ F we define its seed, seed(𝑆), as the element

of smallest id in 𝑆 ∩𝑍 , i.e., the element 𝑠 of smallest id in 𝑆 such that

{𝑠} ∈ F . Observe that every non-empty solution 𝑆 of a strongly

accessible set system has a seed: since ∅ ⊂ 𝑆 , there is some 𝑠 ∈ 𝑆 \ ∅
such that ∅ ∪ {𝑠} = {𝑠} ∈ F .

The simplified notations ≺𝑆 corresponds to ≺𝑡
𝑆
with 𝑡 = seed(𝑆).

When 𝑆 is a maximal solution, ≺𝑆 defines an order 𝑠1, . . . , 𝑠 |𝑆 | which
is called the solution order of 𝑆 .

As in [13], we will also require a lexicographic comp(·) function:
for a solution 𝑆 , comp(𝑆) must be obtained by iteratively adding

to 𝑆 the smallest element in 𝑆+ according to the order ≺𝑆 (i.e., the

earliest in Π(𝑆, seed(𝑆))), until 𝑆+ is empty. The resulting solution

12
Note that 𝑥1 = 𝑣 and that 𝑥𝑖 , 𝑥𝑖+1 ∈ 𝑋 are not necessarily consecutive in Π (𝑋, 𝑣)

as some elements from 𝑋 + can be interleaved with them.
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is maximal by definition of strongly accessible set systems. We

remark that this alternative definition of comp(𝑆) still returns a
maximal solution containing 𝑆 , and is thus compatible with canoni-

cal reconstruction (Definition 4.2).

Finally, given the canonical ordering 𝑠1, . . . , 𝑠 |𝑆 | of 𝑆 , the core
core(𝑆) of 𝑆 is the longest prefix 𝑠1, . . . , 𝑠𝑖 of this order such that

comp(𝑠1, . . . , 𝑠𝑖 ) ≠ 𝑆 ; its parent is parent(𝑆) = comp(core(𝑆)) =
comp(𝑠1, . . . , 𝑠𝑖 ); its parent index is pi(𝑆) = 𝑠𝑖+1, i.e., the element

following the last one of the core. It follows by definition of parent

that comp(core(𝑆) ∪ {pi(𝑆)}) = comp(𝑠1, . . . , 𝑠𝑖+1) = 𝑆 .
The function parent(𝑆) defines a forest among solutions, as

every solution has a unique parent, except for the ones such that

comp(seed(𝑆)) = 𝑆 which are called roots, and indeed correspond

to the roots of the forest: these are linear in number (as each has

a unique seed) and can be found by calling comp({𝑢}) for any
𝑢 ∈ U. The function children(𝑃,𝑤) lets us perform a traversal of

this structure, since it will find all 𝑆 such that 𝑃 = parent(𝑆) and
𝑤 = pi(𝑆).

11.2 Combining proximity search with [13]

Algorithm 2: Polynomial-space proximity search

Input :Commutable set system ( U, F)
Prefix-closed order family ⪯𝑠

𝑆

neighbors(𝑆, 𝑠) for canonical reconstruction based on

⪯𝑠
𝑆

Output :All maximal 𝑋 ∈ F
1 foreach 𝑆 such that comp(seed(𝑆)) = 𝑆 do

2 enum(𝑆)
Function enum(𝑋 )

/* Output 𝑋 if depth is odd */

3 foreach 𝑤 ∈ U \𝑋 do

4 foreach 𝑆 ∈ children(𝑋, 𝑤) do
5 enum(𝑆)

/* Output 𝑋 if depth is even */

6 Function children(𝑃, 𝑤)
7 foreach 𝑅 ∈ neighbors(𝑃, 𝑤) do
8 foreach 𝑠 ∈ (𝑅 ∩ 𝑍 ) \ {𝑤 } do
9 prefix ← {𝑥 ∈ 𝑅 : 𝑥 ⪯𝑠

𝑅
𝑤 };

10 𝑆 ← comp(prefix) ;
11 if ⟨parent(𝑆), pi(𝑆), seed(𝑆), r(𝑆) ⟩ = ⟨𝑃, 𝑤, 𝑠, 𝑅⟩

then yield 𝑆 ;

12 Function r(𝑆) /* finds the first 𝑅 that can generate 𝑆

*/
13 𝑃 ← parent(𝑆) ;
14 𝑤 ← pi(𝑆) ;
15 𝑠 ← seed(𝑆) ;
16 foreach 𝑅 ∈ neighbors(𝑃, 𝑤) do
17 prefix ← {𝑥 ∈ 𝑅 : 𝑥 ⪯𝑠

𝑅
𝑤 };

18 if comp(prefix) = 𝑆 then return 𝑅;

When using proximity search in the canonical reconstruction
flavour, we use a canonical order to define the proximity by Defini-

tion 4.1, and a suitable neighbors(𝑆, 𝑠) function such that together

they satisfy Definition 3.1. In this section we show that we can

combine proximity search and [13] for commutable properties, if

we can produce a canonical order for the canonical reconstruction

that corresponds to the solution order induced by ≺𝑆 .
We then show in Section 11.3 that it is possible to meet these

conditions for canonical orderings that are defined in a greedy way,

e.g., by a BFS order like in bipartite subgraphs. Assuming that we

meet these conditions, i.e., we have a neighbors(𝑆, 𝑠) function that

fits canonical reconstruction (Definition 4.2), based on a canonical

order defined by a prefix-closed order ⪯𝑆 , we define a variant of [13],
showed in Algorithm 2.

