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Graded modal types systems and coeffects are becoming a standard formalism to deal with context-dependent,
usage-sensitive computations, especially when combined with computational effects. From a semantic per-
spective, effectful and coeffectful languages have been studied mostly by means of denotational semantics
and almost nothing has been done from the point of view of relational reasoning. This gap in the literature is
quite surprising, since many cornerstone results — such as non-interference, metric preservation, and proof
irrelevance — on concrete coeffects are inherently relational. In this paper, we fill this gap by developing
a general theory and calculus of program relations for higher-order languages with combined effects and
coeffects. The relational calculus builds upon the novel notion of a corelator (or comonadic lax extension)
to handle coeffects relationally. Inside such a calculus, we define three notions of effectful and coeffectful
program refinements: contextual approximation, logical preorder, and applicative similarity. These are the
first operationally-based notions of program refinement (and, consequently, equivalence) for languages with
combined effects and coeffects appearing in the literature. We show that the axiomatics of a corelator (together
with the one of a relator) is precisely what is needed to prove all the aforementioned program refinements to
be precongruences, this way obtaining compositional relational techniques for reasoning about combined
effects and coeffects.
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1 INTRODUCTION

In 1961, McCarthy [1961, 1962, 1963] recognised the definition of a theory of equivalence of
programs and computational processes as a crucial step towards the development of a mathematical
theory of computation. Nowadays, we generically refer to such theories as program equivalences
and refinements, and still consider them some of the most important concepts in the theory of
programming languages. In fact, program equivalence is not only of paramount importance for the
semantic understanding of programming languages, but it is also a fundamental tool in fields such
as program verification, compiler optimisation, program refactoring, and language-based security.
Obviously, the more features of a programming language a notion of program equivalence and
refinement can account for, the more useful such a notion is. But what exactly does it mean to have
a theory of program equivalence and refinement?
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31:2 Ugo Dal Lago and Francesco Gavazzo

Relational Reasoning. If the programming language at hand is endowed with a denotational
semantics, a notion of program equivalence (and possibly of refinement) is given by mathematical
equality (preorder) in the semantic model. However, interesting notions of program equivalence and
refinement can be given even without a denotational semantics, but relying on the static and dynamic
semantics of programs, only. Examples of such equivalences and refinements include contextual-like
equivalences and approximations, [Mason and Talcott 1991; Morris 1969], logical relations [Plotkin
1973; Reynolds 1983], and (bi)simulation-based relations [Abramsky 1990; Lassen 1999; Sangiorgi
1994]. Despite their differences, all these notions can be placed in a unique and general framework
by developing suitable theories of program relations wherein performing relational reasoning about
programs. Even if operationally-based, such theories usually take the form of relational calculi
supporting abstract, modular, and algebraic reasoning about relational properties of programs.

Theories and calculi of program relations have been extensively studied for pure higher-order
languages [Gordon 1994; Howe 1996; Pitts 1997], a prime example of the power and elegance of the
results achieved being Lassen’s relational calculus [Lassen 1998a,b], wherein all the aforementioned
notions of equivalence and refinements can be defined and studied in a modular fashion. But what
happens if one breaks purity, injecting into the calculus features such as computational effects or
resource-constraints?

Computational Effects. Since their very beginning, theories and calculi of program relations
have been progressively extended to languages featuring computational effects such as pure
nondeterminism [Lassen 1998b; Ong 1993], I/O [Gordon 1992], and, more recently, probabilistic
nondeterminism [Bizjak and Birkedal 2015; Culpepper and Cobb 2017; Dal Lago and Gavazzo 2019b;
Dal Lago et al. 2014]. Such extensions, however, are rather ad hoc and rely on specific properties of
the concrete effect considered, this way giving credit to the hypothesis that relational techniques
are not robust for effectful language extensions. In recent years, such an hypothesis has been
proved false by a number of works [Dal Lago and Gavazzo 2019a; Dal Lago et al. 2017a,b, 2020;
Goubault-Larrecq et al. 2008; Johann et al. 2010; Simpson and Voorneveld 2018, 2020] developing
relational theories of (higher-order) languages featuring general forms of computational effects
modelled by monads [Moggi 1989, 1991] and algebraic theories [Plotkin and Power 2001a, 2003].

The injection of computational effects in a programming language drastically impacts the
dynamic semantics of programs, making, for instance, program evaluation probabilistic and, more
generally, monadic. Since theories and calculi of program relations build upon both the static
and dynamic semantics of programs, such theories and calculi must become monadic too. This
“monadic turn” ultimately reduces to having suitable ways of extending program relations to
monadic program relations, i.e. relations relating programs encapsulated in a monad, such as
distributions of programs. The right axiomatics for these relational extensions have been identified
by Dal Lago et al. [2017a] in the notion of a relator [Backhouse et al. 1991; Kawahara 1973] or lax
extension [Barr 1970] of a monad. Relying on such a notion, relational calculi can be uniformly
extended to effectful languages: moreover, the defining axioms of a relator are precisely what
one needs to prove congruence and precongruence properties of many program equivalences and
refinements, including all the aforementioned ones. All of this results in a number of elegant and
powerful relational calculi for a large number of languages with computational effects.

Coeffects. Even if many problems have not been solved yet, we may say that relational reasoning
about effectful programs is by now pretty well-understood. There is another programming language
idiom related to computational effects that is capturing the attention of researchers in the last years:
coeffects [Brunel et al. 2014; Petricek et al. 2014]. The expression coeffects generically refers to the
family of program behaviours related to code usage and context-dependency, so that coeffectflul
languages have explicit forms of control on how code can be used. Typical forms of code usage are
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linearity and duplicability [Benton and Wadler 1996; Girard 1987]; resource consumption [Ghica and
Smith 2014; Girard et al. 1992]; program sensitivity [Reed and Pierce 2010]; and code confidentiality
and information-flow [Abadi et al. 1999; Volpano et al. 1996]. On a concrete level, coeffectful
behaviours are formalised in the static semantics of a language by means of graded modal type
systems [Bernardy et al. 2018; Orchard et al. 2019] where now expressions are assigned types
specifying their allowed usage.

Due to their many applications, there is a growing interest in the programming language
community for modal and coeffectful languages, especially when combined with computational
effects [Gaboardi et al. 2016; Orchard et al. 2019]. From a semantic perspective, however, coeffectful
languages have been mostly studied by means of denotational semantics [Breuvart and Pagani
2015; Brunel et al. 2014; Gaboardi et al. 2016] and almost nothing has been done from the point of
view of relational reasoning, with the exception of the recent work by Abel and Bernardy [2020]
on logical relations which, however, deals with coeffects only and does not support computational
effects. This gap in the literature is quite surprising, since many cornerstone results — such as
non-interference [Abadi et al. 1999], metric preservation [Reed and Pierce 2010], and proof irrelevance
[Pfenning 2001] — on concrete coeffects are inherently relational. The main contribution of the
present work is precisely to fill such a gap by developing a general relational theory of higher-order
languages with both effects and coeffects.

1.1 The Contribution

How does a general theory (and calculus) of program relations for an effectful and coeffectful
language look like? Since the language is effectful, the theory will be monadic and, without much
of a surprise, based on the notion of a relator. But the language is also coeffectful and has a (graded)
modal static semantics. How (and how much) such a semantics affects program relations and their
theory?

Modal Relations. To do relational reasoning about coeffectful programs we move from ordinary,
binary relations to ternary relations which we generically call modal relations. Modal relations
relate expressions in possible worlds reflecting the way an expression can be used. For instance, a
possible world may encode the security level of a user, so that classified expressions may be related
— even if different — in possible worlds with public permission only, but being unrelated in worlds
having secret permission, this way formalising the intuition that classified programs cannot be
inspected without the right permission. Similarly, possible worlds may represent resource bounds
(this way obtaining resource-sensitive relations), or even degrees of relatedness (this way obtaining
Fuzzy-like relations akin to metrics). Modal relations are thus the basic semantic elements upon
which we build our relational calculus.

