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Abstract

In this work we report on a reduced-order model (ROM) based on the proper orthogonal decom-
position (POD) technique for the system of 3-D time-domain Maxwell’s equations coupled to a
Drude dispersion model, which is employed to describe the interaction of light with nanometer
scale metallic structures. By using the singular value decomposition (SVD) method, the POD
basis vectors are extracted offline from the snapshots produced by a high order discontinuous
Galerkin time-domain (DGTD) solver. With a Galerkin projection and a second order leap-frog
(LF2) time discretization, a discrete ROM is constructed. The stability condition of the ROM
is then analyzed. In particular, when the boundary is a perfect electric conductor condition,
the global energy of the ROM is bounded, which is consistent with the characteristics of global
energy in the DGTD method. It is shown that the ROM based on Galerkin projection can
maintain the stability characteristics of the original high dimensional model. Numerical ex-
periments are presented to verify the accuracy, demonstrate the capabilities of the POD-based
ROM and assess its efficiency for 3-D nanophotonic problems.

Keywords: Discontinuous Galerkin time-domain method, model order reduction, proper
orthogonal decomposition, stability analysis, metallic nanostructures

1. Introduction

Nano-Plasmonics is an active field of research concerned with the study of the interaction
of light with metallic nanostructures [1], leading to resonant oscillations of the conduction-
band electrons at the metal surface [2], typically depending on the frequency and polarization
characteristics of incident light as well as on geometrical and compositional factors [3]. These
resonances can both enhance and confine optical fields [4]. Many attractive and/or potential
applications [1, 5], e.g., sub-wavelength imaging, invisibility cloaking, nano antennas, chemical
biosensors, metamaterials, plasmon waveguides, and magnetic storage media, leverage this local
field enhancement. From the mathematical modeling point of view, these applications require
to solve the system of Maxwell’s equations coupled to an appropriate mathematical model of
physical dispersion for characterizing the material properties of the involved metallic nanostruc-
tures at optical frequencies [1, 4], such as the Drude model [6, 7], the nonlocal hydrodynamic
Drude model [8], and the generalized nonlocal optical response model [9].
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Several numerical methods have been developed for computing the numerical solution of
the time-domain Maxwell’s equations. Finite difference time-domain (FDTD) algorithm [10]
proposed by K.S. Yee in 1966 is the most widely used approach among physicists and engi-
neers due to its simplicity and efficiency. In this method, the whole computational domain is
discretized using a structured (Cartesian) grid. However, FDTD methd poorly perform when
facing the modeling difficulties that are inherent to realistic nanophotonic applications, in par-
ticular in the presence of curved geometries of the considered nanostructures, because Cartesian
grids can only approximate these irregular boundaries in a stair-cased manner [11]. In this con-
text some more flexible methods based on unstructured and possibly non-conforming meshes
are particularly attractive. This is for instance the case with discontinuous Galerkin (DG)
schemes. A discontinuous Galerkin time-domain (DGTD) method can be seen as a mix of the
finite element (FE, spaces of basis and test functions are defined) and finite volume (FV, the
neighboring elements are connected by numerical traces) type discretization methods [12], but
generally performs better than both by exploiting their positive features [13]. In particular,
the DGTD method has several attractive features, for example, easy adaptation to complex
geometries and material composition [14], local approximation order strategy [15], as well as
easy parallelism [16]. We note that DGTD method is increasingly used in the simulation of
time-domain nanoscale light-matter interaction problems [12, 15, 17, 18, 19, 20, 21, 22, 23, 24].

Although the DGTD method is highly accurate and widely applicable, it forms a high-
dimensional model (HDM) because of the duplication of the degrees of freedom (DoF) on the
boundaries of the elements, typically several millions in large 3-D problems, which is greater
than the number of DoF used by the FE type discretization method for the same level of
accuracy [25]. Hence, it is attempting to develop a reduced-order modeling strategy for the
DGTD scheme with a significantly smaller DoF but maintaining a sufficiently high accuracy,
which will be then applicable to goal-oriented studies such as optimal design of nanostructures
or propagation of modeling uncertainties [26]. Different kinds of reduced-order models (ROM)
have been developed, such as simplified models and data-fit models [27, 28]. The alternative
ROM that we consider in this study is a projection-based model, which proceeds by identifying
a reduced subspace that is constructed to retain the essential character of the system input-
output map [27]. There are many approaches for constructing the reduced subspace, see [29]
for a detailed survey.

Proper orthogonal decomposition (POD) method, also known as Karhunen-Loeve expan-
sions, principal component analysis, or singular value decomposition, is a popular basis genera-
tion approach for the reduced subspace [27, 30, 31, 32] because it is applicable to a wide range of
problems, including time-dependent and nonlinear problems. The POD method with snapshots
technique introduced by Sirovich [33] is probably the most widespread used to construct the
ROM at least in terms of applications [2]. The POD method has widely been used in realistic
numerical simulations [2, 32, 34, 35, 36, 37, 38, 39, 40, 41]. The starting point for POD method
is a set of solutions, typically called snapshots, that are sampled offline from a high fidelity sim-
ulations or experiments at a number of time levels. ROM is created by constructing the reduced
subspace composed of a set of low-dimensional POD basis vectors, which are generated by the
snapshots, and seeking approximation solutions within this reduced subspace via Galerkin pro-
jection or other means. POD-Galerkin method combined with some numerical methods, such
as finite difference (FD) [42, 43, 44], FE [45, 46, 47], FV [48, 49], and DG [26, 37] methods,
has proved to be a powerful technique to save computational time for the time-domain partial
differential equations (PDEs).