The main idea behind this combination comes from the follow-

ing observation: the parent 𝑃 = parent(𝑆) = comp(core(𝑆)) of 𝑆
is obtained from a prefix of 𝑆 , and extending this prefix with pi(𝑆),
then applying comp(·), gives us comp(core(𝑆) ∪ pi(𝑆)) = 𝑆 (see

definitions in Section 11.1). On the other hand, we will show that

applying Definition 4.1, 𝑃∩̃𝑆 is exactly core(𝑆). Relying on the

neighboring function neighbors(𝑃, pi(𝑆)) of canonical reconstruc-
tion, and the core property defined in [13], we are able to find the

set core(𝑆) ∪ pi(𝑆), and finally obtain 𝑆 .

We can now state:

Theorem 11.3. Given a commutable set system (U, F ), a prefix-
closed order family ⪯𝑠

𝑆
for (U, F ), and a function neighbors(𝑆, 𝑠)

for canonical reconstruction (Definition 4.2) based on ⪯𝑠
𝑆
, Algorithm 2

enumerates all maximal solutions of (U, F ) without duplication in
polynomial delay.

Proof. To prove the correctness, we show that any 𝑆 is found

in children(𝑃,𝑤) when 𝑃 = parent(𝑆) and𝑤 = pi(𝑆).
Wewill first prove that there exists a solution𝑅 ∈ neighbors(𝑃, pi(𝑆))

(on Line 7) such that core(𝑆) ∪ {pi(𝑆)} ⊆ 𝑅.
Consider the proximity 𝑃∩̃𝑆 by Definition 4.1: the longer prefix

of the solution order of 𝑆 that is completely in 𝑃 must include

core(𝑆) since 𝑃 = comp(core(𝑆)). If𝑤 ∈ 𝑃 then neighbors(𝑆,𝑤)
returns 𝑃 by Definition 4.2, and indeed 𝑃 ⊇ core(𝑆) ∪ {𝑤}.

Otherwise, 𝑃 does not include pi(𝑆), meaning that 𝑃∩̃𝑆 = core(𝑆)
and that𝑤 is the canonical extender for 𝑃, 𝑆 . Using the neighbor-

ing function neighbors(𝑃, pi(𝑆)) we obtain at least one solution

𝑅 ⊇ core(𝑆) ∪ pi(𝑆).
Using the core property defined in [13], we are able to use 𝑅 to

retrieve 𝑆 : It is proven that Lines 7-11 will find and output any

solution 𝑆 such that core(𝑆) ∪ {pi(𝑆)} ⊆ 𝑅, a condition which is

guaranteed by what stated above.

The if on Line 11 removes duplication: any 𝑆 is found only once

out of all invocations of children(𝑃,𝑤): when 𝑃 = parent(𝑆),
𝑤 = pi(𝑆), 𝑠 = seed(𝑆), and 𝑅 = r(𝑆). The function r(𝑆) simply

aims at defining deterministically one single 𝑅 ⊇ core(𝑆) ∪{pi(𝑆)}
once the other 3 variables have been fixed. It thus follows that this

check is passed exactly once out of the whole execution of the

algorithm for any solution (other than the roots, found on Line 1).

Line 1 shows that, by definition, all the roots of the forest are

explored by Algorithm 2. We just proved that Line 4 discovers all

the children of each visited node exactly once, which concludes the

proof of the fact that Algorithm 2 visits every maximal solution of

(U, F ) without duplication. □

19



It is also straightforward to see that each recursive call uses poly-

nomial space, and no solution dictionary S is maintained. However,

the depth of the recursion tree is a factor in the space complexity

too: to obtain a polynomial space guarantee, we further need to

turn the recursive algorithm into a stateless iterative one, as has
been done in [13].

We can give a general bound with the following parameters: let

𝑞 be the maximum size of a solution; R𝑇 be the time required to

solve neighbors(𝑃,𝑤); R𝑁 a bound on the number of solutions

returned by it; C𝑡 be the time required to compute comp(𝑋 ) and
O𝑇 the time required to compute the canonical order of 𝑋 ∪𝑋+. As
these bounds are all assumed to be polynomial, we observe their

space requirements will be polynomial as well.

