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Abstract
We explore the possibility of extending Mardare et al.’s quantitative algebras to the structures
which naturally emerge from Combinatory Logic and the λ-calculus. First of all, we show that the
framework is indeed applicable to those structures, and give soundness and completeness results.
Then, we prove some negative results clearly delineating to which extent categories of metric spaces
can be models of such theories. We conclude by giving several examples of non-trivial higher-order
quantitative algebras.
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1 Introduction

One way of seeing program semantics is as the science of program equivalence. Each
way of giving semantics to programs implicitly identifies which programs are equivalent.
Similarly, a notion of program equivalence can be seen as a way of attributing meaning to
programs (namely, the equivalence class to which the program belongs). This point of view
makes semantics a powerful source of ideas and techniques for program transformation and
program verification, with the remarkable advantage that such techniques can be defined in
a compositional and modular way.

However, there are circumstances in which equivalences between programs, being purely
dychotomous, are just not informative enough: two programs are either equivalent or not,
period. No further quantitative or causal information can be extracted from two programs
which are slightly different, although not equivalent. Furthermore, as program equivalences
are usually congruences, and therefore preserved by any context, programs that only differ in
peculiar circumstances are also just non-equivalent. For these reasons, methods alternative
to program equivalence have to be looked for in all (very common) situations involving
transformations that replace a program by one which is only approximately equivalent [31],
or when the specifications are either not precise or not to be met precisely (e.g. in modern
cryptography [27], in which most security properties hold in an approximate sense, namely
modulo a negligible probability).
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4:2 On Quantitative Algebraic Higher-Order Theories

The considerations above led the scientific community to question the possibility of
broadening the scope of program semantics from a science of equivalences to a science
of distances between programs. By the way, the possibility of interpreting programs in
domains having a metric structure has been known since the 1990s [19, 18]. Recently,
Mardare, Panangaden, and Plotkin have introduced a notion of quantitative algebra [29] that
generalizes usual equational reasoning to a setting in which the compared entities can be at
a certain distance. In this way, various notions of quantitative algebra have been shown to
be captured through a formal system, à la Birkhoff [8].

Still, when the programs at hand are higher-order functional programs, the construction
of a metric semantics faces several obstacles. First, it is well-known that the category Met of
metric spaces and non-expansive maps, providing the standard setting of the approaches just
recalled, is not a model of the simply typed λ-calculus (more precisely, it is not cartesian
closed). Furthermore, finding relevant sub-categories of Met enjoying enough structure to
model higher-order programs can lead to trivial (i.e. discrete) models, and several (mostly
negative) results have remained so far in the folklore (with a few notable exceptions, e.g. [21]).

In this paper we bite the tail of the dragon: we apply the framework of quantitative
equational theories and algebras from Mardare et al. to the cases of combinatory logic and the
λ-calculus, and we try to highlight features and obstacles in the construction of higher-order
quantitative algebras, at the same time showing the existence of several interesting models.

There are various reasons for exploring combinatory algebras, i.e. applicative structures
where the ξ-rule fails. The first is that these structures naturally arise in various contexts,
most notably in Game Semantics and in particular in the Geometry of Interaction [23], as
axiomatized by Abramsky et al. [1]. The ξ-rule can then be enforced only by introducing a
rather complex notion of equivalence relation, whose fine structure is usually rather awkward
to grasp. The second reason is that combinatory algebras, being indeed algebras, might appear
at first sight to be amenable straightforwardly in the first order framework of quantitative
algebras of Mardare et al. We show that this is illusory, because the impact of the basic
assumption that constructors are non-expansive, i.e. the Axiom NExp (see Section 4) is very
strong, even in a context which could appear to be algebraically well-behaved. Finally, even if
it is convenient to assume the ξ-rule, in reasoning about higher-order programming languages,
showing that it holds in implementations is not at all immediate and, when side-effects are
present, it needs to be carefully phrased.

The contributions of this paper are threefold:

Following the framework defined by Mardare et al., we introduce quantitative generaliza-
tions of the standard notions of weak λ-theories and λ-theories [6], and of their algebras.
This is in Section 3, Section 4, and Section 5, respectively.

We study properties and examples of algebras for such theories, as suitable sub-categories
of Met. Notably, we highlight the relevance of ultra-metric and injective metric spaces in
the construction of non-trivial (i.e. non discrete) algebras. Some examples are discussed
through Section 2 and Section 5, further properties and examples are in Section 6.

Finally, we discuss algebras obtained by relaxing the conditions from Mardare et al.:
either by replacing metrics by partial metrics [9, 34], i.e. generalized metrics in which
self-distances d(x, x) need not be zero, or by relaxing the non-expansiveness condition
and introducing a class of approximate quantitative algebras. This is in Section 7 and
Section 8.
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2 Preliminaries on Metric Spaces

In this section we discuss a few properties of metric spaces and their associated categories,
which provide the general setting for quantitative algebras in the sense of Mardare et al.
In particular, we recall the definition of ultra-metric spaces, as well as partial ultra-metric
spaces [9, 34]. The latter is a class of generalized metric spaces in which self-distances a(x, x)
are not required to be 0 but only smaller than any distance of the form a(x, y).

▶ Definition 1. A pair (X, a) formed by a set X and a function a : X ×X → R∞
≥0 is called:

(i) a pre-metric space if it satisfies, for all x, y ∈ X, a(x, x) = 0 (refl) and a(x, y) = a(y, x)
(symm); (ii) a (pseudo-)metric space if it satisfies (refl), (symm), and, for all x, y, z ∈ X,
a(x, y) ≤ a(x, z)+a(z, y) (trans); (iii) an ultra-metric space if it satisfies (refl), (symm) and,
for all x, y, z ∈ X, a(x, y) ≤ max{a(x, z), a(z, y)} (trans∗); (iv) a partial ultra-metric space
if it satisfies (symm), (trans∗) and, for all x, y ∈ X, a(x, y) ≥ a(x, x), a(y, y) (refl∗).

Since all metrics we consider are “pseudo”, from now on we will omit this prefix. Observe
that an ultra-metric space is also a metric space. Moreover, a partial ultra-metric space (X, a)
also yields an ultra-metric space (X, a∗), with a∗(x, y) = 0 if x = y and a∗(x, y) = a(x, y)
otherwise. Usually, partial metric spaces are defined using a stronger version of the triangular
law, given by a(x, y) ≤ a(x, z) + a(z, y) − a(z, z). However, for partial ultra-metrics this
condition is equivalent to (trans∗) (see e.g. [34]).

The natural morphisms to consider between metric (ultra-metric, partial ultra-metric)
spaces (X, a) and (Y, b), hoping to get a continuous currification, are the non-expansive
functions, i.e. those functions f : X → Y such that for all x, y ∈ X, b(f(x), f(y)) ≤ a(x, y).
We let Met (resp. UMet, PUMet) indicate the category of metric spaces (resp. ultra-metric
spaces, partial ultra-metric spaces) and non-expansive maps. All categories Met,UMet and
PUMet are cartesian, the product of (X, a) and (Y, b) being given by (X × Y,max{a, b}).
In UMet and PUMet the cartesian functors {−} ×X have right-adjoints given, respectively,
by (UMet(X, {−}),Φa,{−}) and (PUMet(X, {−}),Φa,{−}), where for all metric space (Y, b),
Φa,b(f, g) = sup{b(f(x), g(x)) | x ∈ X}. For this reason, both categories are cartesian closed.

