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8 ABSTRACT9
10

The scarcity of high-quality annotations in many application scenarios has recently led to an in-11

creasing interest in devising learning techniques that combine unlabeled data with labeled data in12

a network. In this work, we focus on the label propagation problem in multilayer networks. Our13

approach is inspired by the heat diffusion model, which shows usefulness in machine learning14

problems such as classification and dimensionality reduction. We propose a novel boundary-15

based heat diffusion algorithm that guarantees a closed-form solution with an efficient imple-16

mentation. We experimentally validated our method on synthetic networks and five real-world17

multilayer network datasets representing scientific coauthorship, spreading drug adoption among18

physicians, two bibliographic networks, and a movie network. The results demonstrate the ben-19

efits of the proposed algorithm, where our boundary-based heat diffusion dominates the perfor-20

mance of the state-of-the-art methods.21

22

1. Introduction23

Real-world networks1 often demonstrate a layered structure in which links in each layer reflecting the interaction24

of nodes in different environments [1]. These interconnected networks are often called network of networks [2] or25

multilayer networks. Multilayer networks provide better modeling for complex networks [3], enablingmultiple network26

layers to represent features of natural systems [4]. Therefore, the complexity associated with interactions is captured27

by multilayer networks [5, 6]. The computational problems in Multilayer networks such as link prediction [7] and28

community detection [6, 5] are also actively researched in this domain.29

A multilayer network can be generalized as a "multi-relational network" in a data mining community [8]. In30

a multilayer network, the same nodes are linked by different networks (layers). For instance, multilayers are good31

descriptions of a scientist’s social network, where the nodes represent the scientist, and the different layers correspond32

to different types of scientific conferences they attend. For illustration purposes, Figure 1 (A) shows how the scientists33

are talking to each other in three different Artificial Intelligence (AI) conferences (ICML, NeurIPS, IJCAI), represented34

by different colors. These three different conferences are the three different layers in the multilayer networks. The35

important observation in this multilayer network is that the same scientist in every layer or conference can be captured36

by interlayer edges connecting each scientist to its copies in other layers. In most cases, the multilayer network analysis37

is done in an aggregated network by flattening the whole layers into a single layer. Figure 1 (B) demonstrates the38

projection of a multilayer network of AI scientists onto graph structure by summing up all the adjacency matrices of39

the layers to a composite matrix. The main problem with doing this is the loss of information on layers. So performing40

any diffusion algorithms for node classification on the aggregate graph structure may not perform accurately. Thus the41

underlying problem is that the matrix representation is not expressive enough to model a multilayer network without42

information loss.43

Thus to apply label propagation algorithms in a multilayer network of scientists described above, we need to trans-44

form themultilayer network into a homogenous network without compromising its distinctive layer properties. Figure 145

(C) demonstrates the feature learning of the scientist in a multilayer graph via tensor embedding methods. Tensors,46

mohan.timilsina@insight-centre.org (M. Timilsina); vit.novacek@insight-centre.org (V. Nováček);
mathieu.daquin@insight-centre.org (M. d’Aquin); haixuan.yang@nuigalway.ie (H. Yang)

ORCID(s):
1Note that the words “networks” and “graphs” are interchangeably used in the paper.
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Figure 1: (A) Multilayer network of AI scientists talking to each other. Each layer represents an AI conference (ICML,
NeurIPS, IJCAI). (B)Projection of multilayer graph onto a graph structure (C) Node feature extraction using graph
embedding method. (D) Constructing the homogeneous graph of the extracted features using kNN method.

which are n-modal generalizations of matrices, naturally adapt the graph’s multilayer representation and allow us to47

learn the node’s embeddings. Similarly, Figure 1 (D) demonstrates the transformation of such learned features or em-48

beddings into a simple k-nearest neighbor (kNN) network of scientists based on some measure of similarity between49

features. Another critical problem in a multilayer network is the speed of the diffusion process. Multilayer networks50

can have an enhanced-diffusive behavior, which means that the time scale associated with it is shorter than that oc-51

curring on a single-layer network [9]. For example, a scientist discussing significant findings in the ICML conference52

may be quickly diffused in NeurIPS or IJCAI conferences. It means information travels very fast in such a network.53

If a node classification has to be done in such a network, then the most crucial property to take care of is the time.54

The diffusion kernels [10, 11] used in the standard label propagation algorithm capture the long-range relationships55

(global information) between nodes in the network. However, some specific real-world multilayer networks tend to56

link related entities by shorter diffusion paths [12], which favor short-range diffusion. Thus we need to consider the57

time parameter in the multilayer graph, which can adapt to long and short-range diffusion for node classification.58

The social and technological innovation brought by, for example, the world wide web, biomedicine, and social net-59

works have exposed the need to consider that networks might be made up of many different layers of interactions. Com-60

pared to single-layer networks, a multilayer network’s topological and dynamic properties are different [13]. Therefore,61
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studying propagation processes in multilayer networks is a rapidly evolving research area. For instance, a diffusion62

process can have an enhanced-diffusive behavior on a multilayer network, which means that the time scale associated63

with it is shorter than that occurring on a single layer network [9]. Due to this, it is essential to consider how label64

propagation algorithms work in a multilayer network.65

Although label propagation algorithms work reasonably well in most networks with a single layer, we do not66

explicitly know how these algorithms behave in a multilayer network. In such a network, where nodes overlap between67

the layers, there is a high possibility of node misclassification using ordinary label propagation algorithms [14]. The68

diffusion kernels [10] used in the label propagation algorithm capture the long-range relationships (global information)69

between nodes in the network. Due to this reason, long-range diffusion puts more emphasis on random walks that70

explore more of the multilayer network, which eventually leads to misclassification. However, specific real-world71

multilayer networks tend to link related entities by shorter diffusion paths. For example, proteins that have similar72

functions are often linked by the shortest paths in a network [12].73

Another example is image segmentation, which is one of the critical areas for extracting information from the74

images in a computer vision problem. Currently, the use of a Multilayer network [15] has improved the precision75

of image segmentation because it allows the analysis of networks with multiple resolutions. However, the multilayer76