Thanks to the alternative output technique, the delay will be

bounded by the cost of one iteration of enum(𝑋 ), that is, 𝑂 ( |U|)
times the cost of children(𝑃,𝑤). In turn, the cost of children(𝑃,𝑤)
is that of neighbors(𝑃,𝑤), plus for each of the 𝑂 (R𝑁 ) solutions
𝑅 returned, the cost of processing Lines 8-11. [13] proved that this

can be done in𝑂 (𝑞(O𝑇 + C𝑡 )) time for the given definition of r(𝑆).
However, our definition of r(𝑆) is different from the one in [13],

and has a cost of𝑂 (R𝑇 + R𝑁O𝑇 ) instead of𝑂 (O𝑇 + C𝑡 ). Thus, the
total cost of processing Lines 8-11 is 𝑂 (𝑞(R𝑇 + R𝑁O𝑇 + C𝑡 )).

We can thus claim the following:

Theorem 11.4. Given a commutable set system (U, F ), a prefix-
closed order family ⪯𝑠

𝑆
for (U, F ), and a function neighbors(𝑆, 𝑠)

for canonical reconstruction (Definition 4.2) based on ⪯𝑠
𝑆
, the maximal

solutions of (U, F ) can be enumerated in𝑂 ( |U|R𝑇 +|U|R𝑁𝑞(R𝑇 +
R𝑁O𝑇 + C𝑡 )) time delay and polynomial space.

11.3 BFS-based canonical reconstruction

In this section, we provide a technique to implement the result of

Section 11.2 (Theorem 11.4), i.e., a canonical reconstruction order

that matches the prefix-closed order requirements, and can be ap-

plied to hereditary and connected-hereditary properties. We call

this technique BFS-based canonical reconstruction.
While it is possibly not the only way to obtain a suitable order,

it is worth defining formally as we will apply it to several problems

in the following sections.

We will first define the order for connected-hereditary property,

then exploit it to cover the hereditary case.
13

Definition 11.5 (canonical-BFS order for connected-hereditary prop-
erties). Let 𝑆 be a solution of a connected-hereditary set system, and

𝑣 any element in 𝑆 . The canonical order Π(𝑆, 𝑣) = 𝑠1, . . . , 𝑠 |𝑆∪𝑆+ | is
the lexicographical order of the tuples ⟨𝑑𝑣 (𝑠𝑖 ), 𝑠𝑖 ⟩, where 𝑑𝑣 (𝑠𝑖 ) is
the distance between 𝑠𝑖 and 𝑣 in 𝐺 [𝑆 ∪ {𝑠𝑖 }].

In other words, we order nodes first by 𝑑𝑣 (𝑠𝑖 ), i.e., their distance
from 𝑣 in 𝐺 [𝑆], and break ties by vertex id. The same logic applies

to nodes 𝑥 of 𝑆+, for which we use the distance from 𝑣 in𝐺 [𝑆∪{𝑥}].
This defines ⪯𝑠

𝑆
.

Example. For the Maximal Connected Induced Bipartite Subgraph
in Figure 2 (b), the order 2, 3, 5, 8, 11, 7, 10 (as defined in Section 4) is
given by the tuples
⟨0, 2⟩, ⟨1, 3⟩, ⟨1, 5⟩, ⟨2, 8⟩, ⟨2, 11⟩, ⟨3, 7⟩, ⟨3, 10⟩.
13
Notably, this implies that a BFS-based canonical reconstruction algorithm for the

non-connected case immediately follows from one for the connected case.

We can observe how this canonical-BFS order Π(𝑆, 𝑣) satisfies
the properties of Definition 11.2:

14

(first) The first element 𝑠𝑣
1
of Π(𝑆, 𝑣) is 𝑣 , as𝑑𝑣 (𝑣) = 0 and 𝑑𝑣 (·) ≥ 1

for any other vertex.

(prefix) Any prefix 𝑆𝑖 = {𝑠𝑣
1
, . . . , 𝑠𝑣

𝑖
} of Π(𝑆, 𝑣) is connected (thus a

solution), since for any 𝑠𝑖 , the vertices on a shortest path in

𝐺 [𝑆] to 𝑠1 are at a smaller distance from 𝑠1 and thus occur

before 𝑠𝑖 .

(greedy) For any 𝑧 ∈ 𝑆+
𝑖
∩ 𝑆 , let 𝑘 be the distance between 𝑣 and 𝑧 in

𝐺 [𝑆𝑖 ∪ {𝑧}]. Since 𝑧 ∈ 𝑆+𝑖 , there must be some𝑤 ∈ 𝑆𝑖 ∩𝑁 (𝑧)
at distance 𝑘 − 1 from 𝑣 (in𝐺 [𝑆𝑖 ∪ {𝑧}]). This means that the

distance between 𝑣 and 𝑧 in 𝐺 [𝑆] is still 𝑘 : otherwise, there
would be a vertex 𝑦 ∈ 𝑆 \ 𝑆𝑖 , i.e., after 𝑤 in the canonical

order, that is a neighbor of 𝑧 and has distance ≤ 𝑘 − 2 from 𝑣

in 𝐺 [𝑆]; this leads to contradiction since 𝑦 would then need

to come before 𝑤 in the BFS order.