Corelators. Having understood that relational reasoning about coeffectul programs is based on
modal relations, we face the main question of this work: how coeffects (modal types) act on such
relations? Coeffects act on the static semantics of programs by means of (graded) modal types.
Generically speaking, a modal type changes how an expression can be used: for instance, it may
make an expression duplicable to some extent or change its security level. These actions greatly
impact the static semantics of the language — making, for instance, term substitution nontrival
— but they do not affect the dynamic semantics of programs, this way creating a scenario dual to
the one of effects which, instead, have a strong impact on the dynamic semantics of programs but
leave almost unchanged their static semantics. What is the relational counterpart of (graded) modal
types then? To answer this question, we introduce one of the main novelty and contribution of this
work, namely the notion of a lax extension of a comonad, and model modalities as lax extensions
of the identity comonad. We call such lax extensions corelators. Corelators allow us to inspect the
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relational behaviour that two expressions would have in a given family of possible worlds without
leaving the actual one, so that we are allowed to relate expressions in a given world taking into
account whether the same expressions are related in other worlds specified by the corelator itself.
The restriction of corelators to the identity comonad is what licenses us to inspect the relational
behaviour of the very same expressions but in different possible worlds. This reflects the fact that
coeffects act on the static semantics of programs only, leaving their dynamic semantics essentially
unchanged. A corelator thus allows a possible world to have a non-local, yet controlled view on
how a relation behaves at other possible worlds. This is crucial to extend static semantic notions of
coeffectful languages (such as the one of (modal) substitution) to a relational setting: without such
a non-local view, it would be just not possible to define crucial notions such as compatibility and
substitutivity (and, ultimately, compositionality).

A Calculus of Effectful and Coeffectful Program Relations. Relying on the notion of a corelator —
together with the notion of a relator (properly extended to the setting of modal relations) — we
develop a general calculus of (modal) program relations for effectful and coeffectful languages.
Such a calculus extends the relational calculus by Lassen [1998b] in a highly nontrivial way: it
relies on corelators to define static semantic notions such as compatibility and substitutivity —
which become nontrival in a coeffectful setting — and on relators to extend program relations
to computational effects. On top of such a calculus, we define the new notions of effectful and
coeffectful contextual approximation, logical preorder, and applicative similarity. All these notions
— whose definitions take advantage of both the notions of a relator and of a corelator — are
novel' and constitute the first examples of operationally-based notions of program refinement
for effectful and coeffectful languages in the literature. To witness the strength and robustness of
our axiomatics, we prove that all these relations are precongruences: this way, we obtain the first
relational compositional framework in a combined effectful and coeffectful scenario. Our proofs of
precongruence of applicative similarity and logical preorder are highly nontrivial and require major
improvements to the proof techniques available in the literature. Nonetheless, it is remarkable that
both these results ultimately rely on the axiomatics of the notions of a relator and of a corelator
only. Summing up, our main contributions are:

o The introduction of the novel notion of a corelator. Corelators provide an axiomatics to extend
the action of a comonad from functions to modal relations.

e The development of a powerful theory and calculus of program relations for effectful and
coeffectful languages. The calculus relies both on the notion of a corelator (to handle coeffects)
and of a relator (to handle effects).

o The definition of three notions of effectful and coeffectful program refinement. These notions
are the first operationally-based notions of refinement (and thus of equivalence) for effectful
and coeffectful languages appearing in the literature.

e The proof of precongruence theorems for the aforementioned program refinements. Such
theorems provide the first example of relational compositional reasoning in an effectful and
coeffectful scenario.

Due to space constraints, the aforementioned contributions focus on program refinement only:
however, all our results extend mutatis mutandis to equivalences.

2 AN EFFECTFUL CALCULUS WITH GRADED COEFFECTS

In this section, we define the vehicle calculus of this work, namely a call-by-value A-calculus
with graded modal (necessity) types [Gaboardi et al. 2016; Orchard et al. 2019] and generic effects

!The closest proposal given in the literature is the already mentioned logical relation by Abel and Bernardy [2020] for a
language without computational effects, which is nonetheless subsumed by our logical relations.
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[Plotkin and Power 2001a, 2003]. Before defining the calculus, we shortly recall the notion of a
monad and of an algebraic operation.

2.1 Preliminaries: Monads and Generic Effects

A monad [MacLane 1971] (tacitly assumed to be on the category of sets and functions) is a triple
(T, n,»=) where T associates to each set A a set T(A) of T-computations, 5 (called unit of T) is a
set-indexed family of functions n4 : A — T(A), and for any function f : A — T(B) we have a
function »=f : T(A) — T(B) (the operator »= is called bind). Moreover, these data have to satisfy
some suitable equational laws. As it is customary, we often write ¢ »= f in place of »=f(t). In this
paper we will use the following monads as running examples [Moggi 1989]: (i) the Maybe monad
(M, 5,»=), where M(A) £ {just a | a € AyU{L},n(a) £ just a,and t »= f £ f(a) ift = just a
and L otherwise; (ii) the Writer (or output) monad (O, 5, >=) over an output monoid (O, -, €), where
O(X) 2 0x X, n(x) £ (e,x), and (w,x) »= f £ (w - u,y), with (u,y) = f(x); (iii) the (non-empty)
powerset monad (P, 17, »=), where 5(x) = {x},and g »= f = Uaeg f(a); (iv) the discrete distribution
monad (D, ,»=), where (x) £ §, (Dirac distribution on x), and y »= f £ 3, p; - f(x;), where
i Pi - Oy, is a representation of y1 as convex sums of Dirac distributions. The subdistribution monad
is obtained by postcomposing D with M.

To actually produce effects, we we rely on generic effects [Plotkin and Power 2003]. Given a
monad T, a generic effect is an element op € T(A), for a set A. Examples of generic effects are
arb € P(2) which corresponds to the binary nondeterministic choice operation; coin € D(2) which
is the uniform distribution over 2 and corresponds to fair binary probabilistic choice; out, € O(1),
which corresponds to the operation printing o € O. In general, we recall that generic effects and
algebraic operations are in one-to-one correspondence.

Finally, we require T to be continuous (also known as w-cppo enriched) [Dal Lago et al. 2017a;
Goguen et al. 1977], so that for any set X, the set T(X) carries a w-cppo structure [Abramsky and
Jung 1994] (T(X), C, 1) making unit and bind monotone and continuous. Examples of continuous
monads are the maybe, powerset, and subdistribution monads. The writer monad gives a continuous
monad when properly combined with the maybe monad [Dal Lago et al. 2017a]. Other examples of
continuous monads not mentioned in this work are given by the exception monad, the cost monad,
and the tensor of the global state and maybe monads [Hyland et al. 2006].

2.2 Effects and Coeffects: Syntax

The vehicle calculus of this work is a call-by-value affine A-calculus [Maraist et al. 1999] with generic
effects [Plotkin and Power 2001a,b] and graded modal (necessity) types [Gaboardi et al. 2016; Orchard
et al. 2019]. Before defining the calculus, we spend a few words on these three features. Our calculus
is parametric with respect to two structures: a signature ¥ of generic effect symbols, i.e. pairs of
the form (op, oop), and a resource (or grade) algebra S. We use effect symbols (op, oop) € X as
effect-triggering operations, this way following the algebraic perspective on computational effects.
Intuitively, for a generic effect (op, o5p) € X, once the expression op is evaluated, a computational
effect is produced and a value of type o,p is returned. Generic effects are the way computational
effects are produced, and thus constitute the actual effectful component of our calculus: such a
component mostly impacts the dynamic semantics of the calculus which, as we will see, is monadic.
The coeffectful component, instead, acts on the static semantics of the calculus. Coeffects and code-
usage constraints are described by means of modal types [;o whose inhabitants are pieces of code
with capability s (we think about such capabilities as prescribing how code can be manipulated).
Elements s are called grades, resources, or capabilities and belong to a resource algebra S, which
is usually a semiring-like structure whose operations reflect the way in which capabilities can be
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Typeso,7 ==t Values v,w == x Terms e, f == return v
| unit | O | proj; v
|oxt | (v, w) | proj, v
|lo®T lv®w |letx®y=vine
| void | in; v | abort v
o+ | in, v | case v of (in; x.e | in, x.f)
|oc—o1 | Ax.e | ow
| ut.o | fold v | unfold v
| Os0 | [v] |let[x] =vine
| oop |letx =ein f
| op

Fig. 1. Types, values, and terms/computations of Ay g.

combined. Examples of capabilities include program sensitivity [Reed and Pierce 2010], resource
consumption [Orchard et al. 2019], and security levels [Abadi et al. 1999; Volpano et al. 1996].

Finally, the affine base of the calculus gives us tighter control on code manipulation. Accordingly,
data can be discarded but not copied: copyable code must be declared such using suitable modal
types. The choice of working with an affine base is just a design choice, and our results can be
extended to calculi with other bases (even if not substructural) with a minimal effort. Let us now
introduce the syntax and semantics of our calculus, which we call Ay s.

DEFINITION 1. Given a signature X and a grade algebra S (which we are going to define), the raw
syntax of Ay, s is given in Figure 1, where s ranges over elements in S and op is a generic effect in 2.