networks applied in image segmentation [16] use a classical label propagation algorithm applicable for a single-layer77

network that might misclassify the labels of the nodes shared across layers.78

The main advantage of the heat diffusion algorithm over other label propagation algorithms is two folds. First, it79

utilizes the heat diffusion process to determine neighboring nodes that reflect the local structure of the target node and80

the relevant information of smoothness manifested in graph structure [17]. Second, the heat propagates the information81

faster than the standard label propagation algorithm by penalizing the shorter walks heavily in the graph [18]. This82

property enables the faster convergence of the heat diffusion algorithm.83

Motivation: Using traditional label propagation algorithms, the main problem is that the diffusion process undergoes a84

unique stationary distribution. It is often called deep or long-range diffusion. This property emphasizes random walks85

that explore more of the network. The study by Gomez et.al [9] has also shown that diffusive processes in multilayer86

networks are faster than in any single-layer networks. Therefore, the unique stationary distribution of random walks87

might cause misclassification of nodes in a layered network. This problem will further enable us to adopt shallow or88

short-range diffusion. It is because heat diffusion has the property of determining neighboring nodes that reflect the89

local structure of the target node, which will further control the heat propagation in the layers and efficiently classify90

the nodes in a multilayer network.91

Main idea: In this paper, we propose a novel node classification algorithm that handles the abovementioned concerns.92

Our algorithm uses the intuitive and natural model of a physical heat diffusion system with boundary conditions. The93

heat flow can be captured by measuring the (i) heat between points in the network and (ii) the heat amount added and94

removed from the system. Here, the points at which heat is measured can be represented by nodes in a graph, and95

edges are associated with heat flows between those points. The injection and extraction points can be viewed as the96

boundaries of the system. The diffusion time models the range of diffusion, small time for a short-range diffusion and97

large time for a long-range one. Based on this idea, heat diffusion with boundary conditions will control the heat flow,98

making it ideal for node classification in a multilayer network.99

Contributions: Our contributions based on heat diffusion with boundary condition (BHD) are summarized as follows:100

1. We provide a hybrid approach for combining the graph embedding and the diffusion method in a multilayer101

network.102

2. Theoretically, we show that the popular transductive semi-supervised kernel known as the harmonic function is103

the limit case of BHD.104

3. We develop an iterative method to BHD, whose computation complexity is linear to the number of edges.105

Consequently, BHD has the following advantages for its applications:106

1. Accuracy: Our algorithm achieves improved accuracy on different label propagation tasks in a multilayer net-107

work when compared to state-of-the-art label propagation methods.108

2. Scalable: it can be applied to a large graph as BHD is linear in the number of edges.109

3. Parameter estimation: BHD has just one parameter chosen using cross-validation from a training set.110

Moreover, we performed extensive experiments in synthetic datasets and five multi-layered networks for the node111

classification task. The five different labeled multilayer networks include a scientific coauthorship network, a diffusion112
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innovation in a physician network, two bibliographic networks, and a movie network. The results demonstrated that our113

algorithm often outperforms the state-of-the-art label propagation algorithms in terms of top p% label prediction and114

classification accuracy. To the best of our knowledge, our algorithm is the first solution to handle node classification115

using label propagation in a multilayer network relying only on the graph structure.116

Outline. The rest of the paper is organised in a rather standard way: related work, problem definition, method117

description, experiments and conclusion.118

2. Related Work119

2.1. Label Propagation120

Label propagation technique is very powerful [19], it has been identified and re-identified in numerous fields under121

different forms [20, 21, 22]. For instance, theoretical graph scientists explored random walks on graphs [23, 24]; the122

data science community applies variants of the Google PageRank search algorithm [21]; statistical physicists examined123

heat diffusion processes [25]; electrical engineers calculate minimum energy states within an electrical circuit [26];124

and the machine learning (ML) community considers different forms of graph kernels [10].125

Several algorithms can solve the node classification problem from a Label Propagation (LP) perspective. Blum et126

al. proposed Mincut [27], and Zhu et al. proposed LP [11] known as harmonic function (HMN), which is one of the127

most well-known graph-based semi-supervised learning algorithms in the Artificial Intelligence (AI) community for128

transductive learning. Similarly, the Local and Global Consistency (LGC)method proposed by Zhou et al. [28] is based129

on the assumption that nearby points (local) are likely to have the same label; and points on the same structure (global)130

are also likely to have the same label also known as homophily. On a similar note, Heat Diffusion (HD) proposed131

by Yang et al. [29] has also been successfully applied to node classification tasks [30, 31]. OMNI-Prop [32] is an132

LP-like algorithm that applies to both homophilic, and heterophilic labeled network, where dissimilar nodes are more133

likely to be related than similar ones. Among semi-supervised graph learning methods, LP [33, 28, 34] has shown134

good adaptability, scalability, and efficiency for node classification. One of the advantages of the LP-based technique135

is that they have a small memory requirement and a fast convergence rate [35] which makes it attractive to apply in136

large graphs. Thus in the real-world network datasets, LP has shown to be very beneficial, such as social networks,137

web pages, protein-protein interactions, citation, and anti-money laundering in the Bitcoin network [36, 37, 38, 39,138

40]. Furthermore, LP has shown huge advantage in drug mechanism of action prediction [41, 42], spammer reviewer139

detection [43], and object recognition [44]. Recently, heat diffusion with a boundary-based approach has also shown140

good performance in semi-supervised regression setting [45]. Song et al. [46] has provided the latest comprehensive141

survey of the graph-based semi-supervised learning.142

Most of the LP method described contributes related and mathematically equivalent techniques, including random143

walks on a graph, diffusion processes on a graph, and current computations in electric networks. A brief demonstration144

of such technique on how they use the similarity matrix and weight normalization is shown in Table 1.145

LP Variants Similarity Matrix Normalized Weight Relevant Methods

Random Walk W k W = AD−1 Electric Network;
HMN

Random Walk with Restart �(I − (1 − �)W )−1 W = AD−1 ; W = D−1∕2AD−1∕2
Insulated diffusion;
personalized PageRank;
LGC

Diffusion Kernel e−�W W = D − A HD

Table 1
k denotes the number of time steps for propagation; A denotes the adjacency matrix, which could be weighted or
unweighted; D denotes the diagonal degree matrix; I denotes the identity matrix; � is the smoothing parameter.