By contrast, Met is not cartesian closed. Indeed, the functor (Met(X, {−}),Φa,{−}) is
right-adjoint in Met (and thus also in UMet) to the functor (X × {−}, a+ {−}), but for all
metric spaces (Y, b), (X × Y, a+ b) is isomorphic to the cartesian product (X × Y,max{a, b})
only when X and Y are ultra-metrics. Instead, the exponential of (X, a) and (Y, b) in Met,
if it exists, is necessarily of the form (Met(X,Y ),Ξa,b) (as shown in the long version), where

Ξa,b(f, g) = inf{δ | ∀x, y ∈ X max{δ, a(x, y)} ≥ b(f(x), g(y))}

We use the Greek letter Ξ, since, as we’ll see, this metric is tightly related to the interpretation
of the ξ-rule of the λ-calculus. Notice that in general Ξa,b is only a pre-metric. Indeed,
the category of pre-metric spaces and non-expansive functions is cartesian closed, while the
exponential of (X, a) and (Y, b) exists in Met precisely when Ξa,b further satisfies (trans).

We will exploit the following useful characterization of exponentiable objects in Met
(we recall that an object A in a cartesian category C is exponentiable when, for all object
B, the exponential of B and A exists in C, so C is cartesian closed iff all its objects are
exponentiable):

▶ Theorem 2 ([13]). A metric space (X, a) is exponentiable in Met iff for all x0, x2 ∈ X

and α, β ∈ R∞
≥0 such that a(x0, x2) = α+ β, the condition below holds:

∀ϵ > 0 ∃x1 ∈ X s.t. a(x0, x1) < α+ ϵ and a(x1, x2) < β + ϵ (∗)

FSCD 2022



4:4 On Quantitative Algebraic Higher-Order Theories

Condition (∗) intuitively requires X to have “enough points”. For example, the set N, as a
subspace of R, is not exponentiable in Met (take x0 = 0, x1 = 1 and α = β = 1/2: a point
between 0 and 1 is “missing”). Instead, condition (∗) always holds when (X, a) is injective
(see [22, 13]): for any collection of points {xi}i∈I in X and positive reals {ri}i∈I such that
a(xi, xj) ≤ ri + rj , there is a point lying in the intersection of all balls B(xi, ri). This implies
that the sub-category InjMet of Met formed by injective metric spaces is cartesian closed.
Since the Euclidean metric is injective, there is a cartesian closed sub-category of Met formed
by “simple types” over closed real intervals, that we’ll use as working example.

▶ Example 3. Let IntST be the set of simple types over the intervals, defined by [a, b] ∈ IntST,
for all intervals [a, b] (with a, b ∈ R∞

≥0 and a ≤ b) and i, j ∈ IntST ⇒ (i×j), (i → j) ∈ IntST.
For any i ∈ IntST, the metric spaces (Ii, d

I
i ) are defined by I[a,b] := [a, b], Ii×j := Ii × Ij ,

Ii→j := Met(Ii, Ij), dI
[a,b](x, y) := |x− y|, dI

i×j := max{dI
i , d

I
j } and dI

i→j := ΞdI
i

,dI
j
.

The “analytic knife” provided by metrics is rather blunt when dealing with isometries in
R, because these are isolated points in Ξa,b. Examples of isometries are the identity and
functions which have a right or left inverse. We have:

▶ Proposition 4. Let f : R → R be an isometry in R. Then f is isolated in the metric Ξa,b.
Moreover the identity is isolated in all injective spaces.

3 Many-Sorted Quantitative Theories and Algebras

In this section we introduce quantitative theories and algebras in the sense of [29]. In order
to cover both the typed and the untyped case, we consider many-sorted theories and algebras,
hence combining the quantitative (but one-sorted) approach from [29] with the qualitative
(but many-sorted) approach from [24].

Notation. For any set I, an I-sorted set A is an I-indexed family of sets A = (Ai)i∈I (i.e. an
object of SetI), and an I-sorted function f : A → B between I-sorted sets is an I-indexed
family of functions f = (fi : Ai → Bi)i∈I (i.e. a morphism in SetI(A,B)). For a set I, we
denote by I∗ the set of all finite lists of elements of I, we let w range over I∗ and use ∗ for
concatenation. For A an I-sorted set and w = i1 . . . ik ∈ I∗, we let Aw :=

∏k
j=1 Aij . Var

denotes a distinguished I-sorted containing, such that for all i ∈ I, Vari is a countably infinite
set of variables. For any I-sorted set A and function f : Var → A, and pairwise disjoint
variables x1, . . . , xn, with xj ∈ Varij

and a1, . . . , an with aj ∈ Aij
, we let fx⃗,⃗a : Var → A

indicate the I-sorted function mapping xj to aj and behaving as f on all other variables.

▶ Definition 5 (Many-Sorted Signature). An I-sorted signature Σ is an I∗ × I-sorted set
{Σw,i | w ∈ I∗, i ∈ I} (i.e. an object of SetI∗×I).

The objects σ ∈ Σw,i will be called symbols of the signature.

▶ Definition 6 (Σ-Algebra). A Σ-algebra is a pair (A,ΩA) where A is a I-sorted family and ΩA

associates each symbol σ ∈ Σw,i with a function σA : Aw → Ai, where Aw = Ai1 ×· · ·×Aik
, for

w = i1 . . . ik. For any object A of SetI , the free Σ-algebra over A, noted FΣ(A), is the I-sorted
set defined by the following conditions: (i) for all x ∈ Ai, x ∈ FΣ(A)i; (ii) for all σ ∈ Σw,i

and v1 ∈ FΣ(A)w(1), . . . , vk ∈ FΣ(A)w(k), then σFΣ(A)(v1, . . . , vk) := σ(v1, . . . , vk) ∈ FΣ(A)i.

Intuitively, FΣ(A)i is the set of “terms of sort i with parameters in A”. Free algebras
enjoy the following universal property:
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▶ Proposition 7. For any Σ-algebra (A,ΩA) and map f ∈ SetI(B,A) there exists a unique
Σ-homomorphism f ♯ : FΣ(B) → A extending f , that is, such that f = f ♯ ◦ ηB, where
ηB : B → FΣ(B) is the inclusion map.

Given a function f ∈ SetI(B,A), if t ∈ FΣ(B)i is some term of sort i with parameters
b1, . . . , bn in B, f ♯t ∈ FΣ(A)i is the result of “substituting” each parameter bi in t with f(bi).

Let us now introduce the equational language of quantitative theories.

▶ Definition 8. Let Σ be an I-sorted signature.
(i) A quantitative Σ-equation over FΣ(Var) is an expression of the form t

i≃ϵ s, where
i ∈ I, t, s ∈ FΣ(Var)i and ϵ ∈ Q≥0.

(ii) For all ϵ ∈ Q≥0, let V(Var) be the set of indexed Σ-equations of the form x
i≃ϵ y, for

some i ∈ I and x, y ∈ Vari, and V(FΣ(Var)) be the set of indexed Σ-equations of the
form t

i≃ϵ s, where i ∈ I and t, s ∈ (FΣ(Var))i.