It follows that the canonical-BFS order is a prefix-closed or-

der. now straightforward to see how this order satisfies the (first),

(greedy) and (prefix) properties of Definition 11.2, and essentially

corresponds to the layer order defined in [13].

Definition 11.6 (canonical-BFS order for hereditary properties). Let
𝑆 be a solution of a hereditary set system, and 𝑣 any element in

𝑆 . For each connected component 𝐶𝑖 of 𝐺 [𝑆], we say the leader of
the component is 𝑣 if 𝐶𝑖 contains 𝑣 , and otherwise the vertex of

smallest id in 𝐶𝑖 .

The canonical order Π(𝑆, 𝑣) = 𝑠1, . . . , 𝑠 |𝑆∪𝑆+ | (defined on 𝑆 ∪ 𝑆+)
is the lexicographical order of the tuples ⟨𝑐𝑖𝑑 (𝑆, 𝑠𝑖 ), 𝑑𝑙 (𝑆, 𝑠𝑖 ), 𝑠𝑖 ⟩,
where for 𝑠𝑖 in the component 𝐶𝑖 , 𝑐𝑖𝑑 (𝑆, 𝑠𝑖 ) is the id of the leader

of 𝐶𝑖 , or 0 if this leader is 𝑣 (assuming wlog 0 is smaller than any

other id), and 𝑑𝑙 (𝑆, 𝑠𝑖 ) is the distance from the leader of𝐶𝑖 in𝐺 [𝐶𝑖 ].
Observe how 𝑠1 = 𝑣 . For a vertex 𝑥 in 𝑆+, we use as 𝑐𝑖𝑑 (𝑆, 𝑥) and
𝑑𝑙 (𝑆, 𝑥) the values obtained in 𝐺 [𝑆 ∪ {𝑥}].

Less formally, we order each component by a BFS strategy as

in the above case (since 𝐺 [𝐶𝑖 ] is connected) using the leader as

root (i.e., 𝑠 if the component contains 𝑠 , or its smallest id vertex

otherwise); then, we concatenate the sequences obtained by putting

the one containing 𝑠 first, followed by the others ordered by id of

their leader.

Example. For the Maximal Induced Bipartite Subgraph in Figure 2
(d), the order is 1, 2, 7, 8, 11, 10, given by the tuples
⟨1, 0, 1⟩, ⟨1, 1, 2⟩, ⟨7, 0, 7⟩, ⟨7, 1, 8⟩, ⟨7, 1, 11⟩, ⟨7, 2, 10⟩.

Before proving that this defines a prefix-closed order, let us prove

this auxiliary lemma:

Lemma 11.7. Let 𝑋 be a solution and 𝑋𝑖 any prefix of its canonical
order. The following facts hold:
• ∀𝑧 ∈ 𝑋+

𝑖
∩ 𝑋, 𝑐𝑖𝑑 (𝑋𝑖 , 𝑧) ≥ 𝑐𝑖𝑑 (𝑋, 𝑧)

• 𝑐𝑖𝑑 (𝑋𝑖 , 𝑥𝑖+1) = 𝑐𝑖𝑑 (𝑋, 𝑥𝑖+1)
• ∀𝑧 ∈ 𝑋+

𝑖
∩ 𝑋, 𝑐𝑖𝑑 (𝑋𝑖 , 𝑧) = 𝑐𝑖𝑑 (𝑋, 𝑧) ⇒ 𝑑𝑙 (𝑋𝑖 , 𝑧) = 𝑑𝑙 (𝑋, 𝑧).

Proof. First, the leader of each connected component of 𝑋𝑖 is

the same as the leader of the corresponding connected component

of 𝑋 (since the leader is always the first element of the connected

14
For completeness, we could equivalently observe that 𝑑𝑣 (𝑠) = 𝐿𝐴𝑌 𝑣

𝑆
(𝑠) according

to Definition 7 in [13].
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component in a solution order, and prefixes of components are

connected as they are in a BFS order).

Moreover, an element 𝑧 in 𝑋+
𝑖
∩ 𝑋 is either directly connected

to a connected component of 𝑋𝑖 , in which case it has the same

leader in 𝑋𝑖 and in 𝑋 by what stated above, or it belongs to its own

connected component in 𝐺 [𝑋𝑖 ∪ {𝑧}], in which case 𝑧 is its own

leader in 𝐺 [𝑋𝑖 ∪ {𝑧}], meaning 𝑐𝑖𝑑 (𝑋𝑖 , 𝑧) = 𝑧. Since by definition

𝑐𝑖𝑑 (𝑋, 𝑧) ≤ 𝑧, it follows that 𝑐𝑖𝑑 (𝑋, 𝑧) ≤ 𝑐𝑖𝑑 (𝑋𝑖 , 𝑧), proving the

first statement.