Table 2 demonstrates the qualitative comparison of the popular LP algorithms that are applied in a node classifica-146

tion problem. We observed that most of these state-of-the-art methods have the closed form solution and scales linearly147

to the large graphs. All the models above have proven useful in single layer network analysis, but their performance148

on multilayer networks has not been explored.149
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Mincut HMN LGC HD OMNI
Proposed

Boundary Heat Diffusion
(BHD)

Closed form solution ✓ ✓ ✓ ✓ ✓ ✓

Convergence ✓ ✓ ✓ ✓ ✓ ✓

Parameter tuning × × ✓ × × ✓

Single layer propagation ✓ ✓ ✓ ✓ ✓ ✓

Multi layer propagation × × × × × ✓

Diffusion control × × ✓ × × ✓

Table 2
Qualitative comparison between different state-of-the-art label propagation algorithms for the node classification task.

2.2. Label Propagation Combined with Other Methods150

Recently, LP has been addressed from the game theory perspective known asGraph Transduction Game (GTG) [47].151

In the framework, the transduction problem is formulated in terms of a non-cooperative multiplayer game whereby152

equilibria correspond to the consistent labeling of the data. GTG approach is also applied in challenging bioinfor-153

matics problem [48] known as protein function prediction beating state-of-the-art graph-based methods. Recently, the154

domain adaptation branch of transfer learning in combination with label propagation has shown promising results in155

visual recognition [49] in an unsupervised setting. It demonstrates that the LP can easily integrate with other methods156

to improve predictive accuracy.157

The boom of neural networks [50] has inspired its application in graph structured data. One promising technique,158

known as graph convolutional networks (GCNs) [51], has achieved impressive node classification performance. Sim-159

ilarly, the graph neural networks (GNNs) [52, 53] have demonstrated high competitiveness in classifying node labels.160

Most GNN models adopt a message passing strategy [54]: each node aggregates features from its neighbors and then161

performs a layer-wise projection function with a non-linear activation to combine the information. Thus, GNNs can ex-162

ploit both graph structure and node feature information in their models. However, the combination of graph topology,163

node features, and projection matrices in GNNs leads to a complicated prediction mechanism and could not take full164

advantage of prior knowledge lying in the data [55]. For instance, homophily assumption adopted in label propagation165

methods represents structure-based prior and has been shown to be underused [56] in graph convolutional network166

(GCN) [51]. GCN integrates node attributes, node labels, and edges in model learning. However, GCNs fall apart167

to employ the label distribution in the graph structure. Moreover, the dependency on labels as supervision limits the168

label update efficiency and prohibits a minimal label rate scenario, e.g., only one labeled example per class. LP, in169

combination with Convolutional Neural Network (CNN), has gathered significant interest in classification task [57].170

Similarly, the study by Douze et al. [58] performed LP on a large image dataset with CNN descriptors for a few shot171

learning having state-of-the-art accuracy.172

2.3. Multilayer Network Analysis173

In the data mining and machine learning community, the notion of a “multilayer network” is used in various tasks,174

including community detection, node classification, and link prediction. With the recent increase in works using graph175

neural network embedding-based methods, such tasks tend to be carried out by learning a low dimensional repre-176

sentation of nodes in the network, preserving the network structure [59]. The node embedding techniques [60] have177

demonstrated high accuracy in link prediction and node classification tasks. Most of the embedding methods employ178

learned embeddings from the nodes in a multilayer network, and train supervised classifiers for node classification [8].179

However, they do not use the manifold structure exhibited by embedding structures, a promising method for semi-180

supervised node classification using graph-based diffusion for data with a low ratio of labeled to unlabeled nodes.181

The existing studies of random walks adopt a global strategy for navigation in a multilayer network [61]. In most182

of the works in label propagation in multilayer network analysis, network aggregation is performed, to aggregate data183

from the different layers of a multilayer network into a single layer by averaging their adjacency matrices. To generate184

a weight matrix W = 1
k
∑k
i=1[Wijk], where k is the number of layers for a single-layer network. Following this185

strategy, there is a loss of information from the original multiple layers. Also, in Multilayer networks, the inter-layer186
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edges disappear due to aggregation processes because self-edges (nodes having links to themselves) cannot account187

for information propagation to other nodes [62].188

Network aggregation and long-range diffusion are the approaches taken for node classification in multilayer net-189

works. However, long-range diffusion on a global scale stresses random walks that explore more of the multilayer190

network, leading to node misclassification. Another problem is the loss of layer information by aggregation. Thus in191

this work, we propose a general solution for multilayer network analysis from the perspective of network embedding192

to transform it into a homogeneous graph and control the diffusion range by a novel label propagation algorithm. Our193

algorithm provides closed-form solutions, guarantees convergence, and adapts the diffusion range to be suitable for194

various node classification problems.195

3. Problem Formulation196

This section details terms and introduces the node classification problem in a multilayer network. Suppose  is197

the list of nodes and there areK different types of layers which are expressed asG1,… , GK . For every layered network198

Gk = (k, Ek), we have Ek ⊆ k ×k, and k ⊆  . The set of nodes is composed of two types of components199

 = L ∪U where L = {n1,… , nl} is a set of l labeled nodes and U = {nl+1,… , nl+u} is the list of unlabeled nodes.200

Given a set C of c possible labels, let f = [fip] be a matrix, where fip = 1 if node i ∈  has label p ∈ C , and 0201

otherwise. We can observe fL, a part of f , where nodes are restricted to the set L. The problem is to predict the other202

part fU of f , where nodes are restricted to the set U . Thus the node classification problem in multilayer networks is203

expressed as follows:204

• Input: A partially labeled multilayer network. That is, G1,… , GK , and fL.205

• Transform: Encode the feature of nodes from multilayer network using graph embedding method and apply206

kNN method to construct the homogeneous graph.207

• Score: Find a score Sip for each unlabeled node i and each p ∈ C . A good method will have the property that208

larger values for Sip imply more probably that i takes the label p. In an evaluation, the precision can be produced209

based on such scores.210

• Decision: Assess through checking whether the classification function argmaxp Sip results in the same label as211

the ground truth, and produce accuracy in the evaluation.212

4. Solution Approach213

The overall solution of our approach is illustrated in Figure 2. The main aim of this study is to predict the labels214

of the nodes in a multilayer graph. First of all, the primary input is the multilayer graph with few labeled and large215

unlabeled nodes. The red and blue are the labeled nodes, and black is the unlabeled nodes in the multilayer graph.216