▶ Definition 9. A consequence relation on the free Σ-algebra FΣ(Var) is a relation ⊢ ⊆
℘(V(FΣ(Var))) × V(FΣ(Var)) closed under all instances of the following rules (where ϵ, δ
vary over all Q≥0):
(Cut) if Γ ⊢ ϕ for all ϕ ∈ Γ′ and Γ′ ⊢ ψ, then Γ ⊢ ψ;
(Assumpt) if ϕ ∈ Γ, then Γ ⊢ ϕ;
(Refl) ∅ ⊢ t

i≃0 t;
(Symm) {t i≃ϵ s} ⊢ s

i≃ϵ t;
(Triang) {t i≃ϵ s, s

i≃δ u} ⊢ t
i≃ϵ+δ u;

(Max) {t i≃ϵ s} ⊢ t
i≃ϵ+δ s;

(Arch) {t i≃δ s | δ > ϵ} ⊢ t
i≃ϵ s ;

(NExp) {t1
i1≃ϵ s1, . . . , tk

ik≃ϵ sk} ⊢ σ(t1, . . . , tk) i≃ϵ σ(s1, . . . , sk), for all σ ∈ Σi1...ik,i;
(Subst) if f : Var → FΣ(Var), then Γ ⊢ t

i≃ϵ s implies f ♯Γ ⊢ f ♯t
i≃ϵ f

♯s.
Notice that rule (Arch) has infinitely many assumptions.

We let E(FΣ(Var)) = ℘fin(V(FΣ(Var))) × V(FΣ(Var)) indicate the set of quantitative
inferences on FΣ(Var) and E(Var) = ℘fin(V(Var)) × V(FΣ(Var)) indicate the set of basic
quantitative inferences. Axioms for theories will be basic quantitative inferences.

▶ Definition 10 (Many-Sorted Quantitative Theory). Let S ⊆ E(Var) be a set of basic
quantitative inferences. Let ⊢S be the smallest consequence relation including S. The
quantitative equational theory over Σ generated by S is the set US := (⊢S) ∩ E(FΣ(Var)).
The elements of S are the axioms of US.

To the syntactic notion of quantitative theory there corresponds a semantic notion of
quantitative algebra, given by a Σ-algebra endowed with suitable metrics.

▶ Definition 11 (Many-Sorted Quantitative Algebra). Let Σ be an I-sorted signature. A
quantitative Σ-algebra is a tuple A = (A,ΩA, dA) where (A,ΩA) is a Σ-algebra and dA is an
I-sorted family of metrics dA

i : Ai ×Ai → R∞
≥0 such that for all σ ∈ Σw,i, σA : Met(Aw, Ai).

Given a quantitative Σ-algebra, we can define a multicategory MetA whose objects
are the metric spaces (Ai, d

A
i ), and where for all w = i1 . . . ik, MetA(Ai1 , . . . , Aik

;Ai) ⊆
Met(Aw, Ai) contains all functions f ∈ Met(Aw, Ai) such that for some term tf ∈ FΣ(A +
{x1 : w(1), . . . , xk : w(k)}), f(a1, . . . , ak) = f ♯

x⃗,⃗a(tf ). For brevity, we will often abbreviate
MetA(Ai1 , . . . , Aik

;Ai) as MetA(Aw;Ai).

FSCD 2022
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▶ Definition 12. Let A = (A,ΩA, dA) be a quantitative Σ-algebra. For any f : Var → A, we
say that A satisfies a quantitative equation ϕ = t

i≃ϵ u relative to f (denoted ⊨f
A ϕ) when

dA
i (f ♯(t), f ♯(u)) ≤ ϵ. We say that A satisfies a quantitative inference Γ ⊢ ϕ (denoted Γ ⊨A ϕ)

if for all f : Var → A, if ⊨f
A ψ holds for all ψ ∈ Γ, then ⊨f

A ϕ also holds.

Notice that the interpretation of rule (Nexp) implies that functional terms need to be
interpreted as non-expansive morphisms.

▶ Remark 13. All constructions from this section can be adapted to the case of partial
ultra-metric spaces by replacing, in Definition 9, the rule (Refl) with the following rule:
(PRefl) {t i≃ϵ u} ⊢ t

i≃ϵ t;
and requiring in Def. 11 that the dA

i are partial ultra-metrics and σA ∈ PUMet(Aw, Ai).

4 Quantitative Weak λ-Theories and Algebras

As is well-known (see e.g. [5]), a purely algebraic approach to the λ-calculus is provided by
combinatory logic CL. Hence, it is natural to start from this calculus. The equational theory
of CL captures so-called weak λ-theories [5], namely λ-theories where the ξ-rule (discussed in
more detail in Section 5) may fail. In this section we introduce quantitative weak λ-theories
and we discuss their algebras, of which Met itself is a notable example.

▶ Definition 14 (Applicative Signature). Let T be a set of sorts (called types) endowed with
a binary function →: T × T → T . An applicative signature Σ is a T -sorted signature which
includes symbols ·i,j ∈ Σ(i→j)∗i,j, for all i, j ∈ T .

We will often note ·i,j(t, u) infix, i.e. t ·i,j u, or simply as tu, when clear from the context.
For all w = i1 . . . in ∈ T ∗ and j ∈ T , we let w → j := i1 → · · · → in → j. A notable example
of applicative signature is the following:

▶ Definition 15 (CL-Signature). Let ΣCL be the applicative signature which includes symbols
Ii : i → i, Kij : i → j → i, Sijk : (i → j → k) → (i → j) → (i → k), for all i, j, k ∈ T . The
terms of combinatory logic are the elements of the free ΣCL-algebra, FCL(Var).

Definition 15 above comprises both the typed and untyped case. In typed Combinatory
Logic the set of types T includes at least a base type o, i.e. a type which is not in the image
of → and → is injective, while in the untyped case T is a singleton set {⋆} and hence
⋆ → ⋆ = ⋆. In the traditional language of “syntax and semantics”, used for instance in [5],
when f : Var → A, the function f ♯ of Proposition 7, amounts to the notion of intepretation
of a term t in the environment f , namely f ♯(t) = [[t]]f .

We now introduce the natural notion of theory for a CL-signature:

▶ Definition 16 (CL-Theory). The quantitative equational theory over FCL(Var), UCL is
generated by the axioms ∅ ⊢ Iit

i≃0 t, ∅ ⊢ Kijtu
i≃0 t, and ∅ ⊢ Sijktuw

k≃0 tw(uw). We call
(quantitative) weak λ-theory any theory including UCL.

▶ Example 17. The set IntST (cf. Example 3) is a particular instance of the set T . Let
I(ΣCL) be the signature obtained by enriching ΣCL with 0-ary symbols r ∈ I(Σ)(),[a,b] for all
r ∈ [a, b], and k-ary symbols f ∈ I(Σ)[a1,b1],...,[an,bn],[a,b] for all f ∈ Met(

∏
i[ai, bi], [a, b]). Let

UI
CL be the theory obtained by extending UCL with all axioms ∅ ⊢ fr1 . . . rk

[a,b]
≃0 s whenever

f(r1, . . . , rk) = s as well as all axioms ∅ ⊢ r
[a,b]
≃ϵ s for all rational ϵ ≥ |r − s|.
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A well-known property of Combinatory Logic is functional completeness: for any term t

and variable x, one can construct a term Λx(t) so that Λx(t) “simulates” λ-abstraction in
the sense that one can prove Λx(t)u ≃ t[u/x]. This leads to the following definition:

▶ Definition 18 (Quantitative Weak λ-Algebra). An applicative quantitative Σ-algebra A =
(A,ΩA, dA) is called a quantitative weak λ-algebra if for all w ∈ I∗, j ∈ I, and f ∈
Met(Aw, Aj), the set Λ(f) = {g ∈ Aw→j | ∀(x1, . . . , xk) ∈ Aw g ·A x1 ·A . . . ·A xk =
f(x1, . . . , xk)} is non-empty.

