
HAL Id: hal-03916819
https://hal.inria.fr/hal-03916819

Submitted on 31 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptography in Grade 10: Core Ideas with Snap! and
Unplugged

Michael Lodi, Marco Sbaraglia, Simone Martini

To cite this version:
Michael Lodi, Marco Sbaraglia, Simone Martini. Cryptography in Grade 10: Core Ideas with Snap!
and Unplugged. ITiCSE 2022 - Innovation and Technology in Computer Science Education, ACM,
Jul 2022, Dublin, Ireland. pp.456-462, �10.1145/3502718.3524767�. �hal-03916819�

https://hal.inria.fr/hal-03916819
https://hal.archives-ouvertes.fr


Cryptography in Grade 10: Core Ideas with Snap! and Unplugged
Michael Lodi∗

Università di Bologna
Bologna, Italy

INRIA Sophia-Antipolis
Valbonne, France

Marco Sbaraglia∗
Università di Bologna

Bologna, Italy

Simone Martini∗
Università di Bologna

Bologna, Italy
INRIA Sophia-Antipolis

Valbonne, France

ABSTRACT
We report our experience of an extracurricular online intervention
on cryptography in Grade 10. Our first goal is to describe how we
taught some fundamental cryptography ideas by making students
encounter a progression of representative cryptosystems, from clas-
sical to modern, and discover their characteristics and limitations.
We used Snap! (a visual programming language) to realize hands-on
activities: block-programming playgrounds (a form of task-specific
programming languages) to experiment with cryptosystems, and
an interactive app to support an unplugged (albeit remote) Diffie-
Hellman key agreement. After experimenting with each system,
the students were involved in a Socratic discussion on how to over-
come the discovered limitations, motivating the introduction of
the following system in our path. Our second goal is to evaluate
the students’ perceptions and learning of cryptography core ideas.
They appreciated the course and felt that, despite being remote, it
was fun and engaging. According to the students, the course helped
them understand the role of cryptography, CS, and Math in society
and sparked their interest in cryptography and CS. The final assess-
ment showed that the students well understood the cryptography
ideas addressed. Our third goal is to discuss what worked and areas
of improvement. The “remote-unplugged” Diffie-Hellman, where
the meeting chat was a metaphor for the public channel, engaged
the students in understanding this groundbreaking protocol. Over-
all, they praised the activities as engaging, even when challenging.
However, a strong “instructor blindness” induced by remote teach-
ing often prevented us from giving the students the right amount
of guidance during the exploration activities.

CCS CONCEPTS
• Security and privacy → Cryptography; Social aspects of se-
curity and privacy; • Social and professional topics → K-12
education; • Applied computing→ Distance learning.

KEYWORDS
cryptography education, cryptography playgrounds, task-specific
programming, Snap!, Diffie-Hellman, remote unplugged

∗Also Laboratorio CINI “Informatica e Scuola”

ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
27th ACM Conference on Innovation and Technology in Computer Science Education Vol 1
(ITiCSE 2022), July 8–13, 2022, Dublin, Ireland, https://doi.org/10.1145/3502718.3524767.

1 INTRODUCTION
Cryptography is at the core of today’s digital society’s many activi-
ties and tools (e.g., instant messaging, e-commerce, stock exchange).
Various frameworks (e.g., DigComp [7]) and curricula (e.g., CSTA
K–12 CS Standards [18] and the UK computing curriculum [10])
include competencies related to cybersecurity. Some of them are
more oriented on using security for personal purposes, others on
understanding how digital security works, but they all recognize
that cybersecurity skills are essential for students to be active citi-
zens of digital society. Cryptography is one of the foundations of
cybersecurity. In addition, novices identified cryptography “as an
interesting context for computer science lessons” [23, p. 3]. K-12
education does not aim to train professionals but to help students
understand our world and act in it, therefore it is important to help
students understand the principles of cryptography and their impor-
tance in our society. With this aim, we designed a short course with
no prerequisites, built around different types of activities. Since
educational research has shown the effectiveness of active and
cooperative learning methodologies [25, p. 304], we designed non-
traditional hands-on activities to be interactive and meaningful for
students. We developed cryptography playgrounds for students to
use, understand, and attack emblematic cryptosystems (e.g., Caesar
cipher, One-time pad) and a “remote-unplugged” activity to per-
form the Diffie-Hellman (DH) key agreement in pairs. We realized
both types of activities with Snap!, a visual block-based program-
ming language. Due to the ongoing COVID-19 pandemic, we had
to design the intervention as remote-only. An English version of all
the material we developed is available [24], under an open license.

Our pathway includes a few emblematic cryptographic systems
and schemes, carefully selected as representatives of cryptography
core ideas. To create a motivating progression, the introduction of a
new scheme is always triggered by the necessity (whichwe stimulate
in students [32]) to overcome the limitations of the previous one(s).

This paper’s first goal is to present our learning path (section 2)—
focusing on the cryptography principles and schemes that drive
the learning progression (2.2)—and the development and testing
of Snap! activities (i.e., crypto-playgrounds and unplugged DH
agreement, 2.3). The second goal is to evaluate our experience
(sections 4 and 5) regarding both the level of understanding of the
fundamental concepts covered (4.1, 5.1) and students’ satisfaction
and perceived utility (4.2). The last goal is to discuss what worked
and what can be improved (section 5.1) and help CS educators adopt
and adapt our pathway and hands-on activities (5.2).

https://orcid.org/0000-0002-3330-3089
https://orcid.org/0000-0002-5623-4071
https://orcid.org/0000-0002-9834-1940
https://doi.org/10.1145/3502718.3524767


Figure 1: Attacking Caesar cipher with frequencies - Snap! playground

2 OUR COURSE
2.1 Context
Our intervention took place in a Lyceum, a strand of Italian high
school1 that gives a theoretical basis in classical, scientific, or artis-
tic areas and naturally leads to university studies. Our interven-
tion took place in the context of an extracurricular experimental
project called Mathematical Lyceum which aims not to introduce
new notions but to reflect on ideas and foundations of knowledge
and broaden cultural horizons with a robust interdisciplinary ap-
proach [22]. We delivered a cryptography course as one of these
extracurricular activities in a local lyceum.