Next, we extracted the node embeddings of a multilayer graph using the tensor factorization methods. Once we have217

the embeddings of the multilayer graph, then we construct a surrogate homogenous graph from the embedding using218

the kNN approach. Finally, we used boundary heat diffusion to propagate the heat in the kNN graph using the labeled219

nodes as the heat source. Once the propagation process is over, we will have the final output, the label for the unlabelled220

nodes.221

5. Methodology222

5.1. Heat Diffusion (HD)223

For a known graph structure, the heat flow with initial conditions can be defined by the following second order224

differential equation )f (x,t)
)t − Δf (x, t) = 0, where f (x, t) is the heat at location x at time t, and Δf is the Laplace-225

Beltrami operator on a function f . The heat diffusion kernel Kt(x, y) is a special solution to the heat equation with a226

special initial condition which is a unit heat source at position ywhen there is no heat in another end. Heat kernels [10]227

have proven useful because of the physical interpretation of the optimization in label propagation in a semi-supervised228

machine learning process [11]. The solution to the heat diffusion equation on a graph is [29] given as f (t) = e−�tΔf (0).229

The value f (t) illustrates the heat at node v at time t, beginning from an initial distribution of heat given by f (0) at230

time zero and Δ is the graph Laplacian, and � is the diffusion coefficient.231
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Figure 2: An illustration of applying boundary heat diffusion algorithm in a node classifi-
cation problem for a multilayer network.

The exponential kernel is defined as:232

e−�Δ = lim
N→∞

(

1 + −�Δ
N

)N
(1)

Yang et al. [63] proposed a discrete approximation to compute the heat diffusion in a graph. Using, this method233

heat diffusion can be computed iteratively,234

f (1) = f (0)
(

I + −�
N
Δ
)N

(2)

Where f (0) is the initial heat scores of the nodes and f (1) is the final heat scores after the diffusion process. In a235

practical setting, keeping the value of � = 1 and N = 30 works in most of the cases [63]. The f (1) value is used for236

the node label classification.237

5.2. Heat Diffusion with a Boundary Condition in Graph (BHD)238

To make it self-contained, we will briefly introduce the BHD model for node classification problem which is239

adapted from our previous work [45] that has been applied for graph-based regression problem. Let us suppose that240

there are l labeled and u unlabeled nodes and N = l + u be the total nodes in the graph. Then L =
{

1, 2, ..., l
}

241
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corresponds to labeled nodes with labels f1, ..., fl, and nodes U =
{

l+1, l+2, ..., l+u
} refers to the unlabeled points.242

Our job here is to assign the labels for the nodes U . The edge of the graph is a n × n weight matrixW also known as243

adjacency matrix.244

To formulate ourmodel, let us assume that, at time t, each node i ∈ U receives a certain amount of heatM(i, j, t,Δt)245

from its neighbor j during a period of Δt. The heatM(i, j, t,Δt) is proportional to the time Δt and the heat difference246

fj(t) - fi(t). Due to this, the heat difference at node i between time t + Δt and time t will be equal to the sum of the247

heat that it receives from all of its neighbors. It is expressed as:248

fi(t + Δt) − fi(t) =
n
∑

j=1
(fj(t) − fi(t))WijΔt (3)

Dividing Eq. 3 by Δt on both sides, and let Δt→ 0, we have249

dfi
dt

= Wi,∶f − difi (4)

In terms of matrix operations, we split the weight matrixW also known as adjacency matrix of graph into 4 blocks250

after the Ltℎ row and column:251

W =
[

WLL WLU
WUL WUU

]

(5)

Note thatWU,∶f =
[

WULWUU
]

[

fL
fU

]

, andΔUU = DUU −WUU . HereΔ is the combinatorial Laplacian which252

is given in the matrix form asΔ=D−W whereD = diag(di) also known as degree matrix of the graph. The diag(di)253

is the diagonal matrix with entries di = ∑

j wij andW = [wij].254

We have a matrix form:255

dfU
dt

= WU,∶f −DUUfU

= WULfL +WUUfU −DUUfU
= WULfL − ΔUUfU

(6)

Solving this linear differential equation which is the form of dy∕dx+ Py = Q to find the closed form solution we
have:

dfU
dt

= WULfL − ΔUUfU (7)

Here P = ΔUU and Q = WULfL256

fU = Δ−1UUWULfL + e−ΔUU tC (8)
This is the temperature distribution on the unlabeled nodes at time t, given the boundary condition fL. This257

function is used to predict the labels for the unlabeled node. Given the initial condition fU ||t=0 = fU (0), C = fU (0) −258

Δ−1UUWULfL. Note that, in the limit t→ +∞, fU = Δ−1UUWULfL, which is the harmonic function.259

To interpret Eq. 8 and the heat diffusion with the boundary process more intuitively, we constructed two different260

toy classification datasets (i) two moon-shaped simulated data from 1000 points with a standard deviation of 0.1 using261

two features and (ii) spiral inter-wined data from 1000 points with a standard deviation of 0.1 using three features.262

The shaped of the dataset is shown in the Figure 3 [a] and [c]. The red data point has label -1, and the blue data point263
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Figure 3: The error curve of different label propagation algorithms in a toy datasets.

has label +1 in both the figures. There are two visibly separate clusters in the data. We employed the Gaussian RBF264