In this study, we couple a POD technique with a classical DGTD method (termed POD-
DGTD) for the 3-D simulation of electromagnetic wave interaction with metallic nanostructures
described by the Drude dispersion model, which is a sequel of [26], where we only studied the
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Drude dispersion model for 2-D configurations. Here, the stability of the POD-based ROM
equipped with a second order leap-frog (LF2) method for time integration is analysed via an
energy method in this article. In addition to this theoretical results, other contribution of
this study is the numerical demonstration of the effectiveness of the combination of existing
numerical approaches DGTD and POD, in dealing with the 3-D simulation of time-domain
nanoscale light-matter interaction problems.

The rest of the paper is organized as follows. We briefly introduce the DG formulations for
time-domain Maxwell’s equations with the Durde model in Section 2. The POD-based ROM is
established, and the stability of ROM equipped with LF2 time scheme is analyzed in Section 3.
In Section 4, we report some 3-D numerical results. We draw conclusions in Section 5.

2. DGTD formulations for the Drude model

Let Ω ∈ R3 and Tf > 0 be a bounded convex polyhedral domain and a physical simulation
time, respectively. Moreover, εr (resp. µr) is the relative electric permittivity (resp. magnetic
permeability) parameter characterizing a homogeneous medium (e.g. vacuum, metal), ε∞ rep-
resents the response from the bound ions and electrons of metal, ωd is the plasma frequency
of metal, and γd denotes the coefficient associated with the electron-ion and electron-electron
collisions. In order to allow for the numerical treatment of metallic nanostructures, we consider
the Drude dispersive model [6, 7], in which the frequency dependent permittivity is given by

εr(ω) = ε∞ −
ω2
d

ω2 + iωγd
, (1)

where ω is the angular frequency. Such an optical model assumes that the electrons in the
valence band are completely separated from the ions, and only the collision of electrons with
electrons and ions is considered [11]. This model explains the dispersion and loss of metals and
is often referred to as local model, because one assumes that the motion of an electron is not
coupled to that of its neighbors [2, 12]. The normalized system of 3-D time-domain Maxwell’s
equations with the Drude dispersive properties based on the direct method (DM) or auxiliary
differential equation (ADE) formulation is given by

∂tH + ∇×E = 0, in Ω× [0, Tf ],

ε∞∂tE − ∇×H+ Jp = 0, in Ω× [0, Tf ],

∂tJp + γdJp − ω2
dE = 0, in Ω× [0, Tf ],

(2)

where the symbol ∂t denotes a time derivate, E, H, and Jp respectively denote the electric field,
magnetic field and dipolar current vector. The boundary of Ω is defined as ∂Ω = Γa ∪ Γm with
Γa ∩ Γm = ∅. On the boundary ∂Ω, we consider a perfect electric conductor (PEC) condition
on Γm and a first order Silver-Müller absorbing boundary condition (ABC) on Γa{

n×E = 0, on Γm,

n×E+ zn× (n×H) = n×Einc + zn× (n×Hinc), on Γa,
(3)

where z =
√

µr/εr, n denotes the unit outward normal to ∂Ω, and (Einc, Hinc) denotes a given
incident field. Finally, the system is supplemented with initial conditions E0(x) = E(x, 0),
H0(x) = H(x, 0), and Jp,0(x) = Jp(x, 0).

In a DG framework, the computational domain is divided into tetrahedra elements. Let Th
be a partition of the domain Ω using a set of elements Ki of size hi, where hi = diam(Ki) is
the diameter of the element Ki and h = max∀i∈NΩ

hi with NΩ being the set of the indices of
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elements. Then the DG method seeks an approximate solution (Eh,Hh,Jp,h) ∈ Vp
h ×Vp

h ×Vp
h

that satisfies for all local element Ki in Th as follows [26]
(∂tHh,v)Ki + (Eh, curlv)Ki − ⟨E∗

h × n,v⟩∂Ki
= 0, ∀v ∈ Vh,

(ε∞∂tEh,v)Ki − (Hh, curlv)Ki + (Jp,h,v)Ki + ⟨H∗
h × n,v⟩∂Ki

= 0, ∀v ∈ Vh,

(∂tJp,h,v)Ki + (γdJp,h,v)Ki − (ω2
dEh,v)Ki = 0, ∀v ∈ Vh.

(4)

Here, E∗
h and H∗

h are the so-called numerical traces used to communicate information between
adjacent elements [13, 50], and Vh denotes the discontinuous finite element space

Vh = {v ∈ (L2(Ω))3 | v|Ki
∈ (Ppi(Ki))

3, ∀i ∈ NΩ},

where Ppi(Ki) is the space of nodal polynomials of degree at most pi inside the element Ki.
We choose to use the centered numerical traces [26]. By gathering the electric, magnetic and
dipolar current vector DoF in each element into column vectors of size N = 3

∑
i∈NΩ

di with
di being the number of DoF inside Ki for each spatial dimension, one can deduce the following
global semi-discrete system

M∂tHh = −KEh + SiEh + SeÊh +Be(t),

ε∞M∂tEh = KHh − SiHh − ShĤh −MJp,h −Bh(t),

∂tJp,h = −γdJp,h + ω2
dEh,

(5)

where Êh = Eh and Ĥh = Hh on a face of Γm; Êh = Hh and Ĥh = Eh on a face of Γa; M
is a symmetric positive definite matrix, K and Si are symmetric matrices, and Se and Sh are
skew-symmetric matrices. Besides, Se = −Sh, Bh(t) = 0, and Be(t) = 0 when Γa = ∅.