▶ Proposition 19. Any quantitative ΣCL-algebra satisfying UCL is a quantitative weak
λ-algebra. Vice versa, any quantitative weak λ-algebra satisfies UCL.

▶ Example 20. We obtain a quantitative weak λ-algebra by letting I = (Ii,ΩI , dI
i ), where

rI = r, fI = f , and f ·I x = f(x). It is clear that I ⊨ UI
CL (cf. Example 17).

Following [30], the condition from Definition 18 can be specified in categorial terms: a
cartesian multicategory C is a model of CL precisely when for all objects A,B of C there
is an object A vw⇒ B (called a very weak exponential of A and B) together with a surjective
natural transformation Φ : C(_;A vw⇒ B) → C(_, A;B). When C is the multicategory MetA,
the conditions of Definition 18 imply that Ai→j is a very weak exponential of Ai and Aj in
MetA: a family of multiarrows EvA

w,i,j : MetA(Aw;Ai→j) ⇒ MetA(Aw∗i;Aj), natural in w,
is given by EvA

w,i,j(f)(z, x) = f(z) ·A x, and the non-emptyness of the sets Λ(f) corresponds
to the surjectivity of this transformation.

Notice that Met itself admits very weak exponentials for all of its objects, i.e. it is a very
weak CCC in the sense of [30], provided we endow Met(X,Y ) with the metric Θa,b for metric
spaces (X, a) and (Y, b), where for f, g : X → Y Θa,b(f, g) is 0 if f = g, and otherwise is
sup{b(f(x), g(y)) | x, y ∈ X}. Intuitively, when f ≠ g, Θa,b(f, g) measures the diameter of
the interval spanned by the image of both f and g. However, the metric Θa,b is in general
rather odd since the identity is an isolated point whenever (X, a) is infinite and not trivial.

▶ Example 21. The constructions just sketched yields a different weak λ-algebra over the
reals Iweak = (Ii,ΩI , dweak), where dweak is defined like dI but for dweak

i→j = Θdweak
i

,dweak
j

.
Notice that we still have Iweak ⊨ UI

CL, since I and Iweak agree on distances of types [a, b].

The result below adapts to the many-sorted case a similar result for one-sorted quantitative
equational theories [29]. The proof is similar to that of Theorem 37, so we omit it.

▶ Theorem 22 (Soundness and Completeness of Quantitative Weak λ-Theories). For any
quantitative weak λ-theory U over ΣCL, Γ ⊢ ϕ ∈ U iff Γ ⊨A ϕ holds for any quantitative weak
λ-algebra A such that A ⊨ U .

▶ Remark 23. Following Remark 13, in the case of partial ultra-metric spaces we will talk of
partial weak λ-theories and partial weak λ-algebras.

5 Quantitative λ-Theories and Algebras

As we recalled, weak λ-theories do not fully capture the equational theory of the λ-calculus,
as they fail to capture the so-called ξ-rule [5]. In our quantitative setting, this rule can
be expressed as the inference t

j
≃ϵ u ⊢ λx.t

i→j
≃ϵ λx.u provided the equation on the left of

⊢ is locally universally quantified: the righthand equation holds under the condition that,
for all possible value of x, the lefthand equation holds. This kind of quantitative inferences
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4:8 On Quantitative Algebraic Higher-Order Theories

differ from those seen so far. The reason for this proviso is that it involves the higher-order
operator λ, which “binds” the variable x. The example below shows that quantitative weak
λ-algebras fail to capture this rule.

▶ Example 24. The ξ-rule fails in the weak λ-algebra I: let f, g : [0, b] → [0, b+ ϵ] (where
b ∈ R≥0 and ϵ ∈ Q≥0) be, respectively, the identity function f = id and the function

g(x) = x+ ϵ; for any s ∈ [a, b], we then have |f(s) − g(s)| ≤ ϵ, which shows I ⊨ fx
[a,b+ϵ]

≃ϵ gx.

However, since dI
[a,b]→[a,b+ϵ](f, g) = b+ ϵ, we deduce I ⊭ λx.fx

[a,b]→[a,b+ϵ]
≃ϵ λx.gx.

In order to define quantitative λ-theories we could follow Curry [5] and “strengthen” the
set of axioms, in fact mere equalities, satisfied by a ΣCL-algebra and essentially do away
with the ξ-rule and all higher order features. The alternative, that we develop in this section,
is to take abstraction and the ξ-rule as first class elements of our theories and algebras. This
will require a number of generalizations of the original approach of [29].

At the level of syntax, the first step is to enrich the class of symbols with higher-order
operators of the form λix. The occurrence of the variable x is part of the symbol λix itself.

▶ Definition 25 (λ-Signature). Given an applicative T -sorted signature Σ, let Σλ be the
applicative T -sorted signature further including the symbols λix ∈ Σλ

j,i→j, for all x ∈ Vari

and i, j ∈ T . The λ-terms are the elements of the free Σλ-algebra, Fλ(Var).

Terms λix(t) will be denoted by λix.t or simply λx.t. Free and bound variables, open
and closed λ-terms are defined as usual. For a λ-term t, we denote by fv(t), bd(t), var(t) the
sets of free, bound, and all variables in t, respectively. In order to simplify the notation we
deal with bound variables by implementing directly Barendregt’s “hygiene condition”. For
any function f : Var → Fλ(Var) there exists a function f ♭ : Fλ(Var) → Fλ(Var) such that
f ♭(t) corresponds to the substitution of f(x) for x in t, for any variable x occurring free in
t. Given pairwise disjoint variables x1, . . . , xn, with xj ∈ Varj and terms t1, . . . , tn, with
tj ∈ Fλ(Var)j , we indicate the “substitution” (idx⃗,⃗t)♭(u) simply as u[tj/xj ].

In order to be able to express correctly the ξ-rule we generalize quantitative equations to
expressions of the form t

Xi≃ϵ u, where X indicates a finite set of variables which are intended
to be “locally quantified” on the left of ⊢.

▶ Definition 26 (Σλ-equation). A quantitative λ-equation is an expression of the form
t

X,i
≃ϵ s, where i ∈ I, t, s ∈ Λi, X ⊆fin Var, ϵ ∈ Q≥0. The set X is the set of locally quantified

variables in the equation.

We let V(Λ) indicate the set of quantitative λ-equations.

▶ Definition 27. A consequence relation on Λ is a relation ⊢ ⊆ ℘(V(Λ))×V(Λ) closed under
the rules (Cut)-(Nexp) from Def. 9 (with t i≃ϵ u everywhere replaced by t Xi≃ϵ u), together with
the following rules:
(Subst) if Γ ⊢ t

X,i
≃ϵ s and let f be the identity on X and, for all x ∈ Var \ X, fv(f(x)) ∩

bd(t, s,Γ) = ∅, then Γ ⊢ t
X,i
≃ϵ s implies f ♭(Γ) ⊢ f ♭(t)

X,i
≃ϵ f

♭(s);

(Abstraction) if X ⊆ X ′ and fv(t, s) ∩X ′ = ∅, then {t
X,i
≃ϵ s} ⊢ t

X′,i
≃ϵ s;

(Concretion) if X ′ ⊆ X then {t
X,i
≃ϵ s} ⊢ t

X′,i
≃ϵ s;

We call Uλ the quantitative theory generated by the axioms below apart from (η) and
we denote by ⊢λ the corresponding consequence relation, and Uλη the quantitative theory
generated by all the axioms below, including (η), with consequence relation ⊢λη:
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(α) if x, y ∈ Vari and y ̸∈ var(λix.t), then ∅ ⊢ λx.t
X,i
≃0 λiy.t[y/x].