Kernel wij = exp
(

− ||xi−xj ||2

2�2
) to construct the graph between these points and randomly choose 2 points from each265

of the labels [−1, 1] and the rest of the points as unlabeled and applied the closed-form equations for heat diffusion,266

harmonic function, and boundary heat diffusion. Figure 3 [b] and [d] shows the performance of these algorithms. The267

y-axis is the cross-entropy loss, and the x-axis is the time. The harmonic function does not have the time component268

in its equation, but HD and BHD have the time component. We can see from the curve that when time equals 10−3,269

the BHD algorithm has the highest cross-entropy loss in both moon and spiral-shaped data. As time increases, BHD270

started to have a low cross-entropy loss. BHD starts to converge as time equals 100 in the moon-shaped data and time271

equals 102 in the spiral-shaped data. It means that BHD will be the same as harmonic function favoring continuous or272

long-range propagation for a higher value of time.273

5.3. Computational Complexity274

In the solution provided by Eq. 8 we have two parts: (i) the harmonic part and (ii) the exponential part. When275

the graph is large, the computation will be time-consuming because both terms have a O(n3) complexity. To solve276

this, we took an iterative approach to compute the harmonic part provided by Zhu et al. [64], which is the same as277
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a random walk with restart (RWR). For the exponential part we took the discrete approximations by Yang et.al [63]:278

f (t) =
(

I − t
MΔUU

)Mf (0), where M is the number of iterations chosen as M = 30, same as [63], and I is the279

identity matrix. t is from the cross-validation in the training set ranging from [10−3, 10−2, 10−1, 100, 101, 102]. f (0) is280

the initial temperature and f (t) is the temperature at timestamp t. Specifically, after the discrete formalization of the281

complexity of exponential kernel in our model is given by O(M|E|n) whereM is the number of iterations, n is the282

number nodes and |E| is the number of edges in the graph. However, we used kNN graphs where each node connects283

to only a few nodes; we can reduce the complexity of discrete approximation. The label propagation in such sparse284

graphs is computationally cheaper and faster. The time complexity, in this case, depends on k being chosen. The285

optimum k can be chosen by using the cross-validation in training sets or domain knowledge of the data. For a small286

k, the graph will be sparse, which ultimately speeds up the computation time.287

5.4. Space Complexity288

For a fully connected graph we need to store |E| number of edges and n is the length of vectors for initial temper-289

atures that means the space complexity (S) is: S = O(|E|) + O(n) = O(n2) + O(n). However, we are using a kNN290

approach to build the graph from the embedding vectors; then, we can reduce the space complexity. If k is chosen291

small then we can reduce the space complexity from O(n2) + O(n) to O(kn) + O(n).292

5.5. Initial Temperature Setting293

We set the initial temperature at time zero for the labeled nodes as 1. However, if network contains many false294

positive links, then the ideal way to make inferences about the initial value for each node in U is the mean values in295

YL. It is because we can safely assume that the value of the node appears as independent random variables from the296

same population [65]. Thus the best guess to initialize the initial temperature from the population mean �, is to use297

the sample mean of YL.298

6. Algorithm299

This algorithm requires a n × n transition matrix, a n × c label matrix where c is the number of labels, a n × n300

Laplacian matrix Δ. M is the number of iterations. Once we calculate the harmonic score, we need to calculate the301

constant C , as shown in Equation 8. C is obtained by subtracting an initial label matrix from a harmonic score. The302

initial label matrix has an initial temperature for each node. We imputed the values for the unlabeled nodes as the303

means of the labeled nodes. This C is the initial condition of state matrix (n × c) for heat diffusion with boundary304

conditions. Formally, the algorithm is described in Algorithm 1305

6.1. Parameter t306

Parameter t has a vital role in the diffusion process. If t has a high value, heat will diffuse very quickly. In Eq. 8,307

if t tends to +∞, then the heat diffusion with boundary condition will become a harmonic function. It means the heat308

will travel deeper into the graph, i.e., it will follow a long-range or global diffusion. If t is small, then heat will diffuse309

slowly, favoring short-range or local diffusion. Different networks require different values of t. For instance, rumors310

or fake news propagate faster in a social network than true stories [66]. In that case, t is high because heat immediately311

transfers to the rest of the neighbors, making the diffusion process faster.312

7. Experiments313

In this experiment2, we answer the following questions:314

• Q1: Classes: Does varying classes by keeping same structural properties of the graph will impact the ability of315

BHD in a node classification task ?316

• Q2: Accuracy: Which graph embedding will have highest accuracy in synergy with BHD in a multilayer net-317

work?318

• Q3: Parameter: Does the parameter t affect the performance of BHD in a multilayer network?319

2The code and the datasets are publicly available in the Github repository https://github.com/timilsinamohan/BHDClassifier.
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Algorithm 1: Heat Diffusion with Boundary Condition
Input : The transition matrix T of size n × n; initial label matrix Y of size n × c; Laplacian matrix Δ;M is

the number of iteration chosen as 30; I is the identity matrix of size n × n
Output: State matrix of size n × c

1 Initialize U = Y
2 repeat
3 Y k+1 ← TY k

4 Row Normalize: Y k+1
5 Y k+1 ← Y k+1 + U
6 Y k = Y k+1
7 k = k + 1
8 until error between Y k+1 and Y k becomes sufficiently small
9 Initial_Temperature: Impute mean value for unlabeled nodes using labeled value from column of matrix U

10 C = Initial_temperature - Y K
11 State_Matrix = C
12 t is a parameter in (10−3,103);
13 for b = 1 to M do
14 State_Matrix = Y K +

(

I − t
MΔ

)

State_Matrix
15 end
16 Row Normalize: State_Matrix
17 return State_Matrix

Synthetic Datasets To generate the synthetic graph, we used Stochastic Block Model (SBM). SBM is a generative320

model for random graphs which generates graphs containing clusters. The same approach is also used to assess the per-321

formance of the Semi-Supervised Node Classification by graph-based approach [67]. In this experiment, we examined322

a SBM with n = 2000 nodes and k classes to test the BHD. It is assumed that the actual label for each node is sampled323

uniformly from the set {0, ..., k − 1}. The two nodes falls under the same class then an edge is drawn between them324

with probability p; else, these nodes are connected to each other with probability q. Table 3 provides the properties of325

the SBM used in our dataset.326

Synthetic Dataset Nodes Labels p q

k-SBM n = 2000 k ∈ {3, 4, 5} 5 × logn
n

1 × logn
n

Table 3
The properties of the synthetic dataset for the semi-supervised node classification.