Fifteen students (5 girls and 10 boys), all in their second year
of lyceum (ca. 15-16 y.o.), attended our course voluntarily. None
of them had previous programming experience. The course was
delivered by two of the authors of this paper, who are researchers
in CS education and have experience in high school teaching. We
held four lessons (2 hrs each) every Tuesday afternoon in February
2021. Due to the COVID-19 pandemic, the lessons were held online
through the Google Meet platform adopted by the school.

2.2 Learning path
The intervention was designed to teach fundamental cryptography
ideas by making students encounter some representative cryptosys-
tems (from classical to modern) and experience their limitations
(through hands-on activities), thus the necessity to overcome those
limitations (towards more secure systems). Some relevant mathe-
matical concepts underlying cryptography are also addressed (e.g.,
permutations, modular arithmetic).

2.2.1 Crypto principles and ideas through representative systems.
Here it follows the progression of representative cryptosystems
and schemes we used. For each one, we indicate why we choose
it as a representative for its class; the teaching motivations; the
limitations students experience that support the transition to the
next system.

Caesar cipher

• Representative for: monoalphabetic substitution ciphers

1See [4] for a summary of the Italian secondary school system.

• Motivations: basic example of sym-crypto; easy to show
the typical cryptosystem elements (plaintext, ciphertext, en-
crypt/decrypt functions, key) and simple attacks; easy to
understand and play with it

↓ Problems to overcome: attackable with both brute-force and
frequency analysis

One-time pad cipher
• Representative for: polyalphabetic ciphers (taken to the ex-
treme); perfect secrecy; resistant to both brute-force and
frequency attacks (no clues about the key or the plaintext
from the ciphertext)

• Motivations: easy as “a different Caesar for each letter”
↓ Problems to overcome: key-distribution problem; feasibility
issues (e.g., one-time, random keys)

Simple Substitution-Permutation network
• Representative for: modern symmetric block cryptosystems
(e.g., AES); confusion and diffusion (avalanche effect); effi-
cient implementation; “only” computationally secure

• Motivations: introducing operations on bits; grasping how
modern cryptosystems are implemented with computers

↓ Problems to overcome: the key-distribution problem
Diffie-Hellman key-agreement protocol

• Representative for: shared key generation protocols; ground-
breaking solution to the key-distribution problem

• Motivations: understanding how the discrete logarithm (easy
to calculate, hard to invert) allows generating a shared secret
over a public (insecure) channel

↓ Problems to overcome: person-in-the-middle attack
Idea of public-key secrecy and authentication

• Representative for: asymmetric cryptosystems
• Motivations: grasping that the properties of certain math
functions (e.g., prime factorization) can be used to achieve
both secrecy and authentication

↓ Problems to overcome: computationally expensive
Idea of hybrid cryptosystems

• Representative for: today’s complex cryptosystems
• Motivations: learning that the best of symmetric and asym-
metric cryptosystems combine in today’s practice; grasping
how relevant modern services (e.g., e2e instant messaging)
work



◦ Problems to overcome: not raised in the course

2.2.2 Contents.
Day 1
• The social debate about encryption in digital communication
• Caesar cipher: encryption, decryption, brute-force attack
• Homework: transposition vs. substitution, Kerckhoffs principle

Day 2
• Caesar cipher: frequency attack
• One-time pad: encryption, decryption, frequency attack
• Homework: encoding chars as bits, toy cryptosystem using XOR
and bit permutation, hints at modern block ciphers (DES, AES)

Day 3
• One-time pad: brute-force attack, perfect secrecy, limitations,
key-distribution problem

• DH protocol: simulation with colors
• Homework: quiz on One-time pad and DH protocol

Day 4
• Math of DH protocol: modular arithmetic, exponential and
its inverse, primes and coprimes (and hints at generators)

• DH protocol: an example with small numbers, computational
security, person-in-the-middle attack

• Asymmetric cryptography: terminology, key pairs proper-
ties, non-technical schemes for authentication and secrecy,
intuitive idea of one-way function (multiplying vs. factoring)

• Putting all together: how intuitively combine asymmetric
and symmetric schemes for authentication and secrecy

• Homework: satisfaction survey, fill-in-the-blanks assessment

2.3 Tools, activities, and methodology
2.3.1 Tools. The host school uses Google Workspace for Education.
Therefore, we used Google Meet for the meetings and Classroom to
share announcements, learning materials, and homework. We used
Slides to present contents and animations and Docs to share longer
texts2. We used Google Forms as worksheets to guide the hands-
on activities with questions, gather homework, and collect final
assessment responses and feedback on the course from students.

Snap! [28] is a block-based programming language. It is a reim-
plementation of Scratch with many extra features making it suitable
for a serious introduction to CS programming for high-school or
even college students. We chose Snap! as it allows the creation of
new blocks that can return values (i.e., new functions) and whose
implementation (the function body) can be hidden from students.