(ξ) if x ∈ X, then t
X,j
≃ϵ u ⊢ λix.t

X,i→j
≃ϵ λix.u;

(β) if (λix.t)u ∈ Λj, fv(u) ∩ bd(t) = ∅, then ∅ ⊢ (λix.t)u
X,j
≃0 t[u/x].

(η) if λix.(tx) ∈ Λi→j, x /∈ fv(t), then ⊢ t
X,i→j

≃0 λix.(tx).

Any theory including Uλ (Uλη) is called a quantitative (extensional) λ-theory.

▶ Example 28. Consider the λ-signature I(Σ)λ (cf. Example 17). Let UI
λη be the extensional

λ-theory obtained by enriching Uλη with all real-valued axioms as in Example 17.

We now introduce a class of applicative algebras suitable to account for abstraction
operators. This is done by requiring the existence of suitable “closing maps” that send a
closed λ-term of the form λi1x1. . . . .λinxn.t onto some point of Ai1→···→in→j .

Given any T -index set A, extend the definition of Σλ to Σλ,A so as to contain as 0-ary
constructors all elements in A and correspondingly the notion of Fλ,A(Var).

▶ Definition 29. A quantitative applicative λ-algebra is a structure A = (A,ΩA,ΛA, dA),
where (A,ΩA, dA) is a quantitative applicative algebra and ΛA

w,j : (Fλ,A(Var))0
w→j → Ai→j.

We call applicative λ-algebra the structure A = (A,ΩA,ΛA) without the metric.

The functions ΛA
i,j : (Fλ,A(Var))0

i→j → Ai→j are intended to define a choice in the set Λ
of Definition 18. This will be apparent in view of Definitions 30, 31, 32 below, which will
enforce that, in suitable structures, the interpretations of the terms Fλ,A(Var))0

i→j become
essentially the domain of Λ in Definition 18. We point out that a slight modification of these
definitions would permit to recover precisely the categorically weaker notion of Quantitative
Weak λ-algebra of Definition 18.

▶ Proposition 30 (Interpretation). Let A be a quantitative applicative λ-algebra, and ρ :
Var → A. Then there exists a function ρ♮ : Fλ(Var) → A, where ρ♮(t) is defined by cases as
ρ♮(x) = ρ(x), ρ♮(t1 · t2) = ρ♮(t1) ·A ρ♮(t2), and ρ♮(λix.t) = ΛA

w∗i,j(λy⃗λix.t) ·A
−−−→
ρ♮(y), where

λy⃗λix.t is the closure of the term λix.t w.r.t. its free variables y⃗ of types w.

To define higher-order structure for a quantitative applicative λ-algebras A it is useful to
define the multicategory generated by A:

▶ Definition 31 (Representable Functions). For any quantitative applicative λ-algebra A,
MetA is the multicategory with objects the metric spaces (Ai, d

A
i ), and where, for w = i1 . . . ik,

MetA(Ai1 , . . . , Aik
;Ai) (abbreviated as MetA(Aw;Ai)) is the set of f ∈ Met(Aw, Ai) such

that for some tf ∈ Fλ,A(Var)0
w→i, f(a1, . . . , an) = ΛA

w,i(tf ) ·A −→a .

Notice that the function ΛA yields a family of maps ΛA
w∗i,j : MetA(Aw∗i;Aj) →

MetA(Aw;Ai→j), given by Λw∗i,k(h)(a)(b) = ΛA
w∗i,j(th) ·A ⟨a, b⟩.

While cartesian closed (multi)categories are the algebras for extensional λ-theories, an
algebra for a λ-theory is a cartesian multicategory in which for all objects A,B there
is an object A w⇒ B (called a weak exponential, [30]) together with a natural retraction
C(_, A;B) ⇒ C(_;A w⇒ B). To account for the quantitative ξ-rule, this picture must be
slightly adapted, by requiring the maps forming the retraction to be also non-expansive. This
leads to the following definition:

▶ Definition 32 (Quantitative λ-Algebra). For any quantitative applicative λ-algebra A =
(A,ΩA,ΛA, dA), A is a quantitative (extensional) λ-algebra if the maps ΛA

w∗i,j ,EvA
w,i,j form

a family of retractions (resp. isomorphisms) natural in w and non-expansive (with respect to
the pre-metrics ΞdA

w ,dA
j

over MetA(Aw;Aj)).
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4:10 On Quantitative Algebraic Higher-Order Theories

The definition above can be expressed in more abstract terms using the language of
enriched categories: the multicategory MetA is enriched over the cartesian closed category of
pre-metric spaces and non-expansive functions, where MetA(Aw;Ai) is endowed with the
pre-metric ΞdA

w ,dA
i

. Then A is a quantitative (resp. extensional) λ-algebra when the maps
ΛA

w∗i,j ,EvA
w,i,j form an enriched natural retraction (resp. isomorphism) from MetA(Aw∗i;Aj)

to MetA(Aw;Ai→j). Notice that this condition implies that the pre-metrics ΞdA
w ,dA

i
are

indeed metrics.

▶ Example 33. I becomes a quantitative λ-algebra by defining ΛI inductively on Fλ,I(Var)0,
exploiting the cartesian closed structure of the subcategory of Met formed by the spaces Ii.

Let us now show how quantitative λ-algebras are captured by quantitative λ-theories.

▶ Definition 34. Let A = (A,ΩA,ΛA, dA) be a quantitative applicative λ-algebra. For
any ρ : Var → A, we say that A satisfies a quantitative equation ϕ = t

X,i
≃ϵ u relative to

ρ, (denoted ⊨ρ
A ϕ), where X = {x1, . . . , xn}, with x1 ∈ Ai1 , . . . , xn ∈ Ain , when for all

a1, b1 ∈ Ai1 , . . . , an, bn ∈ Ain
, the following condition holds:

dA
i (ρ♮

x⃗,⃗a(t), ρ♮

x⃗,⃗b
(u)) ≤ max{ϵ, dA

i1
(a1, b1), . . . , dA

in
(an, bn)}

We say that A satisfies a quantitative λ-inference Γ ⊢ ϕ (denoted Γ ⊨A ϕ) if for all ρ : Var →
A, if ⊨ρ

A ψ holds for all ψ ∈ Γ, then ⊨ρ
A ϕ also holds. A satisfies a quantitative λ-theory U

(denoted A ⊨ U) if it satisfies all the inferences in U .

Definition 34 of satisfiability is admittedly more complex than Definition 12. Yet, this is
the price one has to pay in order to be able to express the quantitative ξ-rule. Indeed, the
definition of ⊨ρ

A ϕ treats “locally quantified” variables by applying a condition reminiscent of
the metrics Ξ from Section 2: for all locally quantified variables x⃗ in ϕ = t

X,i
≃ϵ u, when the x⃗

are replaced in t and u by different points a⃗, b⃗, the distance between the resulting terms must
be bounded by either ϵ or any of the dA

ij
(aj , bj). This ensures that, whenever ⊨A t

{x},j
≃ϵ u is

satisfied, we can conclude Ξ(λx.t, λx.u) ≤ ϵ, as the ξ-rule requires.

▶ Example 35. Def. 34 solves the problem from Example 24: with r = 0 and s = ϵ, from the
fact that |f(s) − g(r)| = 2ϵ > max{|r − s|, ϵ}, it follows that I ̸⊨ fx

X,j
≃ϵ gx, hence blocking

the counter-example to the ξ-rule. Rather, it holds that I ⊨ UI
λη (cf. Example 28).