Figure 4 demonstrates three types of the graphs generated from a stochastic block model and visualized using327

NetworkX3 graph package using the parameters in Table 3.328

Multilayer Network Datasets. To evaluate the effectiveness of BHD in a multilayer network, we used publicly avail-329

able data for node classification. We use two bibliographic network datasets (DBLP4 and ACM4), a physician network330

called CKM [68], a collaboration network called Leskovec_NG5, and a movie dataset called IMDB4. The statistics of331

the multilayer networks used in our experiments are shown in Table 4.332

The CKM multilayer network is about the impact of network ties on the physician’s adoption of a new drug.333

There are three layers in this network, and the labels are the researchers associated with their original companies.334

Leskovec_NG contains the coauthors of Andrew Ng and Jure Leskovec at Stanford University from 1995 to 2014. This335

multilayer graph is a 4-layer temporal graph. For each layer, there is an edge between two researchers if they coauthored336

at least one paper in the 5-year interval. DBLP data contains three types of nodes (papers, authors, conferences), and337

3https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.stochastic_block_model.html
4https://github.com/THUDM/cogdl
5https://sites.google.com/site/pinyuchenpage/datasets
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(a) k = 3. (b) k = 4. (c) k = 5.
Figure 4: Three realizations of k-SBM with 2000 nodes and different number of classes.

Datasets #Layers #Nodes #Edges #Classes

CKM Physician Datasets 3 246 1,551 3
Leskovec_NG Datasets 3 191 1,836 2
DBLP 4 18,405 67946 4
ACM 4 8,994 25922 3
IMDB 4 12,772 37288 3

Table 4
Multilayer Network Datasets.

four types of layers and research areas of authors are as labels. ACM contains three types of nodes (papers, authors,338

subject), four types of layers and categories of papers are the labels. IMDB contains three types of nodes (movies,339

actors, and directors), and labels are genres of movies.340

Evaluation: We hide 90% of labeled nodes in CKM Physician and Leskovec_NG Datasets and perform a ten-341

fold cross-validation due to its small size. For DBLP ACM, and IMDB, we use the same train, test, and validation342

sets provided in the benchmark datasets. The numbers of train, validation and test nodes are (800, 400, 2857) for343

DBLP, (600, 300, 2125) for ACM and (300, 300, 2339) for IMDB respectively. Then we applied the algorithms to344

infer the hidden labels. We reported (i) precision@p and (ii) accuracy metric because both of these metrics assess345

the performance of the label propagation algorithm. Precision@p is the precision of top p% nodes ordered by their346

maximum score of maxjSij . The accuracy score computes the subset accuracy in a multilabel classification task.347

Q1:Class We applied the BHD in the three different class settings using only a 10% labeled dataset. To assess the
performance of a BHD classification model, we used cross-entropy loss. It is because this metric measures the distance
between the two probability distributions of predicted value and the actual label [69] and is regarded as the measure
of quality of predictions rather than the accuracy of the classifier [70, 71]. A perfect classifier has the cross-entropy
score 0. It is computed as:

Cross-entropy = −
n
∑

i=1

m
∑

j=1
yi,j log(pi,j) (9)

where, yi,j denotes the true value i.e. 1 if data point i belongs to class j and 0 otherwise and pi,j denotes the348

probability predicted by the model of data point i belonging to class j.349

For computing cross-entropy, we vary the time in the range of [10−3, 103]. As the time increases, the cross entropy350

starts to decrease shown in Figure 6 (a). A similar trend is observed for all three classes. At time = 100, we observed351

the minimum cross-entropy. After the time exceeds 100, the three curve starts to increase. By time = 101, the curves352

start to flatten, meaning no further reduction in cross entropy, and the algorithm is converged. As the number of classes353

increased, fixing the same number of nodes, we observed the cross-entropy increment. It is because the number of354
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(a) CKM Physician.
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(b) NG-Lesckovec lab.
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(c) ACM.
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(d) DBLP.
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(e) IMDB.
Figure 5: Impact of parameter t in multilayer networks. X-axis is the percentage of data ranked. Y-axis is the Precision
at each percentage of the data.

labeled samples in each class is identical; however, the label distribution is different, which affects the cross entropy355

score. We also observed that when higher time is chosen the model starts to perform poorly giving the unreliable356

predictions. Thus, choosing optimal t is very important for accurate prediction.357

Similarly, in Figure: 6 (b), we used different percentages of the labeled data in training sets ranging from 10%358

to 90%. The optimum time is estimated from the training set in cross-validation. We saw that as the percentage of359

a labeled sample increases, the entropy decreases for all the classes. It is because as the training set increases, the360

BHD is able to capture more neighborhood information and enhance the prediction performance. Thus we observe the361

reduction of the cross-entropy score.362
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Figure 6: Label Propagation using BHD in a SBM Graph in a 3 different label settings.

Q2:Accuracy We set the embedding dimension to 150 for all node embedding methods for a fair comparison. We363

employed the kNN methods to construct the node similarity graph where k is chosen from the cross-validation of364

training sets. We have used state-of-the-art node embedding methods Node2vec, Relational Graph Convolution Neural365

network (RGCN) [72], tensor factorization model known as TuckER [73], ComplEx [74] and RESCAL [75]. For the366

kNN graphs constructed from node embedding, we employed the label propagation algorithm HMN, LGC, CAMLP,367

OMNI, HD, and BHD.368

IMDB DBLP ACM
Precision@10 Precision@100 Accuracy Precision@10 Precision@100 Accuracy Precision@10 Precision@100 Accuracy