2.3.2 Created tools and activities, methodologies. Using Snap!, we
created a progression of playgrounds for the hands-on activities.
These environments allow students to experiment with cryptosys-
tems (e.g., Caesar cipher, One-time pad) and their limitations (e.g.,
ease or difficulty of decryption, computation time required). A play-
ground is a Snap! project with a limited set of visible instructions.
By leveraging Snap!’s ability to create custom blocks and hide exist-
ing ones, for each cryptosystemwe provided only the blocks needed
to encrypt and decrypt messages and carry out possible attacks.
Our playgrounds can be seen as Teaspoon Languages [43], “task-
specific languages [. . . that]: support learning tasks that teachers
2E.g., homework readings from outreach materials, like Singh’s “The Code Book” [35].

(typically non-CS teachers) want students to achieve; are program-
ming languages, in that they specify computational processes for
a computational agent to execute; and are learnable in less than
10 minutes, so that they can be learned and used in a one hour
lesson” [15]. Since our students had no programming experience,
it was not feasible—nor useful, given the high-level objectives re-
lated to the cryptographic core ideas—for them to program (the
algorithms of) cryptographic systems. However, we wanted to give
students the opportunity to build their knowledge by “concretely”
manipulating computational objects [30] related to cryptography.
Instead of putting the students in microworlds à la Papert, usu-
ally relying on general-purpose languages such as LOGO—which
take time to learn, we developed more abstract and much simpler
(thus easier to use) languages narrowed to our specific learning
objectives [16]. For example, to attack a Caesar ciphertext using
frequencies, some of the blocks in the playground were: calculating
frequencies in a text, sorting a table (i.e., a matrix of letters and their
frequencies) by frequency, representing a table with a histogram,
the table of letters’ average frequencies in Latin (fig. 1).

Our playgrounds are available for exploration and use [24]. The
students, following our worksheets, engaged in challenges of en-
cryption, decryption, and attack by combining Snap! blocks. Our
goal was to make the students experience the cryptosystems and
understand their operation and limitations. We contextualized the
activities in scenarios meaningful for the students. For example, the
activities on Caesar cipher involve a Latin3 text (to be used for a
test) that their quarantined teacher wants to communicate secretly
to her substitute without her students being able to intercept it.

Since the students were complete novices in programming, we
felt it was too great a challenge for them to program the DH key
agreement. Therefore, we then designed an unplugged activity to
simulate the generation of the shared key. The unplugged approach
helps students understand important algorithms at a high level by
having them perform these algorithms concretely through kines-
thetic and fun activities [2].

We found at least two typical ways to introduce DH key agree-
ment [e.g., 42]: color mixing (more evocative yet simplified) and
performing the algorithm with small numbers (more accurate yet
complex). We tried to combine these two to move gradually from
the color metaphor to the mathematical operations. An executable-
only Snap! project (i.e., not modifiable nor explorable in its code)
served as an interactive app for “DH color mixing” guiding the
students in enacting the protocol [24]. Color mixing is not done
with classical additive or subtractive algorithms but is based on
the actual DH calculations (initially hidden to the students) on the
small numbers (from 0 to 99) that in Snap! represent colors. Using
the Snap! project, students in pairs were able to generate a shared
secret color. Communication within each pair (i.e., choosing an
initial shared color and exchanging the calculated color) took place
on the online meeting public chat, which effectively represents an
insecure channel since everyone can “listen on” it (see fig. 2).

After the students experienced firsthand the high-level function-
ing of the DH protocol, we presented the essential mathematical
tools for its operation (see 2.2.2). Then, we showed the protocol
itself through an animation [24] that displays the correspondence

3All our lyceum students were studying Latin.



Figure 2: Meeting chat and support app for the DH activity

between the colors and the simple numbers representing them,
revealing the actual calculations behind the color mixing.

Given the short duration of the course, for the more advanced
schemes based on public-key cryptography, the objective was a
high-level understanding of secrecy and authentication mecha-
nisms and cognition of the reasons and scenarios for their use.

We illustrated to the students that it is possible to create two
keys, one public and one private, bound by the property that what
is locked with one can only be opened with the other. We sug-
gested a mathematical intuition: the public key is related to the
multiplication of two primes (easy), and the private key is related
to the factoring of the product (difficult). We asked the students to
imagine how to use the key pair to achieve secrecy. We also guided
them toward the concept of authentication and its realization with
an asymmetric scheme. We developed animations [24] of simple
and typical communication scenarios; we also used Power Rangers
characters so that the actions and messages of the different parties
were evident through their respective colors. The various scenes of
these animations supported the reasoning done with the students.
Once all the communication steps were discussed, the animations
let the students visualize the public-key schemes for authentication
and secrecy in their entirety (albeit at a very high level).

3 RELATIONSHIP WITH PREVIOUS WORK
The “Cybersecurity Curricula 2017” [29] included “basic concepts
in cryptography” (e.g., historical ciphers, modern block ciphers,
and the DH key agreement) to be learned early “to build the base
for other sections in the knowledge unit” [29, p. 24]. In the “CSTA
K–12 CS Standards” [9], cybersecurity is important for all grades.
In particular, for Level 2 (grades 6-8, 11-14 y.o.), the standard (2-NI-
06) indicates that students should be able to encrypt and decrypt
messages with various encryption methods and understand their
different levels of complexity, starting with the simplest (e.g., Caesar
cipher) to the more complex public-key ciphers, which are better
learned through unplugged activities. Overall, our path is in line
with these standards, both in terms of contents (adapted to our age
target) and methodologies (e.g., unplugged).

A review of cybersecurity education papers over the last ten
years of SIGCSE and ITiCSE conferences [41] found that research
“predominantly focus[es] on tertiary education in the USA.” Only

a few works focus specifically on cryptography [e.g., 6, 17] since
most of them aremore broadly focused on cybersecurity (addressing
crypto only as one of the topics) [e.g., 5, 11, 36, 39].