We now prove that 𝑐𝑖𝑑 (𝑋𝑖 , 𝑥𝑖+1) = 𝑐𝑖𝑑 (𝑋, 𝑥𝑖+1): Either 𝑥𝑖+1 is

directly connected to the last connected component of 𝑋𝑖 (in which

case we already proved the equality) or it isn’t, in which case

𝑐𝑖𝑑 (𝑋𝑖 , 𝑥𝑖+1) = 𝑥𝑖+1. However, in this case 𝑥𝑖+1 must be its own

leader by definition of the order, so it follows that 𝑐𝑖𝑑 (𝑋, 𝑥𝑖+1) =
𝑥𝑖+1, proving the second statement.

Finally, consider 𝑧 ∈ 𝑋+
𝑖
∩ 𝑋 such that 𝑐𝑖𝑑 (𝑋𝑖 , 𝑧) = 𝑐𝑖𝑑 (𝑋, 𝑧).

If 𝑐𝑖𝑑 (𝑋, 𝑧) = 𝑧 then 𝑑𝑙 (𝑋𝑖 , 𝑧) = 𝑑𝑙 (𝑋, 𝑧) = 0; otherwise, let 𝑥𝑙 be

the leader of 𝑧 in 𝑋𝑖 ∪ {𝑧}: 𝑧 is in the same connected component

𝐶𝑧 as 𝑥𝑙 in 𝑋 , and 𝑋𝑖 contains a prefix of the canonical-BFS order of

𝐶𝑧 ; by the properties of the canonical-BFS order, the shortest path

from 𝑥𝑙 to 𝑧 is in this prefix, implying the third statement. □

We can now observe how this order for hereditary properties

also satisfies the properties of Definition 11.2

(first) By definition 𝑠1 is the first element.

(prefix) As this order is defined for hereditary properties, it follows

that any subset (hence every prefix) is also a solution.

(greedy) We proved in Lemma 11.7 that the tuple associated with each

element of 𝑋+
𝑖
∩ 𝑋 with respect to 𝑋𝑖 is either the same or

lexicographically greater than the tuple with respect to𝑋 . As

the tuple for 𝑥𝑖+1 is the same, and since 𝑥𝑖+1 is the minimum

of 𝑋+
𝑖
∩ 𝑋 with respect to the order in 𝑋 , it follows that it’s

also the minimum of 𝑋+
𝑖
∩𝑋 with respect to the order in 𝑋𝑖 .

We remark that it is possible to generalize this definition using

different functions for𝑑 (·) and𝑑𝑙 (·), as long asmonotone behaviour

can be guaranteed, i.e., 𝑑 (𝑋𝑖 , 𝑥) (resp. 𝑑𝑙 (𝑋𝑖 , 𝑥)) is less than or equal

to 𝑑 (𝑋, 𝑥) (resp. 𝑑𝑙 (𝑋, 𝑥)) when 𝑋𝑖 is a prefix of 𝑋 .

12 POLYNOMIAL SPACE ALGORITHMS

In this sectionwe apply the technique defined in Section 11, and give

polynomial-space-polynomial-delay proximity search algorithms,

proving the bounds given in Theorem 1.2.

For the problems already solved in exponential space in the

previous sections, we remark that it is simply necessary to define

their canonical order as a canonical-BFS, then apply Theorem 11.4.

12.1 Maximal Bipartite Subgraphs

Looking at the canonical orders defined for Maximal Connected In-

duced Bipartite Subgraphs (Definition 5.1) and Maximal Induced Bi-

partite Subgraphs (Definition 5.5), we can see that their definitions

match exactly those of canonical-BFS for connected-hereditary

and hereditary properties (respectively, Definition 11.5 and Defi-

nition 11.6). We can thus immediately apply the polynomial space

variant of the algorithm, and we proceed to compute its complexity.

The cost O𝑇 for computing the canonical order will be 𝑂 (𝑚)
in all cases, as it corresponds to performing a BFS, while C𝑡 corre-
sponds to adding edges in a BFS order, which will take𝑂 (𝑚) on the

connected version, but𝑂 (𝑚+𝑛𝛼 (𝑛)) on the non-connected one due
to the need to dynamically maintain the connected components.

The neighboring function for both cases produces a constant num-

ber of neighboring solutions, meaning R𝑁 = 𝑂 (1) and R𝑇 = 𝑂 (C𝑡 ).
At the same time, all operations require no more than 𝑂 (𝑚) space.
Applying Theorem 11.4, we obtain:

Theorem 12.1. Maximal Connected Induced Bipartite Subgraphs
and Maximal Induced Bipartite Subgraphs of a graph 𝐺 can be enu-
merated via BFS-based canonical reconstruction (Algorithm 2) in
𝑂 (𝑚) space and, respectively, 𝑂 (𝑞𝑛𝑚) = 𝑂 (𝑛2𝑚) and 𝑂 (𝑞𝑛(𝑚 +
𝑛𝛼 (𝑛))) = 𝑂 (𝑛2 (𝑚 + 𝑛𝛼 (𝑛))) time delay.

12.2 Maximal Induced Trees and Forests

As defined above, a forest is an acyclic undirected graph, and a

connected forest is called a tree. These are a special cases of 𝑘-

degenerate subgraphs: 1-degenerate subgraphs are precisely forests,

and connected 1-degenerate subgraphs are trees. However, it is

worth consider these problems separately, since we can obtain

algorithms with lower delay and polynomial space.