▶ Proposition 36. A quantitative applicative λ-algebra is a quantitative λ-algebra (resp. a
quantitative extensional λ-algebra) iff it satisfies Uλ (resp. Uλη).

From the argument of the proposition above one can also deduce that a quantitative
applicative λ-algebra is a weak λ-algebra iff it satisfies (α) and (β), and is an (extensional)
λ-algebra iff it furthermore satisfies (ξ) (and (η)).

We conclude this section by showing soundness and completeness of quantitative (exten-
sional) λ-theories. The proof is based on the construction of a “quantitative term model”.

▶ Theorem 37 (Soundness and Completeness of Quantitative λ-theories). Let U be a quantitative
λ-theory (resp. a quantitative extensional λ-theory) over Σλ. Then Γ ⊢λ ϕ ∈ U (resp. Γ ⊢λη

ϕ ∈ U) iff Γ ⊨A ϕ holds for any quantitative Σλ-algebra (resp. quantitative extensional
Σλ-algebra) A such that A ⊨ U .

▶ Remark 38. Also in this case the whole construction scales to the case of partial ultra-metric
spaces. Following Remark 23, we will speak of partial λ-theories and partial λ-algebras.
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6 Metric Constraints

In this section we take a closer look at the several obstacles one might face when looking
for higher-order quantitative algebras. First, as seen in Section 2, in higher-order types
the unique distance, Ξ, making both application and abstraction non-expansive operations
might not be a metric. Moreover, even if such a metric exists, several conditions might lead
higher-order distances to be trivial (i.e. discrete), or have plenty of isolated points. But
discrete metrics and isolated points convey no more information than equivalences, while
one of the main reasons to look for semantics of program distances is to be able to compare
informatively programs which are not equivalent. Despite what look like strong limitations,
we conclude this section by presenting a few examples of non-discrete quantitative λ-algebras.

Existence of Exponential Objects. Given metric spaces (X, a) and (Y, b), if (Y, b) is ultra-
metric, then Ξa,b = Φa,b is always a metric, which means that Met(X,Y ) is their exponential
object in Met. When (Y, b) is not ultra-metric, condition (∗) from Theorem 2 provides a
useful sufficient criterion to check if Ξa,b is a metric (and thus, if some candidate quantitative
applicative λ-algebra A is a quantitative λ-algebra). We will now show that, under very
mild hypotheses, the validity of (∗) is also necessary for A to be a quantitative λ-algebra.

Let a quantitative applicative λ-algebra A be observationally complete when it contains
the metric space (R∞

≥0, | · − · |) and for all sort i, MetA(Ai;R∞
≥0) ≃ Met(Ai,R∞

≥0). In other
words, A contains all observations on Ai with target R∞

≥0. Moreover, let a quantitative
λ-pre-algebra be as a quantitative λ-algebra A, but where the dA

i need only be pre-metrics.
Given a quantitative λ-pre-algebra A, let A∗ indicate the restriction of A to those sorts i for
which dA

i is a metric (i.e. it also satisfies (trans)).

▶ Proposition 39. Let A be an observationally complete quantitative extensional λ-pre-
algebra. For any A in A∗, A is exponentiable in MetA∗

iff for all α, β ∈ Im(dA) and
x0, x2 ∈ X with a(x0, x2) = α+ β, condition (∗) holds.

Proposition 39 has a positive side: it provides a sufficient condition for exponentiability which
is slightly weaker than Theorem 2, as (∗) needs only hold for distances α, β in the image of
the distance functions dA of the pre-algebra. Notice that, if the dA are discrete, condition
(∗) trivially holds. On the other hand, Proposition 39 has a negative side: if condition (∗)
fails (i.e. some space A does not contain “enough points”), then A fails to be a quantitative
λ-algebra. For instance, no algebra containing N, with the metric inherited from R, as one of
its objects, can be a λ-algebra.

Existence of Compact Algebras. We have the following negative result.

▶ Proposition 40. There are no non-trivial one-sorted weak quantitative λ-algebras in Met
which are compact.

By contrast, in the multi-sorted case, compact λ-algebras do exist, e.g. take the restriction
of the quantitative λ-algebra I to compact intervals [a, b], i.e. with a, b < ∞, or simply the
full type structure on a finite base set.

Distances and Observational Equivalence. The next two results relate distances in quanti-
tative λ-theories with observational equivalence for the associated λ-theory, clearly indicating
the (limited) extent to which a metric can deviate from being discrete on pure closed λ-terms.
We recall that pure means that no constants appear in the syntax, or categorically, that the
Σλ-signature has only the · symbols.
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▶ Proposition 41. In a quantitative λ-algebra A, i.e. a model of the simply typed λ-calculus,
terms which are not equated in the maximal theory are all at the same distance from one
another. Moreover each Ai is a bounded pseudo-metric space.

The maximal non-trivial theory of the pure simply typed λ-calculus is the theory FTS of
the full type structure over a two-element base set [7]. Proposition 41 implies then that any
quantitative λ-algebra for FTS is discrete. We recall that “pure” means that no constants
appear in the syntax. Next, we consider the untyped λ-calculus:

▶ Proposition 42. In a non-trivial weak quantitative λ-algebra A, the maximal distance
between any two points is bounded by d([[K]], [[K(SKK)]]). Hence all pairs of terms which can be
applied, by a given term, on [[K]] and [[K(SKK)]] respectively, are that distance apart. Moreover,
if A is a non-trivial quantitative λ-algebra then for any two solvable terms, t and s, which
are not equated in the maximal theory H∗ (see [5]) and Y, fixed-point combinator we have
d([[t]],YK) = d([[s]],YK). If the distance is ultra-metric we have also d([[t]],YK) = d([[t]], [[s]]).
In any case, if the theory equates all unsolvable terms then d([[t]],YK) ≤ d([[t]], [[s]]).

As a consequence of Böhm Theorem (see [5]), Proposition 42 implies that any quantitative
λ-algebra for the pure untyped λ-calculus is discrete over βη-normal forms.

Positive Examples. The above limiting results apply only to terms which are not equated in
the maximal theories of the λ-calculus, either typed or untyped ([5, 7]). Clearly these terms
are significant computationally, and this is the bad news, but these terms are rather special
and hence Propositions 41 and 42 have only a limited negative impact, and this is the good
news. For instance, in the maximal theory of the simply typed λ-calculus Church, numerals
are equated up to parity, so Proposition 41 does not have any bearing on the mutual distance
of two different even, or two different odd, numerals. Indeed, rather intriguing distances in
quantitative λ-algebras do exist, even in the category of complete (not necessarily ultra-)
metric spaces and non-expansive functions, as the following examples show.

Any complete partial order model of Combinatory Logic, and hence in particular of
λ-calculus (e.g. any Scott’s inverse limit D∞ model, [5]), can be endowed with the metric

d(d1, d2) =


0 if d1 = d2

1/2 if d1 and d2 have an upper bound
1 otherwise .

One can check that application is non-expansive, and that the space is complete; moreover
the space of representable functions (i.e. functions determined by the elements of the model),
endowed with the supremum metric, is isometrically embedded in the space. Alternatively,
one can consider the term model of the simply typed λ-calculus with a base constant ⊥.
By strong normalization, it consists of the βη-normal forms. Let ⊑ be the order relation
defined on normal forms of the same type by λx⃗. ⊥⊑ λx⃗.t and λx⃗.xit1 . . . tk ⊑ λx⃗.xiu1 . . . uk,
if ti ⊑ ui for all i = 1, . . . , k (corresponding to the natural order relation on Böhm trees, see
[5]). The set of βη-normal forms can be endowed with a notion of distance by putting, for
all type σ ∈ T and t, u terms of type σ, dσ(t, u) be 0 if t = u, 1/2 if t and u have an upper
bound, and 1 otherwise.