We conducted a similar search for works describing teaching
cryptography (and cybersecurity, when cryptographywas included)
in K-12. The works we found usually include some hands-on crypto
activities, often set in motivating real-world contexts (e.g., secure
email exchange, communicating robots, a toy social network) [e.g.,
13, 21, 33, 44]. Indeed, Konak [20] claimed that hands-on inquiry-
based cryptography and cybersecurity activities improve K-12 stu-
dents’ self-efficacy and problem-solving skills. Our activities are
contextualized in situations meaningful to students (e.g., “Can you
obtain the exam text that your teachers secretly exchange?”), lever-
aging the dimensions of challenge and adventure that cryptography
can offer [13, 23]. Also, our path follows the constant thread of a mo-
tivating and timely issue: “What do you need to know to understand
how secrecy works in instant messaging? Is it really secret?”.

Given the content found in literature and curricula, and consider-
ing our target audience and cultural perspective (i.e., K-12 education
does not aim to train professionals but to give tools to understand
the world, see sec. 1), we aim to make the fundamental principles
of cryptography understandable by novices. Therefore, our path
focuses on a few strategic cryptosystems, selected to convey cryp-
tography core ideas, digging into technical details only when they
are instrumental to understanding those ideas. This perspective
informed our design and the development and use of the tools.

Visualization tools or interactive simulations for teaching cryp-
tography have been developed [e.g., 1, 26, 34] to show how ciphers
work, their weaknesses, and possible attacks. These tools are ac-
curate but too detailed for young students. Compared to these
proposals, which mostly provide ready-to-use software visualiza-
tions or simulations where students can only adjust parameters, in
our path, students tinker by manipulating and combining objects
that represent essential cryptography concepts (see 2.3.2). In our
crypto playgrounds, students actively program some parts of their
learning experience (e.g., combining blocks to calculate and visual-
ize letter frequencies in order to perform a frequency attack—see
fig. 1). The idea of using very high-level programming to better
understand cryptosystems and attacks can be found in the course
reported by McAndrew, where students implement cryptographic
algorithms (from classical to modern) with computer algebra sys-
tems [27]. In addition, our approach (although targeted to K-12
students) also shares the vision of using the metaphor of visual
programming to realize blocks that represent cryptographic func-
tionalities [40]. Blocks are more abstract and, for novices, should
be easier to understand and compose than source code.

Several proposals use unplugged activities for cryptography to
get students to experiment with encryption/decryption algorithms,
protocols, and attacks at a high level [e.g., 3, 12, 19]. These activities
use simple objects (e.g., maps, scissors, boxes, padlocks) and con-
crete actions (e.g., cutting out a sheet, mixing colors). For example,
Fees et al. made the DH colormetaphor concrete bymaking students
mix food coloring to perform the key agreement [12]. In our course,
we faced the additional challenge of remote teaching but still man-
aged to find an effective way to carry out the DH unplugged activity,
taking advantage of the features of the online medium (e.g., public
meeting chat) while maintaining the “unplugged spirit” (see 2.3.2).



FOHDU
LQWHUHVWLQJ

DGHTXDWH�WR�\RXU�SUHSDUDWLRQ
XVHIXO�IRU�\RXU�SHUVRQDO�JURZWK
KHOSIXO�WR�XQGHUVWDQG�WKH�ZRUOG

� ��
1RW�DW�DOO $�OLWWOH 5DWKHU�PXFK 9HU\�PXFK

0 14students

Figure 3: Student perceptions of course activities

Greenlaw et al. took a similar approach when they used the message
board of an undergraduate class to demonstrate how a person-in-
the-middle attack on a public-key cryptosystem works [14], as did
Gramm et al. when they developed an online interactive simulation
for RSA with small numbers [13].

4 EXPERIENCE EVALUATION
At the end of the course, we asked the students to fill out two
Google Forms to get their feedback and assess their learning. No
marks were foreseen for these final activities. Both questionnaires
were completed by the same 14 (out of 15) students.

4.1 Learning assessment
We wrote a 2000-words summary [24] of the important ideas and
concepts covered in the course, identifying 43 key passages. For
each one, the students had to choose between the right filling and a
wrong alternative. We wanted the activity to be also an opportunity
for the students to review the important contents of the course, so
we structured it as a narrative4. The results were positive: out of
43 choices, the mean of correct ones was 32.5, and the median was
34, with a range of correct choices between 17 and 41.

4.2 Course satisfaction
We asked the students about their learning experience and the
perspectives the course gave them. All answers were mandatory.

Attendance was high: out of 14, 13 students followed the first
lesson, 12 the second, 11 the third, and 12 the fourth. About the
course length, 9 students found it ‘Adequate’, 4 ‘Too short’, and
only 1 found it ‘Too long’. About the activities, most of the students
found them clear, interesting, useful for their personal growth and
for understanding the world. Some students felt that the activities
were too difficult for their previous knowledge (fig. 3).

When asked if they found difficulties during the course, on a
four-point scale from ‘Never’ to ‘Always’, 1 student chose ‘Never’,
11 ‘Sometimes’, and 2 ‘Often’. The difficulties reported (more than
one could be chosen) were related to the activities (6), timing and
organization (6), the remote setting (5), and homework (2).

On a four-point scale from ‘Not at all’ to ‘Very much’ satisfied:
on the interaction with the teachers and their support, 9 students
chose ‘Rather much’ and 5 ‘Very much’; on the overall satisfaction
with the course, 1 student chose ‘A little’, 8 ‘Rather much’, and 5
‘Very much’. 13 students would recommend the course to a friend.

Regarding the tools used (see 2.3.1) and created (see 2.3.2), stu-
dents highly appreciated the DH activity and the explanations with
animated slides. Some students found difficulties in both Snap!
playgrounds and homework. See fig. 4.
4The English translation of the summary is available at [24].