Remark 1. Equipping with LF2 time scheme for the global semi-discrete system (5), one can
define the following global discrete electromagnetic energy [19, 51] in the whole domain Ω

Θn =
1

2
[ε∞(E

(n)
h )TME

(n)
h + (H

(n+ 1
2
)

h )TMH
(n− 1

2
)

h +
1

ω2
d

(J
(n+ 1

2
)

p,h )TMJ
(n− 1

2
)

p,h ]. (6)

Following the proof of stability [50, 52, 53], the global discrete electromagnetic energy (6) with
PEC only is a positive definite quadratic form of the numerical unknowns E(n)

h , H(n− 1
2
)

h , H(n+ 1
2
)

h ,
J
(n− 1

2
)

p,h , and J
(n+ 1

2
)

p,h if

∆t < min{ 2ε∞
dN + 1

,
2

dN
,

2

γd + 2ω2
d

}, (7)

with
dN = ∥M− 1

2 (K− Si + Se)M− 1
2 ∥,

where ∥ · ∥ denote the canonical norm of a matrix, and (·)−
1
2 is the inverse of the square root of

a matrix.

3. POD-based model order reduction

3.1. Reduced-order modeling
We equidistantly extract the ℓ snapshots from the full DGTD solutions. However, one may

obtain the ensemble of snapshots from physical system trajectories by drawing samples from
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experiments and interpolation (or data assimilation) [37, 48, 54]. We then formulate three
snapshot matrices

Au =


u
(n1)
h,1 u

(n2)
h,1 · · · u

(nℓ)
h,1

u
(n1)
h,2 u

(n2)
h,2 · · · u

(nℓ)
h,2

...
... . . . ...

u
(n1)
h,N u

(n2)
h,N · · · u

(nℓ)
h,N

 ∈ RN×ℓ, u ∈ {E,H,Jp}.

Singular value decomposition (SVD) is applied to the snapshot matrices, and then the first ku
left singular vectors ϕu,1, ϕu,2, · · · , ϕu,ku are selected to form the ROM basis [55]. Defining the
associated basis matrix Φu = (ϕu,1, ϕu,2, · · · , ϕu,ku) ∈ RN×ku (u ∈ {E,H,Jp}), the approximate
solutions of the fields Eh, Hh and Jp,h are obtained via following standard Galerkin ansatz

Eh ≈ Er
h = ΦEαE(t), Hh ≈ Hr

h = ΦHαH(t), and Jp,h ≈ Jr
p,h = ΦJpαJp(t), (8)

where αu(t) ∈ Rku and ur
h (u ∈ {E,H,Jp}) respectively denote the reduced solution and the

approximate solution. With a Galerkin projection and a LF2 time discretization, we have

ε∞ΦT
EMΦE

α
(n+1)
E − α

(n)
E

∆t
= ΦT

E(K− Si)ΦHα
(n+ 1

2
)

H − ΦT
EShΦ̂Hα̂

(n+ 1
2
)

H

− ΦT
EMΦJpα

(n+ 1
2
)

Jp
− ΦT

EB
h(n∆t),

ΦT
HMΦH

α
(n+ 3

2
)

H − α
(n+ 1

2
)

H

∆t
= ΦT

H(−K+ Si)ΦEα
(n+1)
E +ΦT

HSeΦ̂Eα̂
(n+1)
E

+ ΦT
HBe((n+ 1

2)∆t),

ΦT
Jp
MΦJp

α
(n+ 3

2
)

Jp
− α

(n+ 1
2
)

Jp

∆t
= −γd

2 Φ
T
Jp
MΦJp(α

(n+ 3
2
)

Jp
+ α

(n+ 1
2
)

Jp
)

+ ω2
dΦ

T
Jp
MΦEα

(n+1)
E ,

(9)

with the initial conditions 
α
(0)
E = (ΦT

EMΦE)
−1ΦT

EME
(0)
h ,

α
( 1
2
)

H = (ΦT
HMΦH)−1ΦT

HMH
( 1
2
)

h ,

α
( 1
2
)

Jp
= (ΦT

Jp
MΦJp)

−1ΦT
Jp
MJ

( 1
2
)

p,h ,

(10)

where α̂u(t) and Φ̂u (u = E,H) are respectively defined by

α̂E(t) =

{
αE(t), if FB

h = Γm,

αH(t), if FB
h = Γa,

α̂H(t) =

{
αH(t), if FB

h = Γm,

αE(t), if FB
h = Γa,

and

Φ̂E =

{
ΦE, if FB

h = Γm,

ΦH, if FB
h = Γa,

Φ̂H =

{
ΦH, if FB

h = Γm,

ΦE, if FB
h = Γa.

Now, we summarize the offline and online stages for constructing the POD-based ROM in
combination with the high order DGTD method for the numerical simulation of 3-D Maxwell’s
equations with the Drude dispersive model:

(1) Generate the snapshots (samples) ensemble Au (u ∈ {E,H,Jp}) from the full DGTD
solutions.
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(2) Set up the correlation matrix Cu = AT
uAu ∈ Rℓ×ℓ, and compute the eigenvalues λu,1 ≥

λu,2 ≥ · · · ≥ λu,ru > 0 and the corresponding orthogonal eigenvectors φu,1, φu,2, · · · , φu,ru ,
where ru is the rank of Au.

(3) Choose ku to be the smallest integer such that

ku = argmin{E(ku) : E(ku) ≥ 1− ρ}, (11)

where ρ is the truncation tolerance, and E(ku) =
∑ku

i=1 λu,i/
∑ru

i=1 λu,i denotes the relative
information content [56].

(4) Compute the POD basis ϕu,i =
1√
λu,i

Auφu,i (i = 1, 2, · · · , ku).
(5) Solve the fully discrete POD-based ROM (9) with the initial conditions (10) and get the

reduced solutions α
(n)
E , α(n+ 1

2
)

H and α
(n+ 1

2
)

Jp
.

(6) Expand the reduced solutions to the global solutions Er,(n)
h , Hr,(n+ 1

2
)

h , and J
r,(n+ 1

2
)

h,p based
on (8).

Remark 2. For ∀X ∈ Rku, and X ̸= 0, one can get

ΦuX ̸= 0, u ∈ {E,H,Jp},

because Φu consists of the left singular vectors corresponding to the ku greatest singular values
of Au. In addition, since M is a real symmetric positive definite matrix, we have

(ΦT
uMΦu)

T = ΦT
uMΦu,

and
X(ΦT

uMΦu)X = (ΦuX)TM(ΦuX) > 0.