Following the methodology of fine-grain call-by-value [Levy et al. 2003], we divide expressions
of Ay s in two disjoint classes: values and terms (also called computations). Intuitively, a value is
the result of a computation, whereas a computation is a value producer, i.e. an expression that once
evaluated may produce a value (the evaluation process might not terminate) as well as side effects.
Accordingly, computations must be explicitly sequenced by means of the sequencing constructor
let x = — in —. We adopt standard syntactic conventions [Harper 2016] (notably the so-called
variable convention [Barendregt 1984]). The notion of a free (resp. bound) variable is defined as
usual. As it is customary, we identify terms up to renaming of bound variables and say that a term
is closed if it has no free variables. Oftentimes we refer to closed terms as programs. Moreover, for
finite lists of syntactic expressions (such as variables, computations, or values), we use ¢ for a finite
list ¢4, ..., P, of Ps. As a notational convention, we agree that whenever we have a vector ¢, the
symbol ¢; stands for the i-th element of ¢.

We write e[v/x] (resp. w[v/x]) for the capture-avoiding substitution of the value v for all free
occurrences of x in e (resp. w). The notion of a substitution is extended to the one of simultaneous
substitution in the natural way. Given vectors v, x of values and variables (which we tacitly assume
to have the same length), respectively, we write e[v/x] for the simultaneous substitution of all values
v; for variables x; in e. We define w[v/x] similarly. Finally, we extend our syntactic conventions to
type. In particular, we work with types modulo renaming and write o[z/t] for the capture-avoiding
substitution of 7 for all the free occurrences of the variable ¢ in o.
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Example 1. Instantiating > to the specific generic effects seen in Section 2.1, we obtain several
effectful calculi (we will see examples of coeffects in the next section). (i) Taking = = {arb : bool}
we obtain a nondeterministic calculus: the intended meaning of arb is to nondeterministically
evaluate either to true or false. (ii) Similarly, ¥ = {coin : bool} gives a probabilistic calculus, the
intended meaning of coin being to return true or false both with probability 3. (iii) Given an output
monoid O, the signature % £ {out, : unit | 0 € O} gives a calculus with output, the intended
meaning of out, being to output the string o.

2.3 Static Semantics

We now endow Ay s with a static semantics accounting for the coeffectful nature of Ay s. Let us
begin with a precise definition of a grade algebra.

DEFINITION 2. A grade algebra (S, <, +, %,0, 1, 00) is a preordered semiring with top element, i.e
a semiring (S, +, *,0, 1) together with a preorder < for which both + and * are monotone, and oo is
the top element.

When unambiguous, we denote a grade algebra (S, <, +, *,0, 1, 00) simply as S. As already said,
elements of S (to which we refer to as grades, resources, or capabilities) constrain the way in
which code can be manipulated. In particular, 0 represents the null capability (usually associated to
unused code); 1 represents linearly used code; + is used to combine grades/capabilities in parallel
(as in the case of two programs using the same code independently); and * is used to compose
grades sequentially, as in the case of an expression using another expression in place of a variable
with a given capability. The following examples will clarify the concept.

Example 2. 1. The one element semiring {oo} is used to model an exponential modality in the
spirit of linear logic [Benton and Wadler 1996; Girard 1987]. An expression of type U0
represents a piece of code that can be freely duplicated and discharged. This property comes
from idempotency of the semiring addition, which gives co + co = co. Notice that here the zero,
unit, and top elements of the semiring coincide.

2. The semiring of natural numbers extended with infinity (N*, =, +, -, 0, 1, c0) is used to model
the exact usage modality of bounded linear logic [Girard et al. 1992]. Accordingly, a term of
type O, o represents a piece of code that has to be used exactly n times. Notice that here the
semiring addition is not idempotent.

3. The semiring of extended non-negative real numbers? ([0, ], <, +, -, 0, 1, %) is used to model
type systems for program sensitivity [Reed and Pierce 2010]. Accordingly, we think about
expressions of type ;o —o 7 as representing functions that are s-Lipschitz continuous.

4. Distributive lattices (£, >, A, V, T, L) are used to model information flow modalities, such as
modalities describing security levels [Abadi et al. 1999; Denning 1976; Volpano et al. 1996]. As
a running example, we consider the two-element lattice {low < high}. A term of type [yjgho
represents a piece of code accessible only by users with high confidentiality level. Dually, a
term of type Ujowo can be used by users with at least low confidentiality level, and thus by any
user.

Remark 1. Example 1 shows that Ay s subsumes several effectful calculi, whereas Example 2 shows
that Ay s subsumes several coeffectful calculi. By taking combinations of signatures in Example 1
and grade algebras in Example 2, one immediately sees that Ay s provides a general model for
calculi exhibiting both effects and coeffects at the same time. For instance, by taking the probabilistic

2 Recall that co + 7 = r + 00 = co and that co - 7 = 7 - 00 = 00, if r # 0, and 00 - 0 = 0 - 0o = 0. The latter equality captures
our intuitive understanding that unused programs should be always regarded as equivalent.
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signature {coin : bool} and the grade algebra ([0, ], <, +, -, 0, 1, 00), we recover probabilistic Fuzz
[de Amorim et al. 2019; Gavazzo 2018]. Similarly, by taking the signature {arb : bool} and a
distributive lattice of security levels (£, >, A, V, T, L), we obtain a nondeterministic calculus for
information-flow.

Notice that grade algebras are not required to satisfy 0 # 1. However, it is convenient to require
0 to be the bottom element of the algebra (i.e. 0 < s, for any s). Moreover, we also require the join of
two elements to exist, so that for all elements s, 7 € S, the element s V r exists and belongs to S.°
As we will see, such a condition is necessary to guarantee soundness of our type system [Gavazzo
2018].

Fixed a grade algebra (S, <, +,%,0,1, o), we give Ay s static semantics by means of judgments
of the form xy :5, 01,...,%p 35, On F e : 0, Wwhere sy, ...,s, € S. The informal meaning of such a
judgment is that e is a term using variable x; as prescribed by s;, so that to pass an input v to e for
the variable x;, we need v to have not only type o;, but also capability s;. To define such typing
judgments formally, we need to first define the notion of a typing environment.

DEFINITION 3. A typing environment is a a partial function T from variables to types and grades
such that the domain dom(T') = {x | ['(x) # L} of T is finite.

Given a typing environment I', we use the notation x; :5, 03, ...,%p :5, 0n to denote it, where
{x1,...,x,} = dom(T') and T'(x;) = just (oy,s;). Moreover, we write (x :; o) € I to mean that
I'(x) = just (o,s). We denote by - the totally undefined environment. As for non-linear calculi, we
can join typing environments together, provided that their domains are disjoint. We write I, © for
the union of the disjoint typing environments I and ©. Whenever we write I', ©, we assume I' and ©
to be disjoint. The substructural nature of Ay s makes the disjoint union of typing environments too
weak to define an interesting static semantics. To overcome this problem, we extend the operations
of S to typing environments.

DEFINITION 4. 1. We say that two typing environmentsT', © are consistent (notationI' ~ ©) if
(x:s0) €T andx € dom(®) imply (x :» o) € O, for somer € S.
2. The sum operation + is defined between consistent typing environments as follows:

just (o,s+r) if(x: 0) € dom(l) & (x : 0) € dom(O)
(T +0)(x) £ {TI(x) ifx ¢ dom(0©)
O(x) ifx ¢ dom(T)
3. The multiplication (or scaling) operation scale grades in a typing environment by a given grade:

(s #T)(x) & {Jf“ (0,s%1) ifT(x) = just (o,7)

otherwise.

We can now endow Ay s with a static semantics. The latter is based on two kinds of judgments
(exploiting the fine-grained style of the calculus): judgments of the form I' +¥ v : ¢ for values and
judgments of the form T +* e : o for terms, where in both such judgments o is a closed type. The
system is defined in Figure 2.

Let us now comment on the rules in Figure 2, starting with the role played by semiring operations
on environments. Following the intuition that terms of type Lo are pieces of code of type o that
can be manipulated as prescribed by s, we see that whenever we have a value v with free variables
in T and we want to use v in place of a variable used by another program according to s, then we
need variables in I to be themselves usable according to s: this is formalised by the environment

3 Actually, we do not need s V r to exist for any r, but just for r = 1.
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(s > 1) ILxuyotte:r I'‘tYv:cg—o1 O w:o
I'xsotVx:0 ° 'tV Axe:0 —o 1 r+0rrow:r
I't"v:oc T+t w:r r'tYv:oXxr r'tYv:oXxr
T+ () : unit Tt (v,w)y:o X1 I'+* proj,v:o I+ proj, v:t
I't"v:oc O+ w:r I'tYv:io®7r Oxi 0y tHe:p I'+" v:void
r+0r"vew:oQr sx[+Or' letx®y=vine:p '+ abortv: o
T v:o T o:r I't"v:o+1 Ox:50terp OuistH fip
rtYimjov:o+1 I'tin,v:o+1 s* T+ O+ case v of (in; x.e | in, x.f) : p
'Y v:olutoft] F'+Vo:ptr I't"v:050 O,x:usotte:t
I'+Y fold v : pt.o T +* unfold v : o[ut.o/t] r«I+O+r'let[x] =vine:r
I'tYo:0 Tt ov:o I'the:t Ox:isTH f:o
s+ [v] : Oso I+ returnov: o (sV1)*T+Or'letx=einf:0o [+ op : ogp

Fig. 2. Static semantics of Ay g.

s * I', where we use semiring multiplication to give conditions on code to be used inside other code.
For instance, if a variable x is used by v twice and we want to replace v for a variable y used 3
times in a term e, then x will be used 6 times in e[v/y].