Tucker + HMN 0.25 0.28 0.21 0.53 0.49 0.28 0.72 0.70 0.64
Tucker + LGC 0.35 0.33 0.32 0.42 0.42 0.19 0.73 0.71 0.66
Tucker + CAMLP 0.30 0.33 0.32 0.58 0.44 0.21 0.70 0.71 0.66
Tucker + OMNI 0.31 0.30 0.26 0.62 0.45 0.24 0.63 0.61 0.54
Tucker + HD 0.33 0.33 0.32 0.69 0.42 0.19 0.70 0.71 0.66
Tucker + BHD 0.45 0.38 0.59 0.90 0.91 0.89 0.85 0.75 0.69
ComplEx + HMN 0.29 0.27 0.25 0.54 0.58 0.34 0.71 0.69 0.66
ComplEx + LGC 0.38 0.32 0.31 0.53 0.54 0.27 0.74 0.72 0.62
ComplEx + CAMLP 0.31 0.30 0.32 0.57 0.55 0.32 0.71 0.70 0.62
ComplEx + OMNI 0.32 0.30 0.28 0.66 0.49 0.34 0.65 0.62 0.60
ComplEx + HD 0.31 0.35 0.30 0.70 0.56 0.28 0.72 0.70 0.64
ComplEx + BHD 0.39 0.37 0.35 0.71 0.57 0.36 0.72 0.72 0.67
Node2Vec + HMN 0.59 0.23 0.16 0.48 0.46 0.24 0.55 0.61 0.44
Node2Vec + LGC 0.59 0.23 0.16 0.43 0.46 0.24 0.57 0.61 0.44
Node2Vec + CAMLP 0.58 0.23 0.16 0.68 0.45 0.23 0.55 0.61 0.44
Node2Vec + OMNI 0.60 0.23 0.15 0.64 0.45 0.24 0.39 0.57 0.38
Node2Vec + HD 0.60 0.23 0.16 0.71 0.46 0.24 0.57 0.61 0.44
Node2Vec + BHD 0.61 0.35 0.36 0.72 0.47 0.28 0.60 0.61 0.65
RGCN + HMN 0.47 0.23 0.20 0.44 0.46 0.25 0.84 0.74 0.67
RGCN + LGC 0.46 0.23 0.20 0.43 0.46 0.25 0.81 0.72 0.66
RGCN + CAMLP 0.46 0.23 0.20 0.40 0.45 0.24 0.82 0.73 0.66
RGCN + OMNI 0.30 0.32 0.40 0.46 0.47 0.27 0.84 0.75 0.67
RGCN + HD 0.46 0.23 0.20 0.41 0.47 0.25 0.74 0.73 0.67
RGCN + BHD 0.47 0.34 0.41 0.47 0.48 0.28 0.84 0.75 0.68
RESCAL + HMN 0.53 0.23 0.17 0.91 0.27 0.76 0.85 0.76 0.71
RESCAL + LGC 0.53 0.23 0.18 0.91 0.27 0.76 0.86 0.76 0.71
RESCAL + CAMLP 0.53 0.23 0.17 0.90 0.27 0.8 0.83 0.76 0.71
RESCAL + OMNI 0.58 0.23 0.16 0.92 0.27 0.89 0.86 0.77 0.71
RESCAL + HD 0.53 0.23 0.18 0.87 0.27 0.76 0.80 0.76 0.71
RESCAL + BHD 0.62 0.58 0.61 0.92 0.93 0.90 0.89 0.77 0.72

Table 5
Result evaluation of the embedding models in a node classification task. Best results are in boldface.

In Table 5 and 6, we can see that BHD with RESCAL node embedding outperforms most multilayer networks.369

Our method (RESCAL + BHD) does not use any external node feature but only relies on the graph structure and370

Timilsina et al.: Preprint submitted to Elsevier Page 14 of 18



Diffusion in Multilayer Network Embedding

Leskovec_NG CKM Physician
Precision@10 Precision@100 Accuracy Precision@10 Precision@100 Accuracy