So, the matrix ΦT
uMΦu is also a symmetric positive definite matrix in (9) and (10). In particular,

the size of matrix ΦT
uMΦu (u ∈ {E,H,Jp}) is very small, typically around 20 according to our

numerical results, so the POD-DGTD method is still effective even if the matrix is dense.

Remark 3. The general goal is to reduce the complexity of a full time-domain simulation
in order to address questions such design optimization or uncertainty quantification that will
require performing many simulations. A specific goal is to study the applicability of POD for
reducing the complexity of the full time-domain simulation and running with the same basis
different configurations. The snapshot vectors in this paper are chosen from the full DGTD
solutions. However, one may obtain the ensemble of snapshots from physical system trajectories
by drawing samples from experiments and interpolation (or data assimilation) [37, 48, 54].

3.2. Stability analysis
The stability of the POD-DGTD scheme with the LF2 time scheme is now analyzed by using

an energy method, where a quadratic form plays the role of a Lyapunov function of the whole
set of numerical unknowns.

Definition 1. We consider the following form of discrete energy in the whole domain Ω

Θr,n =
1

2
[ε∞(E

r,(n)
h )TME

r,(n)
h + (H

r,(n+ 1
2
)

h )TMH
r,(n− 1

2
)

h +
1

ω2
d

(J
r,(n+ 1

2
)

p,h )TMJ
r,(n− 1

2
)

p,h ]. (12)

In the following, we shall prove that the discrete energy (12) is a positive definite quadratic
form of all unknowns under a Courant-Friedrichs-Lewy (CFL)-type condition on the time step
∆t.
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Theorem 1. Using the POD-DGTD scheme (8)-(9) when Γa = ∅, the global discrete energy
(12) is a positive definite quadratic form of the unknowns Er

h, Hr
h and Jr

p,h if

∆t < min{ 2ε∞
drN,1 + drN,2

,
2

drN,1

,
2

γd + 2ω2
dd

r
N,2

}, (13)

with
drN,1 = ∥(ΦT

HMΦH)−
1
2ΦT

H(K− Si + Se)ΦE(Φ
T
EMΦE)

− 1
2 ∥,

and
drN,2 = ∥(ΦT

Jp
MΦJp)

− 1
2ΦT

Jp
MΦE(Φ

T
EMΦE)

− 1
2 ∥.

Proof. Using the fully discrete POD-DGTD scheme (9) to develop α
(n+ 1

2
)

H (resp. α
(n+ 1

2
)

Jp
) in

function of α(n− 1
2
)

H and α
(n)
E (resp. α

(n− 1
2
)

Jp
and α

(n)
E ) in (12), one can obtain

Θr,n =
1

2
[ε∞(α

(n)
E )TΦT

EMΦEα
(n)
E +(α

(n+ 1
2
)

H )TΦT
HMΦHα

(n− 1
2
)

H +
1

ω2
d

(α
(n+ 1

2
)

Jp
)TΦT

Jp
MΦJpα

(n− 1
2
)

Jp
]

=
1

2
ε∞(α

(n)
E )TΦT

EMΦEα
(n)
E +

1

2
(α

(n− 1
2
)

H )TΦT
HMΦHα

(n− 1
2
)

H +
β

2αω2
d

(α
(n− 1

2
)

Jp
)TΦT

Jp
MΦJpα

(n− 1
2
)

Jp

− 1

2
∆t(α

(n− 1
2
)

H )TΦT
H(K− Si + Se)ΦEα

(n)
E − 1

2α
∆t(α

(n− 1
2
)

Jp
)TΦT

Jp
(−M)ΦEα

(n)
E , (14)

where the parameters α and β are defined by

α = 1 +
γd∆t

2
> 1, and β = 1− γd∆t

2
< 1. (15)

In order to make the CFL-type conditions more readable, it is assumed that

γd∆t

2
≤ 1, (16)

which implies
1

2
≤ 1

α
< 1. (17)

Then, we have the following equalities and inequalities

(α
(n)
E )T (ΦT

EMΦE)α
(n)
E = I(n)

1 ,

(α
(n− 1

2
)

H )T (ΦT
HMΦH)α

(n− 1
2
)

H = I(n)
2 ,

(α
(n− 1

2
)

Jp
)T (ΦT

Jp
MΦJp)α

(n− 1
2
)

Jp
= I(n)

3 ,

(α
(n− 1

2
)

H )TΦT
H(K− Si + Se)ΦEα

(n)
E ≤ I(n)

4

≤ drN,1

√
I(n)
1

√
I(n)
2 ,

(α
(n− 1

2
)

Jp
)TΦT

Jp
(−M)ΦEα

(n)
E ≤ I(n)

5

≤ drN,2

√
I(n)
1

√
I(n)
3 ,
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with 

I(n)
1 = ∥(ΦT

EMΦE)
1
2α

(n)
E ∥2,

I(n)
2 = ∥(ΦT

HMΦH)
1
2α

(n− 1
2
)

H ∥2,

I(n)
3 = ∥(ΦT

Jp
MΦJp)

1
2α

(n− 1
2
)

Jp
∥2,

I(n)
4 = |(α(n− 1

2
)

H )T (ΦT
HMΦH)

1
2 (ΦT

HMΦH)−
1
2

ΦT
H(K− Si + Se)ΦE(Φ

T
EMΦE)

− 1
2 (ΦT

EMΦE)
1
2α

(n)
E |,

I(n)
5 = |(α(n− 1

2
)

Jp
)T (ΦT

Jp
MΦJp)

1
2 (ΦT

Jp
MΦJp)

− 1
2

ΦT
Jp
MΦE(Φ

T
EMΦE)