It should be observed that listing Maximal Induced Forests corre-

sponds to listing minimal feedback vertex sets in undirected graph:

if 𝑆 ⊂ 𝑉 is a Maximal Induced Forest, 𝑉 \ 𝑆 is a minimal feedback

vertex set. A polynomial-delay solution for the enumeration of

feedback vertex sets (and thus Maximal Induced Forests) has been

proposed in [42]. This result, however, requires exponential space,

and does not extend to Maximal Induced Trees.

Furthermore, while the algorithms proposed could be extended

to enumerate maximal edge-induced trees and forests, we do not

consider it: these correspond to just the spanning trees of a graph,

which are already known to be enumerable in polynomial delay

and even constant amortized time [43].

Canonical order and neighboring function. Let 𝑆 be a maximal

induced tree.

We define its canonical as a canonical-BFS order (Definition 11.5),

i.e., the sequence 𝑠1, . . . , 𝑠 |𝑆 | given by a BFS order of 𝐺 [𝑆] rooted
in the vertex 𝑠1 of smallest id.

We then define the proximity by canonical reconstruction (Sec-

tion 4), and we can immediately observe that this order meets the

requirements of Section 11. Next, we focus on obtaining a suitable

neighboring function.

Definition 12.2 (Neighboring function for Maximal Induced Trees).

We define neighbors(𝑆) = ⋃
𝑣∈𝑉 (𝐺)\𝑆

neighbors(𝑆, 𝑣).

Then, neighbors(𝑆, 𝑣) is defined as:

neighbors(𝑆, 𝑣) = {comp(cc𝑣 (𝑆 \𝑁 (𝑣) ∪ {𝑤, 𝑣})) : 𝑤 ∈ 𝑁 (𝑣) ∩𝑆}

The key property here is that each vertex 𝑠𝑖 ∈ 𝑆 has a single

neighbor preceding it in the canonical order, corresponding to its

parent in the BFS.

Given two solutions 𝑆,𝑇 , let 𝑡1, . . . , 𝑡 |𝑇 | be the canonical order
of 𝑇 , and 𝑡𝑖 be the canonical extender for 𝑆,𝑇 , i.e., the vertex for

which 𝑆∩̃𝑇 = {𝑡1, . . . , 𝑡𝑖−1} ⊆ 𝑆 and 𝑡𝑖 ∉ 𝑆 . Furthermore, let 𝑡 𝑗 be
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the parent of 𝑡𝑖 in the canonical BFS-order of 𝑇 , observing that

𝑡 𝑗 ∈ {𝑡1, . . . , 𝑡𝑖−1}.
To find a solution 𝑆 ′ ⊇ {𝑡1, . . . , 𝑡𝑖 }, we can simply add 𝑡𝑖 to 𝑆 ,

then remove all neighbors of 𝑡𝑖 except 𝑡 𝑗 so that we have again an

acyclic subgraph, and finally discard every vertex not in the same

connected component as 𝑡𝑖 (which will include {𝑡1, . . . , 𝑡𝑖 }). As we
do not know which vertex is 𝑡 𝑗 , we of course try all 𝑂 ( |𝑁 (𝑡𝑖 ) |)
possibilities, thus a suitable 𝑆 ′ is always found.

Complexity. Firstly, we can use the neighbors(𝑆) function to

build a proximity search algorithm whose delay is the cost of

neighbors(·), and whose space is𝑂 (N ·𝑛) (whereN is the number

of solutions).

We show the cost of neighbors(·) -and the delay of the algorithm-

to be 𝑂 (𝑚2) time: Observe that the cost C𝑡 a comp(𝑋 ) call is
𝑂 (𝑚) time. We first compute the set of vertices adjacent to 𝑋 ,

𝑃 = ∪𝑥 ∈𝑋𝑁 (𝑥); for each vertex 𝑣 , we simply need to check that

it has exactly one neighbor in 𝑋 , in 𝑂 ( |𝑁 (𝑣) |) time, and discard it

otherwise. Whenever we add 𝑣 vertex to 𝑋 , we add is neighbors to

𝑃 again in 𝑂 ( |𝑁 (𝑣) |) time. The total cost is 𝑂 (∑𝑣∈𝑉 (𝐺) |𝑁 (𝑣) |) =
𝑂 (𝑚).

Now consider neighbors(𝑆, 𝑣): for each𝑤 ∈ 𝑁 (𝑣), wemust com-

pute cc𝑣 (𝑆 \𝑁 (𝑣) ∪ {𝑤, 𝑣}), which takes𝑂 (𝑚), then apply comp(·)
which has the same complexity. The cost is thus 𝑂 ( |𝑁 (𝑣) | ·𝑚). In
turn, this means the cost of neighbors(𝑆) is 𝑂 (∑𝑣∈𝑉 (𝐺) |𝑁 (𝑣) | ·
𝑚) = 𝑂 (𝑚2).