Yet other distances can be given on the term model of the simply typed λ-calculus
by putting dσ(t, u) be 0 if t =βη u and otherwise 1/N , where N = max{ n | [[t]] =
[[u]] in the full type hierarchy over n points }.
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7 Partial Quantitative λ-Algebras

In this section we discuss partial metrics, and the natural generalization of quantitative
λ-algebras to partial quantitative λ-algebras. In particular we define two non-trivial such
algebras for the simply typed λ-calculus. The first λ-algebra that we consider is defined on
the term model of βη-normal forms of the simply typed λ-calculus with a constant ⊥ of base
type. The latter is defined within a D∞ λ-model à la Scott. In both cases we define an
ultra-metric distance using a suitable notion of term approximants.

The Partial λ-Algebra of the Term Model. Let T be the set of simple types built over the
base type o, and let σ, τ range over T . The βη-normal forms of the simply typed λ-calculus
with constant ⊥ of type o can be endowed with a structure of applicative λ-algebra:

▶ Proposition 43. Let N F = (NF ,ΩNF ,ΛNF) be the structure where:
NF is the T -indexed set of typed βη-normal forms with constant ⊥ of type o,
for all σ, τ , ·σ,τ : NFσ→τ × NFσ → NFτ is defined by t ·σ,τ s = [ts]βη,
ΛNF

σ,τ : Λ0
σ→τ → NFσ→τ is defined by: ΛNF

σ,τ (λx.t) = [λx.t]βη,
where [t]βη denotes the βη-normal form of t. Then N F is an applicative λ-algebra.

The signature of this algebra can be enriched with projection operators providing the
approximants of a given normal form. Intuitively, the nth approximant of a normal form is
the term whose Böhm tree [5] is obtained by cutting all branches at depth n and by labelling
leaves at level n of type σ1 → . . . → σm → o by the term λx1 . . . xm. ⊥. More precisely:

▶ Definition 44. For all σ ∈ T and for all n ∈ N, πn
σ : NFσ → NFσ is defined by

induction on n as follows: for all λx1 . . . xm.xit1 . . . tk ∈ NFσ, πσ
0 (t) = λx1 . . . xm.⊥ and

πσ
n+1(t) = λx1 . . . xm.xi(t1)n . . . (tk)n.

In the sequel, we will denote the approximant πn
σ (t) simply by tn.

▶ Definition 45 (Distance on Normal Forms). We define a family of functions dNF = {dNF
σ }σ,

where dNF
σ : NFσ × NFσ → R≥0 is defined inductively by

dNF
o (t, s) =

{
0 if t = s

1 otherwise
and dNF

σ→τ (t, t′) = 1
2m

where m is the largest n ∈ N, if it exists, such that
(1) tn = t′n,
(2) ∀s, s′ ∈ NFσ. (dNF

σ (s, s′) ≤ 1
2n =⇒ dNF

τ (ts, ts′) ≤ 1
2n );

if such a maximal n does not exist, then dNF
σ→τ (t, t′) is set to 0.

▶ Lemma 46. For all σ, τ , (NFσ, d
NF
σ ) is a partial ultra-metric space and ·σ,τ is non-

expansive.

The fact that ·σ,τ is non-expansive follows immediately from the definition of dNF
σ .

▶ Remark 47. Notice that dNF is not reflexive. E.g., let u = λx.xI of appropriate type
σ1 → σ2, t = λx.x(xt′) and s = λx.x(xs′) of type σ1, and t′, s′ of appropriate type τ such
that dNF

τ (t′, s′) = 1. Then dNF
σ1

(t, s) = 1
2 , but dσ2(ut, us) = 1, i.e. dσ1→σ2(u, u) = 1.

From the definition of dNF , it immediately follows that application on normal forms is a
non-expansive operator. Hence we have:
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▶ Proposition 48. N F = (NF ,ΩNF ,ΛNF , dNF) is a partial quantitative extensional λ-
algebra.

▶ Remark 49. If we drop condition 2 in Definition 45, then we get an ultra-metric (re-
flexivity holds), however application is expansive. Namely, let t = λx1x2.x1(x2t

′) and
s = λx1x2.x1(x2s

′) of appropriate types σ1 such that dNF
σ′ (t′, s′) = 1. Then dNF

σ1
(t, s) = 1/4,

but for u = λx.xII of type σ1 → σ2, we get dNF
σ2

(ut, us) = 1. Notice that the above terms
can be taken to be affine (similar counterexamples can be built also in the purely linear case).

The Partial λ-Algebra of D∞. Any inverse limit domain model à la Scott of λ-calculus
yields an applicative λ-algebra. On such models a notion of approximant naturally arises, by
considering for any given element of the domain its projections on the domains of the inverse
limit construction. This leads to the following definition:

▶ Definition 50.
(i) Let D∞ =

⊔
n Dn be an inverse limit domain model à la Scott. For all a ∈ D∞ we

define the nth approximant of a, an, as the projection of a into Dn.
(ii) Let D be the T -indexed set {Dσ}σ, where, for all σ, Dσ = D∞.
(iii) Let dD

σ : Dσ ×Dσ → R≥0 be the distance function defined by induction on types by

dD
o (a, b) =

{
0 if a = b

1 otherwise
and dD

σ→τ (a, b) = 1
2m

where m is the maximal n ∈ N, if it exists, such that
(1) an = bn,
(2) ∀c, d ∈ Dσ. (dD

σ (c, d) ≤ 1
2n =⇒ dD

τ (ac, bd) ≤ 1
2n );

if such a maximal n does not exists, then dD
σ→τ (a, b) = 0.

▶ Lemma 51. For all σ, τ , (Dσ, d
D
σ ) is a partial ultra-metric space and ·σ,τ is non-expansive.

▶ Proposition 52. Let D = (D,ΩD,ΛD, dD) be the structure where the functions ΛD
σ,τ are the

interpretations of closed typed λ-terms on D∞. Then D is a partial quantitative extensional
λ-algebra.

Partial λ-Algebras with Approximants. The two examples above of partial quantitative
λ-algebras can be viewed as special cases of a general construction, which can be carried out
on any applicative algebra which includes projection operators. Namely, using the system
of approximants given by the projection operators, one can endow the algebra with an
ultra-metric, getting a quantitative applicative algebra. If moreover the algebra satisfies the
(β)-rule, then it is a quantitative (weak) λ-algebra.

▶ Definition 53 (Applicative Algebra with Approximants). An applicative algebra A = (A,ΩA)
has approximants if it includes projection operators πn

σ : Aσ → Aσ, for all σ ∈ T and n ∈ N,
satisfying the following property: for all n ∈ N, for all a, b ∈ Aσ, πn+1

σ (a) = πn+1
σ (b)

implies πn
σ (a) = πn

σ (b).

▶ Proposition 54. Let A = (A,ΩA) be an applicative λ-algebra with approximants. Let
dA

σ : Aσ ×Aσ → R≥0 be the family of functions defined by induction on types as follows:

dA
o (a, b) =

{
0 if a = b

1 otherwise
and dA

σ→τ (a, b) = 1
2m

where m is the maximal n ∈ N, if it exists, such that
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(1) πn
σ→τ (a) = πn

σ→τ (b),
(2) ∀c, d ∈ Aσ. (dA

σ (c, d) ≤ 1
2n =⇒ dA

τ (ac, bd) ≤ 1
2n );

if the maximal n does not exist, then dA
σ→τ (a, b) = 0. Then (A,ΩA, dA) is a quantitative

applicative algebra.