− 1
2 (ΦT

EMΦE)
1
2α

(n)
E |,

which might cause the lower bound of the energy to be less than optimal (and then cause the
stability limit of the POD-DGTD scheme to be slightly higher). Noticing that

√
I(n)
1

√
I(n)
2 ≤ 1

2
(I(n)

1 + I(n)
2 ),√

I(n)
1

√
I(n)
3 ≤ 1

2
(I(n)

1 + I(n)
3 ),

then one can get

Θr,n ≥ 1

2
(ε∞ −

∆tdrN,1

2
−

∆tdrN,2

2α
)I(n)

1 +
1

2
(1−

∆tdrN,1

2
)I(n)

2 +
1

2
(

β

αω2
d

−
∆tdrN,2

2α
)I(n)

3 . (18)

Based on (17), each one of the three induced conditions is now considered separately

∆t <
2ε∞

drN,1 + drN,2

, ∆t <
2

drN,1

, and ∆t <
2

γd + 2ω2
dd

r
N,2

. (19)

One should eventually notice that the assumption (16) is contained in the above written con-
dition. This concludes the proof.

Theorem 2. Under CFL-type condition, the discrete energy Θr,n with PEC condition can be
bounded in the following way

Θr,n <
Θr,0

(1−ϱ
1+ϱ)

n
, ∀n ≥ 1, (20)

with 0 < ϱ < 1.

Proof. Based on the definition of the discrete energy, we have

Θr,n+1 −Θr,n =
1

2
ε∞(α

(n+1)
E + α

(n)
E )T (ΦT

EMΦE)(α
(n+1)
E − α

(n)
E )

+
1

2
(α

(n+ 1
2
)

H )T (ΦT
HMΦH)(α

(n+ 3
2
)

H − α
(n− 1

2
)

H )

+
1

2ω2
d

(α
(n+ 1

2
)

Jp
)T (ΦT

Jp
MΦJp)(α

(n+ 3
2
)

Jp
− α

(n− 1
2
)

Jp
). (21)

We denote by α
[n+ 1

2
]

E =
(α

(n+1)
E + α

(n)
E )

2
. Under the CFL-type condition (1 < α < 2, and

8



0 < β < 1), we have

Θr,n+1 −Θr,n = ∆t(α
[n+ 1

2
]

E )TΦT
E(K− Si − Sh)ΦHα

(n+ 1
2
)

H −∆t(α
[n+ 1

2
]

E )TΦT
EMΦJpα

(n+ 1
2
)

Jp

+ ∆t(α
(n+ 1

2
)

H )TΦT
H(−K+ Si + Se)ΦEα

[n+ 1
2
]

E

+
1

2ω2
d

(
β

α
− α

β
)(α

(n+ 1
2
)

Jp
)T (ΦT

Jp
MΦJp)α

(n+ 1
2
)

Jp

+
∆t

2α
(α

(n+ 1
2
)

Jp
)T (ΦT

Jp
MΦE)α

(n+1)
E

+
∆t

2β
(α

(n+ 1
2
)

Jp
)T (ΦT

Jp
MΦE)α

(n)
E . (22)

Based on the definitions of (5) and (15), we have
K = KT , Si = (Si)T , Sh = −Se, (Se)T = −Se,

and
β

α
− α

β
< 0.

Then, one can get

Θr,n+1 −Θr,n < ∆t(
1− α

2α
)(α

(n+ 1
2
)

Jp
)T (ΦT

Jp
MΦE)α

(n+1)
E +∆t(

1− β

2β
)(α

(n+ 1
2
)

Jp
)T (ΦT

Jp
MΦE)α

(n)
E︸ ︷︷ ︸

ζ

.

(23)
One can obtain the following bound for ζ

|ζ| ≤ ∆t(
α− 1

2α
)∥M

1
2J

r,(n+ 1
2
)

p,h ∥∥M
1
2E

r,(n+1)
h ∥+∆t(

1− β

2β
)∥M

1
2J

r,(n+ 1
2
)

p,h ∥∥M
1
2E

r,(n)
h ∥

≤ ∆t
ωd

ε∞
(
α− 1

2α
+

1− β

2β
)︸ ︷︷ ︸

ϱ

∥M
1
2J

r,(n+ 1
2
)

p,h ∥
ωd

max{ε∞∥M
1
2E

r,(n+1)
h ∥, ε∞∥M

1
2E

r,(n)
h ∥}︸ ︷︷ ︸

ℏ(n)

≤ ϱ

2
(
∥M

1
2J

r,(n+ 1
2
)

p,h ∥2

ω2
d

+ (ℏ(n))2). (24)

Let C be a generic constant. Under the definition of discrete energy (12) and the CFL-type
condition, we have

∥M
1
2J

r,(n+ 1
2
)

p,h ∥2

ω2
d

≤ CΘr,n+1, (ℏ(n))2 ≤ C(Θr,n+1 +Θr,n).

This yields
Θr,n+1 −Θr,n ≤ ϱΘr,n+1 +

ϱ

2
Θr,n,

which leads to
Θr,n+1 ≤

1 + ϱ
2

1− ϱ
Θr,n <

1 + ϱ

1− ϱ
Θr,n,

with ϱ > 0. It is also required that ϱ < 1, which can be proved to be equivalent to

∆t <
2√

γ2d + 2
γdωd

ε∞

.