Furthermore, as we are satisfying all conditions of Section 11 (the

order defined is a canonical BFS-order and the problem is connected-

hereditary), we apply Theorem 11.4 to obtain a BFS-based canonical

reconstruction algorithm, with higher delay but polynomial space.

We observe that no component of the algorithm will require

more than 𝑂 (𝑚) space, and their time complexity is as follows:

U = 𝑂 (𝑛), R𝑇 = 𝑂 (𝑚Δ), R𝑁 = 𝑂 (Δ) (but as observed above,

|U| · R𝑇 can be better bounded by 𝑂 (𝑚2), and |U| · R𝑁 can be

bounded by 𝑂 (𝑚)), 𝑞 = 𝑂 (𝑛), O𝑇 = 𝑂 (𝑚) and C𝑡 = 𝑂 (𝑚). The
bound of Theorem 11.4 thus resolves to𝑂 (𝑚2+𝑚𝑞(𝑚Δ+Δ𝑚+𝑚)) =
𝑂 (𝑚𝑞(𝑚Δ)) = 𝑂 (𝑚2𝑛2) time. We can thus conclude the following:

Theorem 12.3. The Maximal Induced Trees of a graph 𝐺 can be
enumerated in𝑂 (𝑚2)-time delay using𝑂 (N𝑛) space, or alternatively
in 𝑂 (𝑚2𝑛2)-time delay and 𝑂 (𝑚) space.

12.3 Maximal Induced Forests

As showed in Section 11.3, a BFS-based canonical reconstruction

algorithm for the non-connected case immediately follows from

the connected one.

For completeness, we show how the algorithm for Maximal

Induced Forests is obtained:

The canonical order is obtained byDefinition 11.6, i.e., a canonical-

BFS order of each connected component, where different compo-

nents are then sorted by their vertex of smallest id.

The neighboring function is essentially obtained from the con-

nected case by removing the use of the cc(·) function (as we do

not require solutions to be connected).

Definition 12.4 (Neighboring function for Maximal Induced Forests).

We define neighbors(𝑆) = ⋃
𝑣∈𝑉 (𝐺)\𝑆

neighbors(𝑆, 𝑣).

Then, neighbors(𝑆, 𝑣) is defined as:

neighbors(𝑆, 𝑣) = {comp(𝑆 \ 𝑁 (𝑣) ∪𝑤) : 𝑤 ∈ 𝑁 (𝑣) ∩ 𝑆}
The complexity of the components of the algorithm is also in-

herently the same, with the only difference for the cost C𝑡 of the
comp(·) function: when we add a vertex, we need to make sure that

it does not have two neighbors in the same connected component,

and update the connected components as we add vertices. The cost

of comp(·) will thus be 𝑂 (𝑚 + 𝑛𝛼 (𝑛)) time, obtained by the same

logic as for Maximal Bipartite Subgraphs (see Section 5.2), while

the rest of the operations are exactly as in the connected case, thus

bear the same cost.

We can conclude that neighbors(𝑆, 𝑣) takes 𝑂 ( |𝑁 (𝑣) | · (𝑚 +
𝑛𝛼 (𝑛)) time, while neighbors(𝑆) takes 𝑂 (∑𝑣∈𝑉 (𝐺) |𝑁 (𝑣) | · (𝑚 +
𝑛𝛼 (𝑛))) = 𝑂 (𝑚(𝑚 + 𝑛𝛼 (𝑛))).

Again, we can obtain an exponential-space algorithm using

canonical reconstruction proximity searchwhose delay is the cost of

neighbors(𝑆), and a polynomial-space algorithm using BFS-based

canonical reconstruction, whose delay is given by Theorem 11.4.

For the latter, the costs are obtained adapting the connected

version with the new cost of comp(·): U = 𝑂 (𝑛), R𝑇 = 𝑂 ((𝑚 +
𝑛𝛼 (𝑛))Δ), R𝑁 = 𝑂 (Δ) (but |U| · R𝑇 can be better bounded by

𝑂 (𝑚(𝑚+𝑛𝛼 (𝑛))), and |U|·R𝑁 can be bounded by𝑂 (𝑚)),𝑞 = 𝑂 (𝑛),
O𝑇 = 𝑂 (𝑚) and C𝑡 = 𝑂 (𝑚 + 𝑛𝛼 (𝑛)). The bound of Theorem 11.4

thus resolves to 𝑂 (𝑚(𝑚 + 𝑛𝛼 (𝑛)) +𝑚𝑞((𝑚 + 𝑛𝛼 (𝑛)) + Δ𝑚 + (𝑚 +
𝑛𝛼 (𝑛)))) = 𝑂 (𝑚𝑞(𝑛𝛼 (𝑛) + Δ𝑚)) time, which we can again upper

bound by 𝑂 (𝑚2𝑛2) time. We can thus conclude the following:

Theorem 12.5. The Maximal Induced Forests of a graph𝐺 can be
enumerated in 𝑂 (𝑚2𝑛2)-time delay and 𝑂 (𝑚) space.