We can now look at some technical features of the rules in Figure 2. Most of such rules are standard
in the context of graded calculi, although there are minor differences with other presentations.
For instance, in the first rule in Figure 2 it is often required that s = 1 and that the environment
0 = T is used in place of T, this way staying closer to linear calculi. Our choice of allowing s to be
greater than or equal to 1 is in line with examples coming from differential privacy and information
flow [Abadi et al. 1999; de Amorim et al. 2017; Reed and Pierce 2010]. Nonetheless, all our results
hold for calculi where one requires s = 1. Another important difference is given by the typing
rule for sequencing, which comes from type systems for abstract program metrics [Gavazzo 2018]
and that has been used in the context of modal types [Abel and Bernardy 2020] more recently.
The rationale behind such a rule can be easily understood in terms of resource usage. Suppose to
have a term f using a variable x zero times, and a term e using a variable y two times. How many
times does let x = e in f use y? One may be tempted to say that y is not used in let x = e in f at
all, as e is simply thrown away in f. However, in a call-by-value scenario the term let x = e in f
first evaluates e, and then it throws it away. As a consequence, the variable y is still used twice
in let x = e in f. If we were to replace s V 1 with s in the conclusion of the sequencing rule, then
we would obtain that y is not used in let x = e in f, which is just unsound. Our choice of using
(s V1) =T in place s * I models the fact that e is evaluated in let x = e in f, and thus it is used at
least once.

Our static semantics enjoys all the standard properties of coeffectful calculi. Among those, the
so-called substitution lemma is arguably the most interesting one.

LEMMA 1 (SUBSTITUTION (STATIC SEMANTICS)). The following rules are admissible.

Ixsote:c Or'v:0 T ~0; I'xsot'v:io O+t'v:0 T ~06;
F+Ys-O+'e[v/x]:o T+Ys-0+r" v[v/x]:0o

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 31. Publication date: January 2022.



31:10 Ugo Dal Lago and Francesco Gavazzo

Before moving to the dynamic semantics of Ay s, we introduce some useful notation.
Ay Z{e|Ar. T+ e: 0} Ario 2{e| T+ e: 0} A, =fe| -+ e:a)

YV, £ (v |A. T+ v: o) Vo 2 {0 | TH v: 0} V2| +" v}

2.4 Dynamic Semantics

Finally, we endow Ay s with a dynamic semantics. Such a semantics is given by a monadic evaluation
function [Dal Lago et al. 2017a]. Let us fix a continuous monad (T, 5, »=) and a generic effect
lop] € T(Vs,,) for every operation symbol (op : gop) € .

op

DEFINITION 5. The N-indexed family of functions [—]2 : [1, A% — T(V}) is inductively defined
as follows:* [e]? £ L and

[return o]*! £ n(v) [OJE™ = n(0)

lletx®y=v®wine]l™ = [e[v/x, w/y]]? [unfold (fold v)]2** £ p(v)

[ease (in; v) of (in; x.ey | in, x.e)]z™ £ [ei[v/x][; [, 02041 = n(v)
[(Ax.e)o]t 2 [efo/x]]: [let [x] = [o] in e]2*! 2 [efo/x]]?

[let x = ein £z = [e]g »= [f[-/x]]Z [op]z™" = [op].

LEMMA 2. For any type o, the sequence of maps ([—]|*)nso0 forms an w-chain in A3, — T(V}).

Since T is continuous, by Lemma 2 we define the evaluation map [-]¢ : [15 Al — T(V2) as
Llnso[—]2. Notice that modalities play essentially no role in the definition of [-].

3 MODAL RELATIONS, RELATORS, AND CORELATORS

Having defined the syntax, static, and dynamic semantics of Ay s, in this section we introduce
the semantic foundation we will use to develop our calculus of (effectful and coeffectful) program
relations, namely modal relations, relators, and corelators. To motivate such a foundation, let us
observe that modal types do not influence the operational behaviour of programs, as the presence
of modalities de facto does not affect program execution. According to the reading given in the
Introduction, what modalities do is to act on the external observer by modifying the way she can
use and test (and thus ultimately discriminate between) programs. We formalise this intuition
by working with ternary relations, which we call modal relations. Modal relations relate pairs
of expressions in possible worlds reflecting the way such expressions can be used. Due to the
substructural nature of Ay s, we let possible worlds live in a symmetric monoidal preorder (or
preordered monoid) in the spirit of ternary semantics of substructural logics [Lambek 1968; Routley
and Meyer 1973; Urquhart 1972]. Remarkably, the monoidal preorder structure of possible worlds
allows us to extend most of the usual algebra of binary relations to a ternary, modal setting.

Having understood that relational reasoning about coeffectful programs is conveniently sup-
ported by the shift from binary to ternary relations, two main questions to be answered remain: how
do we model effects relationally? What about coeffects? We answer the first question relying on the
work by Dal Lago et al. [2017a]; Gavazzo [2019] and extending the notion of a relator [Backhouse
et al. 1991; Kawahara 1973] (also known as lax extension [Barr 1970]) to ternary relations. To
answer the second question, we introduce the novel construction of a corelator (or lax extension of
a comonad) which we will use to formalise the intuition that modal types do not act on programs,
but on possible worlds.

4We omit type subscripts.
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3.1 The Algebra of Modal Relations

We begin introducing modal relations and their algebra.

DEFINITION 6. A (monoidal Kripke) frame is a symmetric monoidal preorder (also known as
preordered commutative monoid) W = (W, <,0,¢) such that ¢ — the unit of © — is the bottom
element. A ‘W -relation R over X X Y is a ternary relation R € X X W X Y monotone in its second
argument. That is: R(x,a,y) & a<b = R(x,b,y).

Elements a, b, ... of a frame are called possible worlds. We refer to ‘W -relations for a generic
frame W as modal relations. To improve readability, we oftentimes employ the forcing notation
a lF x Ry in place of R(x, a,y).

Example 3. 1. Let ‘W be ([0, ], <, +,0). A ‘W-relation R relates objects with respect to non-
negative extended real numbers with the intended meaning that if a |- x R y holds, then the
R-distance between x and y is at most a (or, equivalently, that x and y are related up to an error
a). Obviously, if a < b and a I x Ry, we also have b I x R y (if x and y are at most a far, then
they also are at most b far). Reed and Pierce [2010] use ‘W -relations to define a logical relation
to characterise program distance.

2. Let W be (L, >, A, L), for L a security lattice. A ‘W -relation relates objects at specific confi-
dentiality levels: we thus read ¢ |- x Ry as stating that a user with confidentiality level £ regards
the objects x and y as R-related. Monotonicity states that if x and y are related at confidentiality
level ¢ (i.e. £ IF x R y), then they are also related at lower confidentiality levels (as a user with a
lower confidentiality level has less ways to access x and y, and thus to discriminate between
them).

We denote by ‘W-Rel(X, Y) the collection of ‘W -relations over sets X and Y, and write R : X - Y
in place of R € W-Rel(X, Y), provided that ‘W is clear from the context. Once endowed with subset
inclusion, ‘W-Rel(X, Y) has a complete lattice structure, so that we can define ‘W -relations both
inductively and coinductively. The identity W -relation A : X - X, the composition R;S : X = Y
of W-relations R: X - Y and S : Y -» Z, and the converse (or transpose) R" : Y- X of R: X » Y
are defined thus:

blFxRy clFySz a=boc alFxRy
alkx (R;S) z alFyR x

alxax @€V

Notice that A relates identical elements at any possible worlds, whereas the composition of
two “‘W-relations involves the monoidal product of possible worlds. Notice that A and R; S are
monotone (provided that R and S are), and thus W -relations. Straightforward calculations show
that (modal) relation composition is associative with unit element given by A. As a consequence,
we have a category W-Rel, whose objects are sets and whose arrows are ‘W -relations. Notice
that both converse and composition are monotone and that converse behaves as an involution:
(R)"=R A" =A,and (R;S)" =S™;R".