In particular, the condition can be shown to be less restrictive than the ∆t ≤ 2
γd

. This completes
the proof.
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4. Numerical experiments

In this section, numerical examples for the 3-D time-domain Maxwell’s equations with Drude
model are given. First, we present the problem of the standing wave in a cubic PEC cavity
for which a simple analytical solution can be computed, to validate the implementation of the
POD-DGTD method. We then consider the problem of the scattering of a plane wave by a
gold nanosphere to investigate the behavior of the method for optical problems. Finally, a more
challenging application is considered in the form of the scattering of a plane wave by a plasmonic
bowtie nanoantenna. All DGTD and POD-DGTD methods with the LF2 time scheme have been
implemented in MATLAB. All our tests are performed on a workstation equipped with an Intel
Xeon CPU running at 3.70 GHz with 32 GB of RAM memory. The values of the CFL number
of POD-DGTD method corresponds to the numerical stability. We choose ρ = 10−4 to compute
the dimension ku (u ∈ {E,H,Jp}) of the POD basis in all experiments.

4.1. Standing wave in a cubic PEC cavity
We first consider the propagation of the (1,1,1) mode in a PEC cubic cavity Ω2 = [0, L]3 [51].

An artificial current source Js is added to the second equation of (2) such that the analytical
solution coincides with the time-domain Maxwell-Drude equations

∂tH + curlE = 0,

ε∞∂tE − curlH+ Jp = Js,

∂tJp + γdJp − ω2
dE = 0,

(25)

where the artificial current source Js is defined as

Js =

 (ξsin(xtt)− ϑγdcos(xtt))cos(xmx)sin(xmy)sin(xmz)
0

(−ξsin(xtt) + ϑγdcos(xtt))sin(xmx)sin(xmy)cos(xmz)

 .

Here, xm =
π

L
, which is deduced from the PEC boundary condition; xt =

π
√
3

L
, which de-

termines the angular frequency of the time evolution. As we are only considering the (1,1,1)

mode, the signal frequency is given by f =

√
3c0
2L

with c0 being the wave speed in vacuum. The
coefficients ϑ and ξ are defined as

ϑ =
ω2
d

x2t + γ2d
,

ξ = ε∞xt − 3
x2m
xt

− ϑxt.

For the Drude parameters, we choose ε∞ = 3.7362, ωd = 1.3871 × 107 GHz, γd = 4.41544 ×
104 GHz in this study. For detailed descriptions of the exact soulution of (25) with the current
source see [51].

We present the results for the signal frequency f = 3 × 105 GHz. The characteristic simu-
lations are performed on an unstructured mesh with 10,029 nodes, 49,984 elements, and mesh
size h = 9.668 × 10−9 m. The total simulation time is set to Tf = 6.67 fs which corresponds
to two temporal periods. As a general rule, keeping the number of snapshots ℓ small allows
to minimize the computational cost in offline stage. So, we first investigate the effect of the
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parameter ℓ on the accuracy of POD-based ROM. Figure 1 shows the total L2 error between
the DGTD and POD-DGTD solutions, in logarithmic scale, in which the L2 error is defined by

max
n

(ε∞∥E(n)
h −E

r,(n)
h ∥2L2(Ω) + ∥H(n)

h −H
r,(n)
h ∥2L2(Ω) +

1

ω2
d

∥J(n)
p,h − J

r,(n)
p,h ∥2L2(Ω))

1
2 . (26)

Moreover, we also show the CPU time TPOD for the construction of the POD basis. We only
apply the DGTD methods with P1 and P2 approximation (because the theoretical error of the
centered flux-based DGTD method with LF2 time scheme behaves as O(∆t2 + hp) [13, 19]).
Besides, we find that the maximum time step size ∆tPOD-DGTD is larger than the maximum
time step size ∆tDGTD with the LF2 time scheme by computing (7) and (13). Hence, in order to
calculate the error, the time step size ∆tPOD-DGTD of the POD-based ROM is set to the same
value as that of the time step size ∆tDGTD of the DGTD scheme.
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Figure 1: Standing wave in a cubic PEC cavity: L2 error between the DGTD and POD-DGTD solutions and
CPU time versus the number of snapshots ℓ with (a) P1 and (b) P2 approximation.

It is easily observed that the L2 error is rapidly decreasing and stabilizes to a limit value
while TPOD is increasing when increasing the number of snapshots ℓ. In particular, one can
find that it is unnecessary to extract offline the total transient solutions at each time step as
snapshots from Figure 1. So, we can respectively take ℓ = 6 and 10 equidistantly distributed
snapshot vectors for the POD-DGTD method with P1 and P2 approximation, where the number
of snapshots ℓ is about N

1/3
t . Figure 2 shows the time evolution of the total L2 error between

the POD-based MOR and DGTD scheme with the number of snapshots ℓ being 6 and 10 for
P1 and P2 approximation, respectively.

The exact and numerical solutions calculated by the DGTD and POD-DGTD methods with
P2 approximation at selected locations in the parallelepiped are shown in Figure 3. We see that
the POD-DGTD solutions coincide with the DGTD and analytical solutions. This confirms
that the POD-based ROM is accurate.

We then compare the computational performance of the POD-DGTD and DGTD methods
in Table 1, in which the CPU time denotes the time loop by using the DGTD or POD-DGTD
method with LF2 time scheme (online stage).

In Table 1, we observe that the POD-DGTD method significantly reduces the required
number of time iterations to reach the final physical time Tf due of the increase of the acceptable
time step size. More precisely, we find that for the POD-DGTD method, the time step size
∆tPOD-DGTD is respectively about 19 and 44 times larger than that of the DGTD method with
P1 and P2 approximation. Besides, we can observe that the POD-DGTD method is much
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Figure 2: Standing wave in a cubic PEC cavity: time evolution of the total L2 error obtained by the POD-DGTD
method.
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Figure 3: Standing wave in a cubic PEC cavity: time evolution of the fields (a) Hx and (b) Ez at the locations
with coordinates (7× 10−7 m, 7× 10−7 m, and 7× 10−7 m) (Location1) and (3.5× 10−7 m, 3.5× 10−7 m, and
3.5× 10−7 m) (Location2), obtained by the POD-DGTD method with P2 approximation.

Table 1: Standing wave in a cubic PEC cavity: critical time step size and CPU time for the DGTD and POD-
DGTD methods, with Pk approximation (k = 1, 2).