Tucker + HMN 0.98 ± 0.001 0.71 ± 0.150 0.97 ± 0.007 0.47 ± 0.407 0.57 ± 0.188 0.57 ± 0.195
Tucker + LGC 0.97 ± 0.021 0.70 ± 0.014 0.96 ± 0.002 0.50 ± 0.416 0.58 ±0.191 0.57 ±0.198
Tucker + CAMLP 0.97 ± 0.035 0.71 ± 0.148 0.95 ± 0.009 0.67 ± 0.212 0.57 ± 0.183 0.56 ± 0.193
Tucker + OMNI 0.98 ± 0.087 0.71 ± 0.149 0.97 ± 0.009 0.67 ± 0.217 0.57 ± 0.188 0.57 ± 0.197
Tucker + HD 0.97 ± 0.071 0.71 ± 0.145 0.99 ± 0.011 0.67 ± 0.220 0.56 ± 0.178 0.55 ± 0.188
Tucker + BHD 0.99 ± 0.001 0.71 ± 0.150 0.99 ± 0.007 0.87 ± 0.296 0.73 ± 0.189 0.92 ± 0.224
ComplEx + HMN 0.98 ± 0.011 0.71 ± 0.002 0.96 ± 0.114 0.46 ± 0.101 0.57 ± 0.244 0.55 ± 0.854
ComplEx + LGC 0.98 ± 0.478 0.70 ± 0.415 0.95 ± 0.122 0.49 ± 0.208 0.57 ±0.485 0.54 ± 0.744
ComplEx + CAMLP 0.97 ± 0.141 0.70 ± 0.185 0.96 ± 0.148 0.66 ± 0.105 0.56 ± 0.119 0.53 ± 0.254
ComplEx + OMNI 0.98 ± 0.987 0.70 ± 0.214 0.96 ± 0.854 0.67 ± 0.117 0.57 ± 0.278 0.71 ± 0.258
ComplEx + HD 0.96 ± 0.062 0.71 ± 0.874 0.98 ± 0.211 0.68 ± 0.118 0.56 ± 0.281 0.57 ±0.112
ComplEx + BHD 0.99 ± 0.210 0.70 ± 0.241 0.99 ± 0.227 0.81 ± 0.214 0.56 ± 0.125 0.60 ± 0.148
Node2Vec + HMN 0.59 ±0.187 0.55 ±0.073 0.55 ±0.073 0.59 ±0.401 0.54 ±0.203 0.61 ±0.206
Node2Vec + LGC 0.59 ±0.207 0.53 ± 0.098 0.53 ±0.041 0.48 ±0.388 0.52 ±0.197 0.51 ±0.202
Node2Vec + CAMLP 0.61 ±0.217 0.54 ± 0.101 0.53 ±0.079 0.62 ±0.204 0.51 ±0.166 0.57 ± 0.204
Node2Vec + OMNI 0.61 ±0.218 0.55 ±0.093 0.54 ±0.065 0.68 ±0.204 0.54 ± 0.167 0.53 ± 0.168
Node2Vec + HD 0.62 ±0.191 0.54 ±0.089 0.54 ±0.057 0.63 ± 0.258 0.52 ± 0.196 0.53 ±0.174
Node2Vec + BHD 0.63 ±0.201 0.62 ±0.161 0.80 ±0.163 0.68 ± 0.272 0.57 ±0.183 0.62 ±0.188
RGCN + HMN 0.60 ±0.339 0.55 ±0.075 0.58 ±0.095 0.58 ±0.290 0.54 ±0.185 0.54 ±0.201
RGCN + LGC 0.58 ±0.331 0.55 ± 0.072 0.59 ±0.096 0.60 ±0.291 0.54 ±0.186 0.53 ±0.201
RGCN + CAMLP 0.57 ±0.137 0.55 ±0.075 0.58 ±0.096 0.55 ±0.207 0.53 ±0.195 0.53 ± 0.211
RGCN + OMNI 0.56 ±0.092 0.58 ±0.059 0.65 ±0.061 0.63 ±0.113 0.51 ±0.039 0.60 ±0.035
RGCN + HD 0.75 ±0.078 0.55 ±0.062 0.58 ±0.094 0.54 ±0.158 0.54 ±0.187 0.53 ±0.201
RGCN + BHD 0.83 ±0.188 0.59 ±0.076 0.63 ±0.144 0.68 ±0.236 0.55 ±0.184 0.61 ±0.254
RESCAL + HMN 0.98 ±0.037 0.57 ± 0.071 0.64 ±0.075 0.63 ±0.338 0.56 ±0.199 0.57 ±0.191
RESCAL + LGC 0.98 ±0.037 0.56 ±0.068 0.66 ±0.107 0.60 ±0.351 0.56 ±0.197 0.58 ±0.194
RESCAL + CAMLP 0.97 ± 0.039 0.56 ±0.081 0.69 ±0.101 0.71 ±0.131 0.56 ± 0.201 0.58 ±0.191
RESCAL + OMNI 0.97 ±0.054 0.60 ± 0.082 0.74 ±0.149 0.77 ±0.141 0.48 ±0.185 0.52 ±0.213
RESCAL + HD 0.97 ±0.039 0.57 ±0.071 0.66 ±0.109 0.70 ±0.110 0.55 ±0.196 0.57 ±0.188
RESCAL + BHD 0.99 ±0.017 0.72 ±0.158 0.99 ±0.003 0.88 ±0.157 0.75 ±0.206 0.94 ±0.114

Table 6
Result evaluation of the embedding models in a node classification task. Best results are in boldface.

still provides competitive results compared to other methods. RESCAL uses the collective matrix factorization (CMF)371

method, a powerful technique to learn shared latent representations frommultiple matrices. As the node in a multilayer372

network is shared across layers, RESCAL is ideal for extracting the node representation in such a setting. Another373

strength of RESCAL is that it computes a global latent-component representation of the nodes, making it ideal for374

retrieving similar nodes in a multilayer network. Therefore graph constructed using these embeddings compliments375

label propagation algorithms, which works on the assumption that similar unlabeled nodes should be given the same376

classification.377

Another important observation is that combining the node embeddings for multilayer networks and BHD label378

propagation has superior performances to other label propagation algorithms, especially in Precision@10 and Ac-379

curacy. For example, in Table 5 and 6, we can see that synergy between Tucker+BHD is better than Tucker+HMN,380

Tucker+CAMLP, Tucker+OMNI, and Tucker+HD.A similar trend is observed for ComplEx+BHD,Node2Vec+BHD,381

RGCN+BHD, and RESCAL+BHD. It suggests that BHD style label propagation improves the node classification in382

a multilayer network than other label propagation algorithms.383

Q3: Parameter In Table 5 and 6, we observed RESCAL+ BHD has better performance than other combination. In384

this experiment, we wanted to assess the node classification ability of our combined approach of RESCAL embedding385

with BHD by varying the parameter t. The parameter t is varied from 10−3 to 102. We report the result of all the386

multilayer network data used in our studies. From Fig 5, we see that the largest values of the parameter t lead to lower387

precision than the smallest t. The values of t less than or equal to 1 lead to high precision for small p and perform388

better than large t for large p. In all the data, we saw that setting t at 100 led to the precision quickly dropping. As t389
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increases, heat will quickly transfer over all the nodes of the network leading to miss-classification. We also see that390

setting a small t performed better than a large t. Thus, in these multilayer networks, node classification favors small391

values of t. It also means that in this kind of network, short-range diffusion is supported.392

8. Conclusion393

We presented a novel heat diffusion method with the boundary condition, which addresses the node classification394

problems in multilayer networks. This model requires a parameter t for time, which controls the range of propagation395

in the network. The advantages of our algorithm are:396

1. Accuracy: It outperforms or equals the state-of-the-art algorithms in label propagation for node classification in397

multilayer networks: Table 5 and 6,.398

2. Linear: Our algorithm has a closed-form solution that can be evaluated in a finite number of steps: Equation 8399

and Algorithm 1.400

3. Parameter: It has only one parameter t which controls the heat flow for long or short range diffusion: Figures 3401

and 5.402

We believe that our boundary-based heat diffusion method is simple but effective for node classification. The403

limitation of the study is that we have a free parameter t, which we estimated from cross-validation mode in the404

training set. For this, the extra computational time is required to find the optimum t. To save computational time, we405

intended to solve this by learning the parameter based on the network structure by automatically determining the value406

for t, which we consider for our future work. We used the simple kNN method, which provides us with a surrogate407

graph from multilayer network embeddings for label propagation. Of course, better graphs can be constructed if one408

can define better distance functions, connectivity, and edge weights. However, constructing efficient graphs from the409

features is another critical challenge in a graph-based semi-supervised classification problem.410
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