DEFINITION 7. A modal relation R : X - X is reflexive if A C R, symmetric if R" C R, and
transitive if R; R C R. Altogether, we obtain the notions of a modal preorder and modal equivalence.

Any function f : X — Y can be regarded as an arrow in ‘W-Rel via the ‘W -relation {(x, a, f (x)) |
x € X,a € W}. For simplicity, we use the notation f : X — Y even when regarding f as an arrow
in “W-Rel. Oftentimes we will deal with functions preserving modal relations. Such a property can
be succinctly expressed in pointfree styleas R C f;S;9", where R: X +» Y, S: A-» B, f : X — A,
andg:Y — B.Infact, we have a IF x (f;S;9") y & alF f(x) S g(y). Calculating with such
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31:12 Ugo Dal Lago and Francesco Gavazzo

aH—fRSg(szbcxy(bll—ny&c>a®b=>c||—f )Sg(y))
alk (x,x') (R®YS) (y,y')ﬁElb,c.(b\Fny&chx'Sy'&aZb@c)
alb (x,x') (RXS) (y,y)) & al- xRy &al-x'Sy.

t=in x t=in, x
alFt(R+S)séElxeX,er. s=imy |ordxeAyeB| s=iny
alFxRy alFxSy

Aaxp =AaXAp (RXS);(OXP)=(R,Q)X(S;P) RCQ&SCP = R®SCOQOQP
Aaxp=Da®Ag (R®S);(Q®P)=(RQ)®(S;P) RCQ&SCP = RXSCQXP
Aasp = [Aa, Ag] [R, S} [Q.P] € [RQ,S; P] QCR&SCP = [RS]C[Q.PF]
Aprp=Aa+Ag (R+S);(Q+P)C(R;Q)+(S;5P) RCQ&SCP = R+SCQ+P

Fig. 3. Modal Relation Constructors and their Algebraic Laws

relational expressions, it is useful to recall the following adjunction rules: R;,g C Q <= R C Q;g"
and f;,0CS & QCf;S.

Finally, we introduce some constructions on modal relations that allow us to extend such relations
to structured sets (such as product and function spaces).

DEFINITION 8. Given modal relationsR : X - Y and S : A - B, define the Reynolds arrow
[R,S] : AX = BY, the tensor R® S : X X A—» Y X B, the (cartesian) product RX S : X X A= Y X B,
and the coproduct R+ S : X + A—- Y + B by the clauses in Figure 3.

Notice that the tensor of modal relations requires to split worlds, whereas the cartesian product
uses the same world to relate all elements inside pairs. The Reynolds arrow relates two functions
at a world a if whenever we have input related at b, outputs are related at any world bigger than
a © b. Figure 3 lists some useful algebraic laws for such constructions of Definition 8. Notice that
Reynolds arrow is monotone in the second argument and antitone in the first one.

3.2 Relators and Corelators

Constructions in Definition 8 reflect most of the type constructors of Ay, s and thus the reader should
be able to guess their role (see Section 6). If, for instance, we have defined program equivalence ~,
~r attypes o, 7, respectively, then we essentially use ~, ® ~; to define equivalence at type c®7. The
relational constructions of Definition 8, however, do not account neither for coeffects/modal types
nor for computational effects. For the latter, we extend the notion of a relator to modal relations.
For the former, instead, we introduce the novel notion of a corelator — i.e. of a lax extension of a
graded (monoidal) comonad — which is to comonads what a relator is to a monad.

DEFINITION 9. Let F be a functor” Alax extension of F is a (family of) map(s)T : ‘W -Rel(X,Y) —
W -Rel(F(X), F(Y)) satisfying the laws in the first column of Figure 4.

Definition 9 is nothing but the usual definition of a lax extension [Barr 1970] properly modified
to the setting of modal relations. The map I' extends the action of F on functions to modal relations,
and it does so (lax) functorially.

5Recall that when referring to functors, monads, and comonads we tacitly assume them to be on Set.
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Ap) STA4 4ZRCR

IR;TS C I'(R;S) lerR C 1!, R RCn TRy
F(f) € T(f) sSR® 1S CI(R®S) ITR C ;TR "

F(f)" €T(f7) lesrR C ¢; ((sR® I, R);c”

RCS = TRCTS s<r = I,RCIR

Fig. 4. F-relator (first column); Corelator (second column); T-relator (third column)

Example 4. The maps —o S, Ro —, for o € {X,®, +}, induced by Definition 8 are all lax extensions
(of the corresponding functors on Set). The map [R, —] is lax extension too, although [—, S] is not,
due the failure of monotonicity.

Lax extensions of functors are at the heart of many relational constructions. Dealing with
computational effects, however, functors are not enough: we need to extend monads to modal
relations.

DErFINITION 10. Let (T, 1, it) be a monad on Set. A lax extension of (T, n, ) is a lax extension of T
that additionally satisfies the laws in the third column of Figure 4.

Due to their importance, we simply refer to lax extensions of a monad T as T-relators (and
just as relators if the actual monad is not relevant or clear from the context). If T is a T-relator,
then it properly interacts with the unit and multiplication of T. From an operational perspective,
that means that relators nicely interact with the computational behaviour of the sequencing and
return constructs. In particular, the condition I'TR C y; T'R; 4" can be replaced with the inclusion
R C fiTS;g" = TR C »=f;TS; (»=g)7, which makes monadic binding explicit. Pointwise, this
inclusion gives the following law.

Vx,y,b.blFxRy = blF f(x)TSg(y) alFaTRp
alFa» fTSB»=g

Actually, since we work with continuous monads, we require relators to be continuous too, meaning
that (i) a IF L TR « holds for any possible world a and « € T(X) (recall that L denotes the bottom
element of T'(X)); (ii) and that we have the following induction principle, where (@), is an w-chain
inT(X): (¥n)alF @, TR = alF ||, a, TRp.

Before showing examples of relators, we introduce the last (but definitely not least) construction
on modal relations, which is a novel contribution of this work: lax extensions of comonads. Actually,
since our fundamental intuition is that the action of modal types do not quite act on programs
but on the possible world where programs are compared, we are concerned not with extending
arbitrary comonads, but only a specific one: the identity comonad. For pedagogical reasons, we
give the simplified version of a lax extension of the identity comonad only (but see Remark 2), this
way avoiding the introduction of the notion of graded monoidal comonad [Gaboardi et al. 2016;
Katsumata 2018]. We call the resulting notion a corelator.

DEFINITION 11. Given a grade algebra (S, <, +,%,0, 1, 00), a corelator associates to any modal
relation R : X - Y a S-indexed family of modal relations |sR : X - Y in such a way that each s is a
lax extension of the identity functor and that additionally the laws in the second column of Figure 4
holds, where ¢ : X — X X X denotes the contraction map sending x to (x, x).

Definition 11 reflects our reading of elements in S as usage prescriptions. Accordingly, we read
a statement a |- x iR y as stating that a world a the objects x and y are R-related for a tester
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which can use them according to s (for instance, s may tells how many times x and y can be used).
The last law in the second column of Figure 4 then states that the more one can use expressions,
the more she can discriminate between them (for instance, if x and y are equivalent when used n
times, then they must be so when used n — k times). Similarly, the inclusion !{R C R states that, by
default, modal relations are linear (notice also that we have ! R C R, for any s > 1). Intuitively, the
action of the map ! at a world a is to compare programs at different worlds b which are essentially
determined by s. However, instead of giving an explicit definition of what it means to “change
possible world”, we have given a set of structural axioms (namely the ones in Definition 11) that
any such a notion should satisfy.

Remark 2. Definition 11 is a specific case of the more general notion of a lax extension of a
graded monoidal comonad. Such a level of generality is not needed in this work: nonetheless, the
reader familiar with graded comonads can easily generalise Definition 11 to arbitrary comonads.
For instance, the first two inclusions in the second column of Figure 4 should be replaced with
"R C &R;e" and !5, R C 653 Is!-R; 65 ., Tespectively, where € : C1(A) — A and 6 : Cair(A) —

Cs(C,(A)) are the (graded) counit and comultiplication of the (graded) comonad C, respectively.®

Finally, we need effects and coeffects to interact well with one another. Formally, we model such
a well-behaved interaction by saying that a corelator distributes over a relator, laxly.

DEFINITION 12. Given a relator I' and a corelator !, we say that ! distributes laxly over I' if
!s(T'R) € T'(!sR) holds for any s > 1.

As usual, the requirement s > 1 indicates that we look at those cases where objects can be used
nontrivially.