Pk Method DoF ∆t (m) CPU time (s) ∆tPOD-DGTD

∆tDGTD

CPUDGTD

CPUPOD-DGTD

P1
DGTD 1,799,424 4.298× 10−9 87 19 218

POD-DGTD 15 8.166× 10−8 0.4

P2
DGTD 4,498,560 1.869× 10−9 921 44 419

POD-DGTD 25 8.222× 10−8 2.2
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faster than the DGTD method, which yields 218 and 419 speedups for P1 to P2 approximation,
respectively. From Figure 1 and Table 1, we can find that the POD-DGTD method can save
the required CPU time while maintaining an acceptable level of accuracy.

4.2. Near-field resonance of a gold nanosphere
We now consider the simulation of the near-field, sub-wavelength resonance of a single gold

nanosphere lying in vacuum under a plane wave excitation, which can strongly enhance the
electric field due to the phenomenon of surface plasmon resonance [57]. The radius of the
nanosphere r is taken to be 20 nm. The computational domain is artificially truncated by a
200 nm diameter sphere on which the first order Silver-Müller ABC is applied. The sphere is
illuminated with a sinusoidal plane wave propagating in the z direction, which the amplitude is
modulated in time with a gaussian profile. The source is set as an incident plane wave polarized
on the x component. The incident field is then defined as

Einc
x = A0sin(2πfc(t− 4τ − k(x− x0)/c0))e

− (t−4τ)2

τ2 ,

where A0 = (1, 0, 0), k = (0, 0, 1), x0 = (0, 0, 0), and x = (x, y, z); fc is the central frequency
of the sinusoidal modulated Gaussian pulse, and τ represents its broadening. One can get H inc

y

based on the first equation of (2). The permittivity of the gold nanosphere [12] is considered to
follow the Drude model, and the parameters are summed up in Table 2. The mesh used for the
simulation is shown in Figure 4. It consists of 45,536 vertices and 266,559 tetrahedra of which
42,102 tetrahedra are located inside the gold nanosphere, where the minimal and maximum
mesh edge length is 7.626× 10−10 m and 1.322× 10−8 m, respectively. The physical simulation
time is fixed to Tf = 20 fs. In this case, the number of snapshots ℓ is taken 37 and 48 (ℓ = N

1/3
t )

for P1 and P2 approximation, respectively.

Table 2: Parameters set for the gold nanosphere.

ε∞ ωd (Thz) γd (Thz) fc (Thz) τ (fs)

1 1.19× 104 141 576.92 2

卢

Figure 4: Partial views of the tetrahedral meshes used for the simulation of the scattering of a plane wave by a
single nanosphere.

The numerical solutions obtained with the POD-based ROM are compared with those re-
sulting from the DGTD scheme with Pk approximation (k = 1, 2) to verify the accuracy of the
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POD-DGTD method. The time evolution of the fields Ex and Hy at selected points in the
domain for the DGTD and POD-DGTD methods is shown in Figure 5.
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Figure 5: Scattering of a plane wave by a single nanosphere: time evolution of the fields Ex (left) and Hy

(right) at the locations with coordinates (1.6× 10−8 m, −5.7× 10−9 m, and 1.9× 10−9 m) and (−4.6× 10−8 m,
−7.4 × 10−9 m, and 2.3 × 10−8 m), obtained by the POD-DGTD method with P1 (top) and P2 (bottom)
approximation, respectively.

We find that the numerical solutions obtained by the DGTD and POD-DGTD methods
with P2 approximation agree very well. Figure 6 shows the distributions of the modulus of the
electric field in the Fourier domain at the source central frequency fc with P2 approximation.
A more precise analysis of the results is displayed in Figure 7 which represents the evolution of
the modulus of the electric field along the x axis.

Combining Figures 6 and 7, one can in particular notice an enhanced field at the poles
of the sphere. The time evolution of the total L2 error between the POD-based MOR and
DGTD scheme, with the number of snapshots ℓ being 37 and 48 for P1 and P2 approximation
respectively, is given in Figure 8.

One can see that the POD-based ROM is stable. From this experiment, we can find that
the POD-DGTD method is effective for a broadband application.

We further investigate the efficiency of the POD-based ROM. The results are summarized
in Table 3. From Table 3 and Figures 5, 6, and 7, we can find that the POD-based ROM can
reduce the problem size by several orders of magnitude without compromising the accuracy
of solution. Besides, the critical time step size of POD-DGTD method is 35, and 45 times
larger than that of the DGTD method with P1 and P2 approximation, respectively. The DGTD
method with P1 approximation takes 17 h 43 mn to complete the entire simulation. In contrast,
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Figure 6: Scattering of a plane wave by a single nanosphere: module of the electric field in the Fourier domain
at the source central frequency fc obtained by the DGTD (left) and POD-DGTD (right) methods at the plane
XOY.
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Figure 7: Scattering of a plane wave by a single nanosphere: 1-D distribution along the x axis of the modulus of
the POD-DGTD and DGTD solutions of the electric field with P2 approximation.
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Figure 8: Scattering of a plane wave by a single nanosphere: time evolution of the total L2 error obtained by the
POD-DGTD method.

the POD-DGTD method only requires 10 mn, which is 106 times faster than the DGTD method.
Similarly, the DGTD method with P2 approximation yields a 300 speedup.

Table 3: Scattering of a plane wave by a single nanosphere: critical time step size and CPU time for the DGTD
and POD-DGTD methods, with Pk approximation (k = 1, 2).