VWXGHQWV

HDV\
HQJDJLQJ

XVHIXO

� ��

'LIILH�+HOOPDQ�FRORU�PL[LQJ�DFWLYLW\

0 14

VWXGHQWV

HDV\
HQJDJLQJ

XVHIXO

� ��

([SODQDWLRQV�E\�DQLPDWLRQV

140

VWXGHQWV

HDV\
HQJDJLQJ

XVHIXO

� ��

6QDS��DXWRQRPRXV�DFWLYLWLHV�ZLWK�EORFNV

140

VWXGHQWV

HDV\
HQJDJLQJ

XVHIXO

� ��

5HDGLQJV�DQG�UHIOHFWLRQV�KRPHZRUN

0 14

VWXGHQWV

HDV\

XVHIXO

� ��

1RW�DW�DOO $�OLWWOH 5DWKHU�PXFK 9HU\�PXFK

3(5�/(*(1'$

Figure 4: Student evaluation of course elements

About the perceived utility of the course, most of the students
found it useful to better understand cryptography, its matter of
study, and its role in society. Also, students felt they better un-
derstood CS and Math’s role in society. While the course clearly
sparked interest in cryptography in most students, it also helped
stimulate interest in CS in 2/3 of them, while only less than half
felt it increased their interest in Math. See fig. 5.

4.2.1 Open comments from students. All but one of the comments
were positive. Most students remarked that the activities were
interesting and fun (e.g., “I liked the fact that through Snap! we
were able to play and experiment with cryptography”). According
to them, lessons were engaging and well organized, even remotely.
One said she really appreciated the space reserved for collective
discussions in each lesson. Many students would have liked the
course to be longer. One would have wanted to delve into Snap!
programming beyond the scope and boundaries of the playgrounds.

The only non-positive comment reports difficulties in under-
standing and suggests more explanations, also through animations,
before the hands-on activities.

As a positive note, a student used the Caesar cipher playground
to encrypt (with a key we had to figure out) her positive comment.

5 OBSERVATIONS AND FINDINGS
5.1 On pedagogy and intervention results
The DH activity was received very well: simulating the insecure
channel through the meeting public chat was an essential metaphor
to understand the protocol. The students found the activity engag-
ing and fun (fig. 4), confirming our positive impressions on the spot.
We refer to it as “remote-unplugged” because it has almost all the
characteristics of a CS Unplugged activity (i.e., real computer sci-
ence—presenting fundamental CS concepts and algorithms; learning
by doing; fun; co-operative; stand-alone; resilient to student errors;
see [8]) except that it was delivered via technological devices. In



LQFUHDVH�\RXU�LQWHUHVW�LQ�0DWK
LQFUHDVH�\RXU�LQWHUHVW�LQ�&6

EHWWHU�XQGHUVWDQG�0DWK�UROH�LQ�VRFLHW\
EHWWHU�XQGHUVWDQG�&6�UROH�LQ�VRFLHW\
EHWWHU�XQGHUVWDQG�ZKDW�&6�LV�DERXW

LQFUHDVH�\RXU�LQWHUHVW�LQ�FU\SWR
EHWWHU�XQGHUVWDQG�FU\SWR�UROH�LQ�VRFLHW\
EHWWHU�XQGHUVWDQG�ZKDW�FU\SWR�LV�DERXW

XQGHUVWDQG�WKH�ZRUNLQJV�RI�FU\SWR

� ��

1RW�DW�DOO

$�OLWWOH

5DWKHU�PXFK

9HU\�PXFK

140 students

Figure 5: Student perceptions of what the course was useful for

our case, the devices acted as a necessary means of communica-
tion rather than being the specific tool of CS. We believe that the
interactive, executable-only Snap! project made the DH activity
concrete and easy to follow, a good solution for an online setting.

The Snap! playgrounds we designed and implemented worked
well, for the easier concepts (e.g., Caesar cipher), as a way to get
hands-on experience and understand the elements of a cryptosys-
tem, some of the possible attacks, and its main limitations (e.g., the
computational time required). However, half of the students found
the more advanced playgrounds difficult. We believe that the set-
ting did not help: the course was held online, with students we did
not know in advance (and mostly did not know each other, coming
from different classes). This resulted in severe “instructor blindness,”
making it hard for us to act as facilitators and provide the students
with optimal guidance [37] while exploring the playgrounds. Thus,
these activities resulted to be “minimally guided” [38], which can
be too hard, especially for weaker students.

Throughout the course, we maintained a Socratic approach with
collective discussions, guided by students’ suggestions. They highly
appreciated the space given to these interactions (see 4.2 and 4.2.1).
For simpler cryptosystems, Snap! playgrounds were used for stu-
dents to experiment before discussing and analyzing the cryptosys-
tems. The guiding questions helped get the students to encounter
precisely the aspects (and limitations) we wanted to highlight. Only
after these concrete experiences, collective discussions were used
to institutionalize the relevant knowledge. A similar approach was
adopted with the DH activity. Even for the more “transmissive” part
on public-key cryptosystems, the schemes’ formalization occurred
after discussing the systems that the students proposed intuitively
after the essential ingredients (i.e., the key pair) had been presented.

The final assessment [24] focused on cryptography core ideas,
in line with the goals of our intervention. It showed very good
results (see 4.1), indicating that the main contents of the course
were received. This is good for two main reasons. Every citizen
should have the tools to understand today’s digital society. It is
also an opportunity for university and professional orientation
towards the disciplines involved. The satisfaction survey confirmed
the achievement of these two goals, indicating that the students
better understood the cryptography role in society, its matter of
study, and increased their interest in it.