3.3 Examples

In this section, we give some examples of relators and corelators that apply to the (co)effectful
calculi seen so far.

Example 5 (Maybe monad). Let R : X - Y be a modal relation. Define MR : M(X)-» M(Y) as
follows:

alFaMRﬁé[a:justx = (f=justy&al-xRy)].

Then, M is a M-relator. MR generalises the usual clause used to define operational preorders
between programs. Accordingly, a program e approximates the behaviour of a term f at world a if
either e diverges or both e and f converge and the resulting values are related at a. If we take the
frame ([0, c0], < <.+ ,0) and read a I e R f as stating that the R-distance between e and f is at most

a, then a IF e MR f tells us that if e diverges, then the MR-distance between e and f is bounded
by any a — and thus it is bounded by 0. Otherwise, e converges to value v, and thus f converges to
a value w such that the MR-distance between e and f is the R-distance between v and w.

Example 6 (Powerset Monad). Let R : X - Y be a modal relation. Define PR: P (X) > P(Y) as
follows:

altaPRpesVxeca Iyep.Ib.a>b&blkxRy.

Then P is a P-relator. P generalises the usual extension used to define, e.g. simulation relations on
transition systems, to modal relations. Notice that such an extension is defined for any frame. For
instance, taking the frame ([0, c0], <, +, 0) and defining the distance p(x, y) Linfla|alF xRy}, we

® In the case of the identity comonad, counit and comultiplication are trivially given by the identity function.
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see thata IF a?A’Rﬁ holds if and only if @ > sup, ., infycp p(x,y), meaning that inf{a | a I- a?SR,B}
is nothing but the asymmetric Hausdorff extension of p [Searcéid 2006].

Example 7 (Distribution Monad). In this example, we consider modal relations on the frame
([0, 0], <, +,0) only. We show that there is a natural lax extension of the distribution monad which
is nothing but the relational version of the well-known Wasserstein-Kantorovich distance. Recall
that a coupling between two distributions i, v over sets X, Y, respectively, is a distribution w over
XXY such that: 37, w(x,y) = p(x) and 3 w(x,y) = v(y). We denote the collection of couplings of y
and v by Q(u, v). Given a distance p : XXY — [0, oo], the Wasserstein-Kantorovich distance induced
by p is the distance @p : DX) X D(Y) — [0, 00] defined by @p(p, v) & infy,cquv) E(D(p)(w)),
where E : D[0,00] — [0,00] is the expectation map. We can rephrase the definition of the
Wasserstein-Kantorovich distance in terms of modal relations using ternary couplings. Given a
modal relation R : X = Y, we define DR : D(X) - D(Y) by:

D((my, m3)) € Qp, v)
alk g DRv &= Jw € DX x [0,00] X V). {E[D(1)(w)] < a
w(x,a,y) >0 = alFxRy.

Indeed, defining p(x,y) £ inf{a | a IF x R y}, then we have D(p)(u,v) = infla | a IF g DR v}.
Using this correspondence, we can show that D is a D-relator.”

Let us now move to examples of corelators.

Example 8 (Action Extension). Our first example is an abstract extension which we call action
extension. Given a frame ‘W = (W, <,0,¢), a lax action is a monotone map o : S X W — W
satisfying the following laws, where we write s o a for the action of o on (s, a):

soe<e so(a@b)<(soa)O(sob) so(roa)<(s*xr)oa

loa<a (soca)o(roa)<(s+r)oa
The action extension [—] is then defined by
aII—x[s]RyéEIb.aZsob&bll-ny.

The defining laws of a lax action ensures [—] to be a corelator. The action extension has been
extensively used in program metrics [de Amorim et al. 2017, 2019; Reed and Pierce 2010], where
one takes the frame (S, <, +,0) induced by the grade algebra with lax action given by grade
multiplication: s o 7 £ s % r. In those cases, we have r I x [s]Ry iff Ap. r > s+ p & p IF x Ry. Notice
that any modal calculus comes with this “canonical” corelator, to which we refer to as the canonical
corelator. Moreover, the canonical corelator (properly instantiated) distributes over all the examples
of relators given so far. Let us see some concrete instances of the canonical corelator.
1. When instantiated on the grade algebra ([0, c0], <, +, -, 0, 1, c0), the canonical corelator gives

ri-Ex[sJRy & dp.r>s-pandpl-xRy.

In particular, if r IF x Ry, then s - r I x [s]R y. This is essentially the modal type clause used by
Reed and Pierce [2010] to define metric logical relations .

7 There is a rich theory of relators acting on (general) distance-like functions rather than relations [Hofmann et al. 2014]. The
Wasserstein-Kantorovich lifting is a relator in that sense [Gavazzo 2018], and from such a result it follows that our candidate
relator is indeed a D-relator. This is a specific instance of a more general correspondence between modal reasoning and
(abstract) metric reasoning (see Section 8).
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2. Given a frame ‘W, the set End(W) of W-endomorphisms forms a grade algebra with semiring
multiplication given by function composition, unit element given by the identity function, and
all other operations defined pointwise. This way, we obtain an action o : End(W) X W — W
given by function application: h o a = h(a). In this case, the canonical corelator gives

alFx[hlJRy & 3Jb.a=h(b)andb - xRy.

In particular, by taking W as ([0, 0], <, +,,0, 1, 00) and looking at ‘W -relations as defining
distance functions, we obtain something close to the so-called f-sensitivity [Barthe et al. 2018].
Similar instances of the canonical corelator have been studied in the context of quantale-based
program distances [Gavazzo 2018].

Example 9. Our second example of a corelator comes from intuition modal logic [Simpson 1994].
Let S be the one-element grade algebra and consider the (cartesian) frame (W, <, Vv, T). Frames of
this form are used, for instance, to give possible world semantics to (propositional) intuitionistic
logic and to define Kripke-style logical relations [Mitchell 1996]. Let us now endow the frame
(W, <, V, T) with a reflexive and transitive relation Q € W X W such that <; Q C Q, and define the
Kripke extension (we do not write the unique grade subscript) O by:

alFxORy &> VYb.aQb = blFxRy.

Then, [J gives a corelator. The map [ is nothing but the relational counterpart of the propositional
construction used in the possible-worlds semantics of the box modality in intuitionistic modal
logics.

Example 10. Our last example of a corelator deals with information flow. Let us fix a (op-)lattice
of security levels (L, >, A, V, L, T). Define the masking extension 7 thus:

bll—xTaRyé)aﬁborbll-ny.

Then, T is a corelator. The action of T, is to make code invisible to users with permission below
a. Recall that a judgment of the form b I x R y has the intended meaning that x and y are R-
indistinguishable to users with security permission b. For instance, two classified elements x, y are
indistinguishable to a user with low confidentiality permission, even if the two terms are actually
different.

4 RELATIONAL REASONING

In the previous section, we have introduced modal relations, relators, and corelators, in the abstract.
However, a relational account of Ay s requires to manipulate not just modal relations, but relations
between Ay s terms, to which we refer as term relations. In this section, we develop a calculus of
such relations in the style of the relational calculus by Lassen [1998b]. The relational machinery we
are going to define allows us to abstract from the syntactic bureaucracy intrinsic to Ay s avoiding
involved definitions, such as those of syntactic occurrences and term contexts. Additionally, such a
level of abstraction reduces some long, syntactic proofs to simple algebraic calculations in pointfree
style. From now on, let us assume to have fixed a frame ‘W, a continuous monad (T, n, ), a
continuous T-relator T', and a corelator !.

DEFINITION 13. 1. A closed term relation is a pair R = (R*,R") of maps associating to each type
o modal relations RS, : A3, - A and RY : V; — V., respectively.

2. An (open) term relation R associates to each sequent T + ¢ a modal relationT +* —IF —R—-: o

on Apa, and a modal relationT v — |- — R — : o on Vyov,. We require term relations to be

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 31. Publication date: January 2022.



A Relational Theory of Effects and Coeffects 31:17

closed under weakening:

I'thalFeRf:0o r'r"alFvRw:o
r+0+*alkeRf:o r+o+vallkovRw:o

Example 11. Both the discrete term relation A and the indiscrete relation V defined below are
(open) term relations. The empty relation is a term relation too.

I't*alFeAe:o I'tValkvAv:o I't*alFeVf:o 'tValkoVw:o

We write Rel and Rel* for the collections of open and closed term relations, respectively. Notice
that Rel carries a complete lattice structure given by set-theoretic inclusion: R C S holds if

T't*alkeRf:0 = T+'alkeSf:o0, T+ allvRw:o = T+ allvSw:o.