8 Approximate Quantitative Algebras

As we have seen, finding non-discrete quantitative (weak) λ-algebras is difficult. One difficulty
arises from the non-expansiveness requirement on application. In Section 7 we have shown
how to define non-trivial ultra-metric quantitative λ-algebras, still maintaining the non-
expansiveness requirement for application, but at the price of the partiality of the metric.
Here we present a different approach: we relax rule (NExp) for application, so as to get
quantitative λ-algebras with full pseudo-metric distances. Namely, we introduce the notion
of approximate applicative algebra: this amounts to an applicative algebra with approximants
(see Definition 53 above), and operators {·n}n∈N approximating application. Projection
operators immediately induce an ultra-metric on the algebra, by just considering condition
1 in Proposition 54 (and dropping condition 2). In general, application is expansive w.r.t.
this metric (see Remark 49). However, the milder uniform non-expansiveness condition for
approximant operators is satisfied in many cases, including the term algebra of normal forms
and the D∞ model of Section 7. This approach is quite general, since it works both for the
typed and the untyped λ-calculus.

▶ Lemma 55. Let A = (A,ΩA) be an applicative algebra with approximants. Let eA
σ :

Aσ × Aσ → R≥0 be the family of functions defined by: eA
σ (a, b) = 1

2m , where m is the
maximal n ∈ N, if it exists, such that an = bn, otherwise we put eA

σ (a, b) = 0. Then for all σ
(A, eA

σ ) is an ultra-metric space.

▶ Definition 56 (Approximate Quantitative Algebra).
(i) An approximate algebra A = (A,ΩA) is an applicative algebra with approximants whose

signature includes also a family of operators ·nσ,τ : Aσ→τ × Aσ → Aτ , for all σ, τ ∈ T

and n ∈ N (the operators ·nσ,τ will be simply denoted by ·n).
(ii) An approximate quantitative algebra A = (A,ΩA, eA) is an approximate algebra where

the operators ·nσ,τ satisfy the following conditions:
(1) for all a ∈ Aσ→τ , b ∈ Aσ, n ∈ N, eA

τ (a ·n+1 b, a · b) ≤ eA
τ (a ·n b, a · b);

(2) for all a ∈ Aσ→τ , b ∈ Aσ, for all ϵ > 0 there exists n ∈ N s.t. eA
σ (a ·n b, a · b) ≤ ϵ;

(3) (uniform non-expansiveness) ∀n > 0∃ϵn > 0 s.t. ∀ϵ ≤ ϵn, ∀a, b ∈ Aσ→τ , ∀c, d ∈ Aσ,
eA

σ→τ (a, b) ≤ ϵ and eA
σ (c, d) ≤ ϵ implies eA

σ (a ·n c, b ·n d) ≤ ϵ.

Conditions 1 and 2 above express the fact that the operators ·n approximate the behaviour
of application; condition 3 replaces rule (NExp) for application.

The Approximate λ-Algebra of the Term Model. The λ-algebra N F can be extended
to an approximate quantitative λ-algebra by defining operators ·nσ,τ as follows: for all
t ∈ NFσ→τ , s ∈ NFσ, for all n ∈ N, t ·nσ,τ s = tn ·σ,τ sn. One can check that the
approximant operators satisfy all conditions of Definition 56.

FSCD 2022



4:16 On Quantitative Algebraic Higher-Order Theories

The Approximate λ-Algebra of D∞. The λ-algebra D can be extended to an approximate
quantitative λ-algebra by defining operators ·nσ,τ as follows: for all a ∈ Dσ→τ , b ∈ Dσ, for
all n ∈ N, a ·nσ,τ b = an+1 ·σ,τ b. One can check that the approximant operators satisfy all
conditions of Definition 56. Notice that the approximate algebra of D∞ yields a λ-algebra
for the untyped λ-calculus.

Finally, notice that in dealing with partial and approximate algebras we have considered
applicative algebras over an extended signature. For lack of space, we have not developed
corresponding approximate theories including extra operators and the suitable rules on them.
In particular, rule (NExp) has to be replaced by a rule expressing uniform non-expansiveness
of approximant operators. We leave this as future work; here we just observe that the
appropriate language for reasoning on such structures would be the indexed λ-calculus
together with indexed reduction, see [5].

9 Conclusions

Contributions. This paper addresses the problem of defining quantitative algebras, in
the sense of Mardare et al., capable of interpreting terms of higher-order calculi. Our
contributions include both negative and positive results: on the one hand we identify the
main mathematical obstacles to the construction of non-trivial quantitative higher-order
algebras; on the other hand we introduce quantitative variants of the traditional notions of
(weak) λ-algebras, together with a sound and complete syntax, and we show that, in spite of
the limitations highlighted, intriguing notions of distance for the λ-calculus do indeed exist.

Related Work. Since [2], metric spaces have been exploited as an alternative, quantitative,
framework to standard, domain-theoretic, denotational semantics [35, 4]. The possibility of
giving a metric structure to linear or affine higher-order programs is known, since Met is an
SMCC, even if not a CCC. In this sense it is worth recalling the work by de Amorim et al. [3],
along with those of Reed and Pierce [33], as well as recent work by Dahlqvist and Neves [16].
Moreover, ultra-metrics have already been used to model PCF [21]. More recently, Pistone
has given a precise account of cartesian closed structure in categories of generalized metric
spaces [32]. In particular, it is known that if the quantale that captures distances can vary
as the types vary, as for example in the so-called differential logical relations [17], categories
of generalized metric spaces can become cartesian closed. The study of metric semantics for
imperative and concurrent programming languages has a long tradition [19, 18]. However,
this very sophisticated apparatus is not applicable to higher order programming languages.

Partial metrics have been well-studied since [9] and [26] (where they are called M -sets).
[10] shows that these metrics are strongly related to Scott semantics. The setting of quantaloid-
enriched categories [25, 34] provides an abstract unifying framework for the different metric
structures discussed here. In this setting, [13, 14] provide a general characterization of
exponentiable morphisms and objects in categories of (generalized) metric spaces.

Finally, a somehow related approach to quantitative reasoning is provided by the use of
fuzzy logic to reason about degrees of similarity between programs, as spelled out in Zadeh’s
pioneering work [36, 37]. More recently, fuzzy algebraic theories in the style of Mardare et
al. have been studied [12]. However, such theories seem to lack a compositionality condition
comparable to the one expressed by axiom (Nexp), hence apparently diverging from the idea
of interpreting programs as non-expansive functions.
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Perspectives. Our focus here was on the simplest case, namely that of algebras without
a barycentric structure, thus putting ourselves in a simpler setting than the one studied
by Mardare et al. Indeed, a natural development of this work is to study quantitative
algebras for λ-calculi enriched with operations having an intrinsically quantitative content,
like e.g. probabilistic choice [15] or some form of differentiation [20, 11, 28]. Another direction
to explore, already suggested by some of our models, is that of exploring quantitative algebras
in categories of domains like, e.g. metric CPOs [3], or continuous Scott domains (especially
in virtue of their close connection with partial metric spaces [10]).

Finally, the approaches of partial and approximate algebras open new lines of investigation:
suitable approximate theories are called for, and moreover the distances on programs which
arise are worth to be studied in depth.
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