5.1.1 On teaching programming. Our playgrounds can be seen as
task-specific languages (see 2.3.2), with narrow scopes on specific
cryptosystems. They do not aim to teach students how to program.

However, they can convey some general principles about program-
ming, for example, the fact that “programs are assembled out of
basic elements, and different orderings of elements can sometimes
have the same result, and even that the program determines the
computer’s behavior (there’s no magic)” [43, p. 186].

Compared to other task-specific programming languages [43],
our activities expose some classic programming concepts (e.g., se-
quence, function composition, variables, lists). In perspective, more
custom blocks could be developed, together with activities requir-
ing more extensive programming (e.g., using other fundamental
elements of structured programming like conditionals and loops;
“looking inside” the provided custom blocks to understand and adapt
them). Currently, inspecting the code of our playgrounds does not
have the educational value it could have. Curious students would
find some JavaScript and a few uninteresting workarounds to over-
come Snap! limitations. Hence, we are considering building a stack
of notional machines at different abstraction levels so that students
can progressively see more details by looking inside the blocks
without being overwhelmed by all the complexity at once [31].

5.2 Suggestions for adoption and adaption
To help other educators adopt and adapt our course, we provide the
contents and the learning path for crypto core ideas through repre-
sentative systems and schemes (see 2.2) and all the tools (e.g., the
Snap! playgrounds) and materials (e.g., the final assessment) [24].

The level of guidance in the hands-on activities can be adjusted.
If the course is face-to-face, instructors can get a clearer picture
of students’ difficulties and address them immediately while still
leaving a high degree of freedom. If held remotely, we suggest more
frequent check-ins and re-alignments to provide adequate guidance.

Instructors can set aside additional time to cover some of the
topics we introduced only through homework (e.g., the binary
operations underlying the mechanisms of modern symmetric block
ciphers) so that students can benefit from the teacher’s support
when they first encounter them.

Although the course aims at principles of cryptography, we ac-
knowledge that one cannot understand the core ideas of a discipline
without addressing them in concrete, even simple, scenarios or sys-
tems in which they occur. Should the need arise to readjust timings,
we would suggest spending more time on explorations and discus-
sions rather than tackling new cryptosystems—unless these are
strategic to other relevant ideas instructors want to convey.

ACKNOWLEDGMENTS
Work partially funded by ACM SIGCSE Special Projects 2020.



REFERENCES
[1] Rachid Anane and Mohammad T. Alshammari. 2020. A Dynamic Visualisation of

the DES Algorithm and a Multi-Faceted Evaluation of Its Educational Value. In
Proceedings of the 25th ACM Conference on Innovation & Technology in Computer
Science Education (Trondheim, Norway) (ITiCSE ’20). ACM, New York, NY, USA,
370–376. https://doi.org/10.1145/3341525.3387386

[2] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer
Science Unplugged: school students doing real computing without computers.
New Zealand Journal of Applied Computing and Information Technology 13, 1
(2009), 20–29.

[3] Tim Bell, Harold Thimbleby, Mike Fellows, Ian Witten, Neil Koblitz, and Matthew
Powell. 2003. Explaining cryptographic systems. Computers & Education 40, 3
(2003), 199–215. https://doi.org/10.1016/S0360-1315(02)00102-1

[4] Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga, Anna Morpurgo,
Mauro Torelli, and Luisa Zecca. 2014. Informatics Education in Italian Secondary
Schools. ACM Trans. Comput. Educ. 14, 2, Article 15 (2014), 6 pages. https:
//doi.org/10.1145/2602490

[5] Christopher Brown, Frederick Crabbe, Rita Doerr, Raymond Greenlaw, Chris
Hoffmeister, Justin Monroe, Donald Needham, Andrew Phillips, Anthony Poll-
man, Stephen Schall, John Schultz, Steven Simon, David Stahl, and Sarah Stan-
dard. 2012. Anatomy, Dissection, and Mechanics of an Introductory Cyber-
Security Course’s Curriculum at the United States Naval Academy. In Proceed-
ings of the 17th ACM Conference on Innovation & Technology in Computer Sci-
ence Education (Haifa, Israel) (ITiCSE ’12). ACM, New York, NY, USA, 303–308.
https://doi.org/10.1145/2325296.2325367

[6] Suzanne Fox Buchele. 2013. Two Models of a Cryptography and Computer
Security Class in a Liberal Arts Context. In Proceedings of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
ACM, New York, NY, USA, 543–548. https://doi.org/10.1145/2445196.2445360

[7] European Commission. Joint Research Centre. 2017. DigComp 2.1: the digital
competence framework for citizens with eight proficiency levels and examples of
use. Publications Office. https://doi.org/10.2760/38842

[8] CS Unplugged. [n.d.]. Principles. https://csunplugged.org/en/principles/
[9] CSTA. 2017. CSTA K-12 Computer Science Standards, rev. 2017. Technical Report.