As a consequence, we can define term relations both inductively and coinductively. Term relation
composition and converse are defined in the obvious way: for instance, we define (the computation
part) of term relation composition by:
F't*alFeRf:0 TH'DbIFfSg:0 ¢c>a0b
F'thclFe(R;S)g: o

Notice that R; S is indeed a term relation (viz. it is monotone). We can thus extend the notion of a
reflexive, transitive, and symmetric (modal) relation to term relations. Composition and transpose
satisfies all the laws seen for abstract modal relations. Moreover, term relation composition is
monotone and continuous in both arguments. Finally, we observe that all the general constructions
introduced in previous sections extend to term relations mutatis mutandis. We now introduce some
constructions specific to term relations, which are at the heart of our relational calculus. We begin
with ways to move and back forth between open and closed term relations.

DEFINITION 14. 1. Given a term relation R € Rel, the closed restriction R° of R associates to each
type o the modal relations - +* —IF —R—:cand-+V —IF —=R-: 0.
2. Given a closed term relation R, the open extension of R as the (open) term relation R° defined thus:
al-e[v/x] RS flo/x] alF v[v/x] RY wlv/x]
xsottallkeR f:o x ot allFvRRw:o

3. Given a closed term relation R, we define the substitutive extension of R as the (open) term relation
R® defined thus:®

blFv!,Riw&c>2a0 ()b = cl-e[v/x] R, flw/x]
xsottalkeR f:o

blFvlRiw&c>a0 ()b = cl-v[v/x] RY wiw/x]

xsort'alFvRw:o

We now introduce two fundamental constructions on term relations: relation substitution and
compatible refinement. The rich type system of Ay s makes these definition a bit involved, as the
former mimics the substitution lemma for the static semantics (Lemma 1), whereas the latter
follows the defining rules of the static semantics itself. However, once we have in our arsenal such
constructions, then we can derive many other important relational notions (as well as prove their
properties) algebraically. This results in a major improvement in concision (as well as in precision)
of our analysis.

8 Notice that we employ the vector notation and write a I+ e !sR f for a; I- ey s R fi,...,an |- en !5, R fpn. For
a=ai,...,an, wealso write () ainplace of a; @ - - - @ ap.
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DEFINITION 15. Given term relations R, S, define the substitution of S into R as the term relation
R[S] defined thus (where we assumeT ~ ©;):

Ix:i ot alkeRf:0 O blFv!Sw c>a0 ()b
I'+Ys+*0O+r cl-e[v/x]R[S] f[w/x]: 0o

ILx:i 0t alfvRw:o OF blFov!Sw c>a0 ()b
F+Ys«0O+rY clkv[v/x]R[S]w[w/x]: o

Notice that Definition 15 actively uses the corelator ! to cope with the non-local behaviour of
modal substitution: if we substitute two expressions v, w related at a world a — so thata I vRw : ¢
— in an expression x :s o +* e : 7, then the resulting expressions e[v/x] and e[w/x] are in general
not related at g, as e is licensed to use v (resp. w) as prescribed by s. For that reason, we perform
relation substitution only when R is under the scope of !. Let us continue with the development of
our relational calculus.

DEFINITION 16. A term relation R is value-substitutive if R[A] C R and it is substitutive if
R[R] C R. A closed term relation is (value) substitutive if its open extension is.

LEMMA 3. Let R be a closed term relation. Then, the open extension of R is value substitutive
(R°[A] C R°) and that the substitutive extension of R is substitutive (R°[R°] C R°*).

We now move to the definition of the compatible refinement of a term relation. Intuitively,
the compatible refinement R of R relates expressions with identical outermost constructor and
immediate subterms pairwise related by R.

DEFINITION 17. The compatible refinement R of an open term relation R is defined by the rules
in Figure 5. We say that R is compatible lfﬁ C R, and that a closed term relation is compatible if its
open extension is. If R is compatible, reflexive, and transitive, we say that it is a precongruence; if,
additionally, it is symmetric, we say that R is a congruence.

Figure 5 defines a map R — R on term relations which is monotone and distributes over term
relation composition (E\S =R §) and converse (}/2? = (E)T). Notice that R is compatible if it is a
pre-fixed point of R R. The identity term relation A is such a pre-fixed point (i.e. Ac A), and
actually it is the least one: A = puX X.Asa consequence, we have that any compatible relation is
reflexive. Finally, we notice that compatible term relations form a complete lattice.

LEMMA 4. The collection of compatible term relations forms a complete lattice ordered by C.

Proor SKETCH. Given a set p of compatible relations, we define the meet and join of p as () p
and N{S | S € S,Up C S}, respectively. Finally, we observe that the top and bottom element of
the lattice are given by the indiscrete V and discrete A term relations, respectively. O

Summing up, in this section we have defined a core relational calculus extending the calculus
by Lassen [Lassen 1998b] to an effectful and coeffectful scenario. The rest of this paper shows
how three main notions of program refinement (and consequently of program equivalence) can be
defined and studied inside our calculus. We begin with contextual approximation [Morris 1969].

5 CONTEXTUAL APPROXIMATION

Morris’ style contextual approximation relates two programs e, f if whenever we plug such programs
inside an arbitrary term context C, there is no observable behaviour of C[e] that is not an observable
behaviour of C[f]. Although appealing, making this intuition into a rigorous formal definition is
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I'x:;;0r akxRx:o I“F"all—op]/?\opza‘,p
I'xyoralFeRf:t I't"alFvRu:0 -7 O blFwRz:0 aza0®b
T+ alk AxeRAx.f:0—o1 T+Or clFowRuz: 1

I''altvRu:0 THr allkwRz:71

T+ alF () R() : unit T+ alF (o, w)R(w,z): o X T
'tV alk vy Roy: 01 X 0y T'tYalFvRu:0 OrYbIFwRz:7T ¢c>a0®b
FFAaH—vl.iﬁvz.i:oi T+0+t"clrv®@wRu®z:0®7

I't"alFv!sRw:o®1 O,x:i 50,y st blFeRf:p c¢c>a®b

s*I‘+®I—Acll—letx®y=Uine§letx®y=winf:p

I+ alFvRw:void I't" alkv; Ro; : o

I'+* alFabortv Rabortw:o0 T +Y alkin; v; Rin; vy : 09 + 0y

I't"alkov!sRw:o+7t O,x:50r* blFeRg:p O,y st blFfRh:p c>2a®b

s* '+ O F* c I case v of (in; x.e | in, x.f) R case w of (in; x.g | in, x.h) : p

I'tValFvRw:o[ut.o/t] 'tV alFvRw: putr
T+ al- fold v R fold w : ut.o T +* a I unfold v R unfold w : olut.o/t]

I'talFv!sRw:o I'tValkv!,Rw:!lso0 O,x:usot*bl-eRf:7 c>a0®b
s*FkVaIF!vﬁlw:!So r*F+®|—Ac|Fcasevof{!x—>e}ﬁcasewof{!xﬁf}:T

It alFoRw: o F't*alFelsyiRg:t Tyx: st blFfRh:0c ¢c2a0®b
T+ alF return v Rreturn w : o (sV1)«T+Or cl-letx=ein fRletx=ginh: o

Fig. 5. Compatible refinement Ay s.

quite challenging, as the syntactic notion of a context — which is notoriously difficult, especially in
presence of graded modal types — is involved. We overcome the problem by taking advantages
of our relational calculus and defining contextual approximation as the largest preadequate and
compatible term relation. In this setting, preadequacy is a property of term relations which is
meant to capture some minimal desiderata on program approximations. Standard examples of
notions of preadequacy usually involve both effectful and coffectful notions. For instance, in a
nondeterministic language for information-flow, (asymmetric) may and must converge at a given
security level is an example of a preadequacy predicate; whereas in a language with program
sensitivity and probabilistic nondeterminism, a preadequacy predicate is given by convergence
(possibly to some specific set of values) below or above a certain threshold. Here, we do not commit
ourselves to any specific notion of preadequacy, and just consider a minimal axiomatics for it.
Notice, however, that the informal examples just sketched show that such an axiomatics cannot
requires preadequacy predicates to be closed under term relation inclusion (in fact, most of the
preadequacy predicates proposed in the literature do not satisfy such a condition), so that we
cannot appeal to the Knaster-Tarski Theorem to infer the existence of the largest preadequate
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and compatible term relation as the greatest fixed point of a monotone map. We thus prove the
existence of such a desired relation explicitly.

LEMMA 5. Let Adeq C Rel be a predicate on term relations closed under non-empty union and
relation composition (i.e. | J;ic; R; € Adeq, wheneverI # 0 and R; € Adeq for any i; and R; S € Adeq
whenever R € Adeq and S € Adeq). If A € Adeq, then there exists a largest compatible term relation
S € Adeq. Additionally, S is transitive.