13 CONCLUSIONS

We presented proximity search, a technique for the design of effi-

cient enumeration algorithms, based on defining and traversing a

solution graph with bounded out-degree. We showed several ap-

plication cases, considering problems that did not allow efficient

algorithms by known methods, and showing that these allow poly-

nomial delay algorithms by proximity search.

We have provided a guideline, called canonical reconstruction,
aimed at factorizing the most effective ways to apply our technique,

and facilitating the design of efficient algorithms.

We have further shown a technique that, under suitable con-

ditions, allows us to design proximity search algorithms that re-

quire only polynomial space. The results are polynomial-delay and

polynomial-space algorithms for several problems whose input-

restricted problem cannot be solved in polynomial time, including

non-hereditary ones.

This paper “breaks the barrier” of the input-restricted problem,

showing that its complexity does not imply lower bounds in terms

of time or space, nor even a trade-off between the two. This closes

questions left open since [11], furthering our understanding on the

complexity of enumeration in set systems.

At the same time, this reinvigorates the open question of which

listing problems allow efficient algorithms and which do not, and

to define a more complete theory of enumeration complexity. On

top of being a useful tool to design efficient algorithms for specific

problems, we hope that this technique will be able to help us gain

more insight into this general question.
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APPENDIX

A MAINTAINING THE SOLUTION SET IN

PROXIMITY SEARCH

For completeness, we briefly describe how to efficiently maintain

the S set with well-known data structures. In the following, let U
be the ground set (e.g., 𝑉 (𝐺) for vertex-induced graph properties,

or 𝐸 (𝐺) for edge-induced graph properties). Let N = |S| be the
number of solutions in S, and let 𝑠 = max𝑆 ∈S ( |𝑆 |) ≤ |U| be the
maximum size of a solution. Recall 𝑠 ≤ 𝑛 for vertex-induced graph

properties, and 𝑠 ≤ 𝑚 for edge-induced graph properties;

What we aim at showing is that the time for maintaining the

solution set is negligible in all cases addressed in this paper: recall
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that any solution output by the neighboring function is maximal-

ized, i.e., we apply a comp(·) function which adds element to it

until it is maximal. If we run comp(∅), we can expect to add up to

𝑠 elements, so its worst-case complexity must be Ω(𝑠) time.

Binary Decision Diagram [30]. We can see it as a binary tree

where leafs are all at depth |U|, and each root-to-leaf path defines

a subset of U. We will have a space usage of𝑂 (N · |U|), while the
cost for addition or membership test of a solution will be 𝑂 ( |U|)
time.

This is sufficient for the purpose of our paper as we upper bound

𝑠 by 𝑛 (or𝑚, for edge-induced subgraphs) in the complexity results,

however it is possible to further improve this using a Trie:

Trie [29]. As above, a solution is represented by a root-to-leaf path.

We only have nodes corresponding to including elements, so the

depth will be 𝑂 (𝑠), and so the space usage 𝑂 (N · 𝑠), however a
node may have 𝑂 ( |U|) children. If we keep these children sorted,

we can look them up by binary search and have a cost for addition

and membership of 𝑂 (𝑠 log |U|); on the other hand, we can get

constant time lookup using a hash table, and a cost for addition and

membership of 𝑂 (𝑠) time.

24


	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 Preliminaries
	3 Proximity search outline
	4 Proximity search by canonical reconstruction
	5 Maximal Bipartite Subgraphs
	5.1 Listing Maximal Connected Induced Bipartite Subgraphs
	5.2 Listing Maximal Induced Bipartite Subgraphs
	5.3 Maximal Edge Bipartite Subgraphs
	5.4 Complexity

	6 Maximal k-Degenerate Subgraphs
	6.1 Maximal Induced k-Degenerate Subgraphs
	6.2 Maximal Edge-induced k-Degenerate Subgraphs

	7 Maximal Chordal Subgraphs
	7.1 Maximal Induced Chordal Subgraphs
	7.2 Maximal Edge-induced Chordal Subgraphs

	8 Maximal Induced Proper Interval Subgraphs
	8.1 Maximal Connected Induced Proper Interval Subgraphs
	8.2 Induced Proper Interval Subgraphs
	8.3 Running time

	9 Maximal Obstacle-free Convex Hulls
	9.1 Maximal Obstacle-free Convex Hulls
	9.2 Maximal Connected Obstacle-free Convex Hulls

	10 Maximal Connected Directed Acyclic Subgraphs
	10.1 Maximal Connected Edge-induced Directed Acyclic Subgraphs

	11 Proximity search in polynomial space
	11.1 Requirements and notation of conte2019framework
	11.2 Combining proximity search with conte2019framework
	11.3 BFS-based canonical reconstruction

	12 Polynomial space algorithms
	12.1 Maximal Bipartite Subgraphs
	12.2 Maximal Induced Trees and Forests
	12.3 Maximal Induced Forests

	13 Conclusions
	References
	A Maintaining the solution set in proximity search