Computer Science Teachers Association. http://www.csteachers.org/standards
[10] Department of Education. 2013. National curriculum in England: computing

programmes of study. https://www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study

[11] Pranita Deshpande, Cynthia B. Lee, and Irfan Ahmed. 2019. Evaluation of Peer
Instruction for Cybersecurity Education. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
ACM, New York, NY, USA, 720–725. https://doi.org/10.1145/3287324.3287403

[12] Rachel E Fees, Jennifer A da Rosa, Sarah S Durkin, Mark M Murray, and Angela L
Moran. 2018. Unplugged cybersecurity: An approach for bringing computer
science into the classroom. International Journal of Computer Science Education
in Schools 2, 1 (2018), 3–13. https://doi.org/10.21585/ijcses.v2i1.21

[13] Andreas Gramm, Malte Hornung, and Helmut Witten. 2012. Email for You
(Only?): Design and Implementation of a Context-Based Learning Process on
Internetworking and Cryptography. In Proceedings of the 7thWorkshop in Primary
and Secondary Computing Education (Hamburg, Germany) (WiPSCE ’12). ACM,
New York, NY, USA, 116–124. https://doi.org/10.1145/2481449.2481477

[14] Raymond Greenlaw, Christopher Brown, Zachary Dannelly, Andrew Phillips,
and Sarah Standard. 2015. Using a Message Board as a Teaching Tool in an
Introductory Cyber-Security Course. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). ACM, New York, NY, USA, 308–313. https://doi.org/10.1145/2676723.2677221

[15] Mark Guzdial. 2021. Helping social studies teachers to teach data lit-
eracy with Teaspoon languages. Retrieved January 14, 2022 from
https://computinged.wordpress.com/2021/12/22/helping-social-studies-
teachers-to-teach-data-literacy-with-teaspoon-languages/

[16] Mark Guzdial and Bahare Naimipour. 2019. Task-Specific Programming Lan-
guages for Promoting Computing Integration: A Precalculus Example. In Pro-
ceedings of the 19th Koli Calling International Conference on Computing Education
Research (Koli, Finland) (Koli Calling ’19). ACM, New York, NY, USA, Article 21,
5 pages. https://doi.org/10.1145/3364510.3364532

[17] Wen-Jung Hsin. 2005. Teaching Cryptography to Undergraduate Students in
Small Liberal Art Schools. In Proceedings of the 2nd Annual Conference on Infor-
mation Security Curriculum Development (Kennesaw, Georgia) (InfoSecCD ’05).
ACM, New York, NY, USA, 38–42. https://doi.org/10.1145/1107622.1107632

[18] K-12 CS Framework. 2016. K–12 Computer Science Framework. Technical Report.
http://www.k12cs.org

[19] Abdullah Konak. 2014. A cyber security discovery program: Hands-on cryp-
tography. In 2014 IEEE Integrated STEM Education Conference. 1–4. https:
//doi.org/10.1109/ISECon.2014.6891029

[20] Abdullah Konak. 2018. Experiential Learning Builds Cybersecurity Self-Efficacy
in K-12 Students. Journal of Cybersecurity Education, Research and Practice 2018,
1 (2018). https://digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6

[21] Ákos Lédeczi, Miklós Maróti, Hamid Zare, Bernard Yett, Nicole Hutchins, Brian
Broll, Péter Völgyesi, Michael B. Smith, Timothy Darrah, Mary Metelko, Xenofon
Koutsoukos, and Gautam Biswas. 2019. Teaching Cybersecurity with Networked
Robots. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (Minneapolis, MN, USA) (SIGCSE ’19). ACM, New York, NY, USA,
885–891. https://doi.org/10.1145/3287324.3287450

[22] Liceo Matematico [n.d.]. https://www.liceomatematico.it/
[23] Anke Lindmeier and Andreas Mühling. 2020. Keeping Secrets: K-12 Students’

Understanding of Cryptography. In Proceedings of the 15th Workshop on Primary
and Secondary Computing Education (Virtual Event, Germany) (WiPSCE ’20). ACM,
NewYork, NY, USA, Article 14, 10 pages. https://doi.org/10.1145/3421590.3421630

[24] Michael Lodi, Marco Sbaraglia, and Simone Martini. 2021. Big Ideas of Cryptog-
raphy in K-12. https://bigideascryptok12.bitbucket.io/

[25] Michael C. Loui and Maura Borrego. 2019. Engineering Education Research. In
The Cambridge Handbook of Computing Education Research. Cambridge University
Press, 292–322. https://doi.org/10.1017/9781108654555.012

[26] Jun Ma, Jun Tao, Jean Mayo, Ching-Kuang Shene, Melissa Keranen, and Chaoli
Wang. 2016. AESvisual: A Visualization Tool for the AES Cipher. In Proceedings
of the 21st ACM Conference on Innovation & Technology in Computer Science
Education (Arequipa, Peru) (ITiCSE ’16). ACM, New York, NY, USA, 230–235.
https://doi.org/10.1145/2899415.2899425

[27] Alasdair McAndrew. 2008. Teaching Cryptography with Open-Source Software.
SIGCSE Bull. 40, 1 (2008), 325–329. https://doi.org/10.1145/1352322.1352247

[28] Jens Mönig and Brian Harvey. [n.d.]. Snap! - Build Your Own Blocks. https:
//snap.berkeley.edu/

[29] Joint Task Force on Cybersecurity Education. 2018. Cybersecurity Curricula 2017:
Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity. ACM,
New York, NY, USA. https://dl.acm.org/doi/book/10.1145/3184594

[30] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

[31] Marco Sbaraglia. 2021. A Necessity-Driven Learning Design for Computer Sci-
ence. In Proceedings of the 26th ACM Conference on Innovation & Technology in
Computer Science Education V. 2 (Virtual Event, Germany) (ITiCSE ’21). ACM,
New York, NY, USA, 664–665. https://doi.org/10.1145/3456565.3460017

[32] Marco Sbaraglia, Michael Lodi, and Simone Martini. 2021. A Necessity-Driven
Ride on the Abstraction Rollercoaster of CS1 Programming. Informatics in Edu-
cation 20, 4 (2021), 641–682. https://doi.org/10.15388/infedu.2021.28

[33] Dino Schweitzer and Jeff Boleng. 2009. DesigningWeb Labs for Teaching Security
Concepts. J. Comput. Sci. Coll. 25, 2 (2009), 39–45.