Pk Method DoF ∆t (m) CPU time ∆tPOD-DGTD

∆tDGTD

CPUDGTD

CPUPOD-DGTD

P1
DGTD 6,902,640 1.463× 10−10 17 h 43 mn 35 106

POD-DGTD 97 5.120× 10−9 10 mn

P2
DGTD 17,256,600 6.501× 10−11 154 h 46 mn 45 300

POD-DGTD 64 2.925× 10−9 31 mn

4.3. Bowtie nanoantenna
To further illustrate the benefits of the POD-based ROM, the simulation of the scattering of a

plane wave by a gold bowtie nanoantenna (dimer nanoprisms) is finally presented. This structure
can strongly enhance the electric field between the tips of the two triangular nanoparticles for
longitudinal polarization (see Figure 9) [58]. The gold bowtie nanoantenna is composed of a
pair of equilateral prisms, with a thickness of 10 nm, edge length of 100 nm and a spacing gap
of 3 nm inspired by [19] in vacuum. Additionally, the actual geometry of the antenna includes
small roundings at the edges and tips. In this case, the rounding radius r is 2 nm, and is uniform
for all edges and tips.

The permittivity of gold bowtie nanoantenna is given by the Drude model, which is the
same as the standing wave in the cubic PEC cavity presented in Section 4.1. The computational
domain is artificially truncated by a parallelepiped with 400 nm side length on which the first
order Silver-Müller ABC is imposed. The gold bowtie nanoantenna is also illuminated with a
sinusoidal plane wave propagating in the z direction, which the amplitude is modulated in time
with a gaussian profile. The source is set as an incident plane wave polarized along the major
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Figure 9: Bowtie nanoantenna with rounded edges.

axis of the bowtie nanoantenna (here, the y component). The incident field is then defined as

Einc
y = A0sin(2πfc(t− 4τ − k(x− x0)/c0))e

− (t−4τ)2

τ2 ,

where A0, k, x0, and x are like as in Section 4.2, the central frequency fc is 500 THz, and the
broadening τ is 3 fs. Similarly, one can get H inc

x based on the first equation of (2). The mesh,
which is generated by Gmsh, is partially visualized on Figure 10.

Figure 10: Partial views of the tetrahedral meshes used for the simulation of the scattering of a plane wave by a
gold bowtie nanoantenna.

The underlying tetrahedral mesh consists of 31,951 vertices and 189,246 tetrahedra, where
the minimal and maximum mesh edge length is 7.294×10−10 m and 5.512×10−8 m, respectively.
The total simulation time Tf is set to 20 fs. In this case, the number of snapshots ℓ is taken 37
and 48 (ℓ = N

1/3
t ) for P1 and P2 approximation, respectively.

The contour lines of the modules of the Fourier transform of the electric field at the central
frequency fc obtained by the DGTD and POD-DGTD methods with P2 approximation in the
YOX and YOZ planes are shown in Figure 11.

In additional, a 1-D cut along the y axis difference between the DGTD and the POD-DGTD
solutions with P2 approximation is represented in Figure 12.

We observe that the numerical solutions obtained by DGTD and POD-DGTD methods
agree very well. In Figure 13, we plot the time evolution of the total L2 error between the
POD-based MOR and DGTD scheme, with the number of snapshots ℓ being 37 and 48 for P1

and P2 approximation, respectively.
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(a) DGTD, YOX (b) POD-DGTD, YOX

(c) DGTD, YOZ (d) POD-DGTD, YOZ

Figure 11: Scattering of a plane wave by a gold bowtie nanoantenna: module of the electric field in the Fourier
domain at the source central frequency fc obtained by the DGTD (left) and POD-DGTD (right) methods at the
planes YOX (top) and YOZ (bottom).
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Figure 12: Scattering of a plane wave by a gold bowtie nanoantenna: 1-D distribution along the y axis of the
modulus of the POD-DGTD and DGTD solutions of the electric field with P2 approximation.
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Figure 13: Scattering of a plane wave by a gold bowtie nanoantenna: time evolution of the total L2 error obtained
by the POD-DGTD method.

The performance results obtained by the DGTD and POD-DGTD methods with Pk (k =
1, 2) approximation are summarized in Table 4.

Table 4: Scattering of a plane wave by a gold bowtie nanoantenna: critical time step size and CPU time for the
DGTD and POD-DGTD methods, with Pk approximation (k = 1, 2).

Pk Method DoF ∆t (m) CPU time (h) ∆tPOD-DGTD

∆tDGTD

CPUDGTD

CPUPOD-DGTD

P1
DGTD 5,227,872 1.175× 10−10 14 h 41 mn 40 176

POD-DGTD 73 4.700× 10−9 5 mn

P2
DGTD 13,069,680 5.222× 10−11 132 h 8 mn 50 378

POD-DGTD 63 2.611× 10−9 21 mn

Note that the critical time step size of POD-DGTD method is 40, and 50 times larger than
that of the DGTD method with P1 and P2 approximation, respectively. In addition, we find
that the DGTD method with P1 and P2 approximation spend 14 h 41 mn and 132 h 8 mn,
while the POD-DGTD method only spend 5 mn and 21 mn, respectively.

5. Conclusion

In this paper, we have proposed a POD-based ROM (Galerkin projection) in combination
with a high order DGTD method for the numerical simulation of 3-D Maxwell’s equations
with the Drude dispersive model. Snapshot vectors in this work are chosen from the high
fidelity DGTD method with an explicit LF2 scheme for the integration time. In this study,
the same scheme has been applied to the semi-discrete POD-based scheme, however, other
options, such as the implicit Crank-Nicolson scheme, could be used. The stability of the ROM
with LF2 time scheme has been analyzed through an energy approach. Numerical experiment
for 3-D nanophotonic problems have allowed us to demonstrate that the ROM can reduce the
computational time while preserving an acceptable level of accuracy. Therefore, POD-Galerkin
reduced-order DGTD method is a promising in the field of optical and electronic engineering.
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In the near future, we will consider the numerical simulation of more general physical optical
models (non-local model [8, 9]), and the possibly adaptive selection strategies for choosing the
snapshots.
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