[34] Dino Schweitzer and Wayne Brown. 2009. Using Visualization to Teach Security.
Journal of Computing Sciences in Colleges 24, 5 (2009), 143–150.

[35] Simon Singh. 1999. The code book : the science of secrecy from ancient Egypt to
quantum cryptography. Fourth Estate, London.

[36] Joel Sommers. 2010. Educating the next Generation of Spammers. In Proceedings
of the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). ACM, New York, NY, USA, 117–121. https:
//doi.org/10.1145/1734263.1734302

[37] Keith S. Taber. 2012. Constructivism as educational theory: Contingency in
learning, and optimally guided instruction. In Educational theory, Hassaskhah
Jaleh (Ed.). Nova, New York, NY, USA, 39–61.

[38] Sigmund Tobias and Thomas M. Duffy (Eds.). 2009. Constructivist instruction:
Success or failure? Routledge.

[39] Claude F. Turner, Blair Taylor, and Siddharth Kaza. 2011. Security in Computer
Literacy: A Model for Design, Dissemination, and Assessment. In Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education (Dallas, TX,
USA) (SIGCSE ’11). ACM, New York, NY, USA, 15–20. https://doi.org/10.1145/
1953163.1953174

[40] Dirk van der Linden, Awais Rashid, Emma Williams, and Bogdan Warinschi.
2018. Safe Cryptography for All: Towards Visual Metaphor Driven Cryptography
Building Blocks. In Proceedings of the 1st International Workshop on Security
Awareness from Design to Deployment (Gothenburg, Sweden) (SEAD ’18). ACM,
New York, NY, USA, 41–44. https://doi.org/10.1145/3194707.3194709

[41] Valdemar Švábenský, Jan Vykopal, and Pavel Čeleda. 2020. What Are Cyber-
security Education Papers About? A Systematic Literature Review of SIGCSE
and ITiCSE Conferences. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education (Portland, OR, USA) (SIGCSE ’20). ACM, New York,
NY, USA, 2–8. https://doi.org/10.1145/3328778.3366816

[42] Wikipedia contributors. 2021. Diffie–Hellman key exchange — Wikipedia, The
Free Encyclopedia. Retrieved August 13, 2021 from https://en.wikipedia.org/w/
index.php?title=Diffie%E2%80%93Hellman_key_exchange&oldid=1038627636

[43] Aman Yadav and Ulf Dalvad Berthelsen. 2021. Computational Thinking in Educa-
tion. Routledge. https://doi.org/10.4324/9781003102991

[44] Maximilian Zinkus, Oliver Curry, Marina Moore, Zachary Peterson, and Zoë J.
Wood. 2019. Fakesbook: A Social Networking Platform for Teaching Security and
Privacy Concepts to Secondary School Students. In Proc. of the 50th ACMTechnical
Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19).
ACM, New York, NY, USA, 892–898. https://doi.org/10.1145/3287324.3287486

https://doi.org/10.1145/3341525.3387386
https://doi.org/10.1016/S0360-1315(02)00102-1
https://doi.org/10.1145/2602490
https://doi.org/10.1145/2602490
https://doi.org/10.1145/2325296.2325367
https://doi.org/10.1145/2445196.2445360
https://doi.org/10.2760/38842
https://csunplugged.org/en/principles/
http://www.csteachers.org/standards
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://doi.org/10.1145/3287324.3287403
https://doi.org/10.21585/ijcses.v2i1.21
https://doi.org/10.1145/2481449.2481477
https://doi.org/10.1145/2676723.2677221
https://computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-to-teach-data-literacy-with-teaspoon-languages/
https://computinged.wordpress.com/2021/12/22/helping-social-studies-teachers-to-teach-data-literacy-with-teaspoon-languages/
https://doi.org/10.1145/3364510.3364532
https://doi.org/10.1145/1107622.1107632
http://www.k12cs.org
https://doi.org/10.1109/ISECon.2014.6891029
https://doi.org/10.1109/ISECon.2014.6891029
https://digitalcommons.kennesaw.edu/jcerp/vol2018/iss1/6
https://doi.org/10.1145/3287324.3287450
https://www.liceomatematico.it/
https://doi.org/10.1145/3421590.3421630
https://bigideascryptok12.bitbucket.io/
https://doi.org/10.1017/9781108654555.012
https://doi.org/10.1145/2899415.2899425
https://doi.org/10.1145/1352322.1352247
https://snap.berkeley.edu/
https://snap.berkeley.edu/
https://dl.acm.org/doi/book/10.1145/3184594
https://doi.org/10.1145/3456565.3460017
https://doi.org/10.15388/infedu.2021.28
https://doi.org/10.1145/1734263.1734302
https://doi.org/10.1145/1734263.1734302
https://doi.org/10.1145/1953163.1953174
https://doi.org/10.1145/1953163.1953174
https://doi.org/10.1145/3194707.3194709
https://doi.org/10.1145/3328778.3366816
https://en.wikipedia.org/w/index.php?title=Diffie%E2%80%93Hellman_key_exchange&oldid=1038627636
https://en.wikipedia.org/w/index.php?title=Diffie%E2%80%93Hellman_key_exchange&oldid=1038627636
https://doi.org/10.4324/9781003102991
https://doi.org/10.1145/3287324.3287486

	Abstract
	1 INTRODUCTION
	2 OUR COURSE
	2.1 Context
	2.2 Learning path
	2.3 Tools, activities, and methodology

	3 RELATIONSHIP WITH PREVIOUS WORK
	4 EXPERIENCE EVALUATION
	4.1 Learning assessment
	4.2 Course satisfaction

	5 OBSERVATIONS AND FINDINGS
	5.1 On pedagogy and intervention results
	5.2 Suggestions for adoption and adaption

	Acknowledgments
	References