PROOF SKETCH. Define the term relation S as S £ [J{R € Adeq | R C R). By hypothesis
A € Adeq, so that {R € Adeq | RCR}is non-empty. As a consequence, since Adeq is closed under
non-empty union, S € Adeq. To conclude the first part of the thesis it remains to prove S C S. This
is proved by induction on the definition of S using the defining properties of corelators. Since S
is the largest compatible relation in Adeq, to prove that it is transitive, it is enough to show that
S; S is compatible and belongs to Adeq. The latter follows since Adeq is closed under composition,
whereas the former follows by compatibility of S (S/,TS = §, Sc S;S.) O

DEFINITION 18. Let Adeq C Rel be as in the statement of Lemma 5. We define the term relation
<, called contextual approximation, as the largest compatible term relation contained in Adeq.

Notice that <“** is compatible, reflexive, and transitive (and thus a precongruence). Additionally,
<™ comes with proof techniques resembling a coinduction proof principle: to prove that two
expressions are in contextual approximation relation, it is enough to exhibit a compatible term
relation in Adeq containing these expressions. Symbolically: RCR&Re Adeq = R C <™.

From a structural perspective, contextual approximation have all the desirable properties a notion
of program refinement should have: what it lacks is practical usability. Most of the times, proofs by
contextual approximations are just to difficult to be practically feasible. For that reason, any theory
of program relations should support also other, more usable notions of program equivalence.

6 LOGICAL RELATIONS

In this section, we define effectful and coeffectful logical relations. Logical relations are closed
term relations reflecting the logical structure and complexity of types. Historically, logical relations
have been defined as a relational semantics, whereby each type is inductively interpreted as a set
endowed with a logical relation on it and (open) terms are interpreted as relational homomorphisms.
The latter result directly follows from the so-called fundamental lemma of logical relations, which
states that logical relations are reflexive. From such a result it also follows that logical relations are
compatible. Logical relations can also be understood in purely operational terms simply by taking
the semantics of a type as a suitable relation over expressions of that type. This approach is the
main one followed in the more recent literature on program semantics [Ahmed 2006], and the one
we follow too. For ease of exposition, in this section we restrict to the fragment of Ay s without
recursive types. That makes the calculus strongly normalising, and allows us to work with a cleaner
notion of logical relation avoiding complicacies such as step-indexing [Appel and McAllester 2001].

DEFINITION 19. The logical relation <, called logical preorder, is the closed term relation defined
inductively on types in Figure 6. We extend < to an open term relation by taking its substitutive
extension.

Definition 19 resembles the logical relation defined by Abel and Bernardy [2020] but with a
crucial difference: our logical relation deals with both effects and coeffects (whereas the one by
Abel and Bernardy cannot account for computational effects): this is made evident in the defining
clause of <4 — which relies on the relator I' — and in the defining clause of 5&6 — which relies

on the corelator !.
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alke<'fioesal [e]e T<Y [f]s: o
alF ) <v ():unit'{é always
alFU@W5Vu®z:0®r(é>3b,c.(bvaSvuza)&(blkwﬁq’z:r)&aZb@c
all-(v,w){V(u,z):O'XTé(aH—vﬁ'Vu:a)&(aH—wﬁq/z:T)
all—inivﬁ(vinjw:ol+02éi:j&al}—vﬁ(vwsai

bFv<"w:o

c>a0b = cl-efv/x] 5Af[v/x]:z'

al-Axe <V Ax.f:0—o1 é\iv,w,b,c.(
alF[0] <V [w]:Os0 € alk 0 1(2)  w:o

Fig. 6. Logical preorder

L Vi) = Vinit [0l 2O <Y = A

L(Vigg) =0 [w, w2 (v, w) <V 20

LV EVox Yy [vew]: = (o,w) <oxr = [l (=7 x <) [-1%
L(V;e,) & Ve xV; fin; o], = iy v <oz = [l (=¥ + <D 117
L(Vsi) = £ Vo +V? [in, ], 2 in, v 5!5 2 [0 <3511
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LVio) = Ve A Pxfle oo flofx] 5o = [les (x5 ® <) [-2
< 2 [-leT<5 -1

Fig. 7. Logical Semantics

It is useful and advantageous to take a more relational (and pointfree) perspective and rephrase
Definition 19 using the relational constructions on modal relations of Definition 8. To do so, we
unpack the logical meaning of types. For instance, the logical meaning of a closed value Ax.f of type
o —o r is to behave as a (linear) function mapping values v of type o to computations f[v/x] of
type 7. We can thus say that the logical meaning of Ax.f is the function (v — f[v/x]) € V; — AS.
The crucial point that defines our logical preorder is then the following: assuming to have defined
<Y, <%, we then define <___ relying on the logical meaning of values in V;___ and the Reynolds
arrow constructor. In fact, since such logical meanings belong to V,; — A' it is enough to extend
<7 and <2 to the function space V; — A%, which is precisely what [<7, <2] does. We formalise
this intuition in Figure 7, where the term relatlon < is defined relying on a (type-indexed) logical
semantics function [-], : V; — L(V.) associating to each closed value its logical meaning.

Remark 3. Notice that the Figure 7 defines < explicitly and not via some universal property, as
we did with contextual approximation and as we will do with applicative similarity. To follow such
a path, we may consider the defining equality of < as a system of (relational) equations. Obviously,
we know that such a system of equations has a solution, viz. <. Additionally, solutions are not
unique, A° being a solution as well. We may then want to find solutlons to such a system in terms
of least/greatest fixed points. If we try to do so, however, we immediately realise that the functional
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associated to those equations is not monotone, due to antitonicity of Reynolds arrow in the first
argument.

Let us now move to the meta-theoretical properties of <*. Obviously, <* is substitutive. We prove
that it is also reflexive, transitive, and compatible. Remarkably, compatibility and transitivity both
follow from reflexivity. For that reason the result stating that a logical relation is reflexive is usually
called the fundamental lemma of logical relations.

ProPOSITION 1 (FUNDAMENTAL LEMMA). A C <°,

Proor SKeTcH. The proof is highly nontrivial. We first observe that A C <* if and only if for
all o, s, and o we have ® 1s(X) ® A C subst; <; subst”, where subst : []; V5. X Axyoro = Ay is
defined by subst(vy, . .., vy, €) £ e[vy,...,Un/x1,...,Xy]. Since A = A (recall that A = pX.j(\), itis
enough to prove ® () ® AC subst; <;subst”, and we do so by induction on the definition of
compatible refinement. All cases are handled relying on the axiomatics of a corelator. The most
difficult case is the one corresponding to sequencing, where we also need to use the axiomatics of a
relator. To do so, we have to “permute” !5y; with T. But that is precisely what the lax distributive
law in Definition 12 does: !sy1T'R C T'lsy (R (notice that s V 1 > 1). m]

LEMMA 6. <° is transitive.

Proor. Since transitivity of a closed term relation implies transitivity of its substitutive extension,
itis enough to prove <; < € <. We proceed by induction on types relying on the structural properties
of lax extensions. The only interesting case is the one of arrow types, where we calculate:

< =2y = s =B 2L s = <2010 € [-D o = =0, < <2 110

At this point, we cannot rely on the induction hypothesis, since [—, —] is antitone in the first
argument. However, by Lemma 1, A} C <V, and thus <} C <V;AY C <V;<”. We conclude

[V, <Y, <2] ¢ [<Y, <2] by antitonocity, and thus [<Y; <Y, <% <] ¢ [<¥, <%] by induction

hypothesis. O

THEOREM 1. <° is a precongruence.

PRrOOF. By Lemma 6 and Proposition 1 it is enough to prove compatibility, i.e. <* C <*. Notice
that for any closed term relation R, we have R°[R°] C R° and R* C A[R*]. We can thus calculate as
follows: <° C A[=°] € <*[<*] € =<° where the ante-penultimate passage uses Lemma 1. O

7 APPLICATIVE SIMILARITY

Our last program refinement is the extension of Abramsky’s applicative similarity [ Abramsky 1990]
to Ay s. Applicative bisimilarity is a coinductively-defined notion of refinement that compares
functions according to the function extensionlity principle. Using our relational apparatus, we see
that a (close term) relation R is functionally extensional if R; ., = [A,, R;]. Notice the difference
between being (functionally) extensional and being logical: in the first case, the antecedent of
the Reynolds arrow is the identity relation; in the second case, it is the relation itself. The main
advantage of function extensionality is that the operator [A, —] is monotone, and thus one is licensed
to define term relations as fixed points of monotone functions.
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DEFINITION 20. Define the mapping R — [R] on closed term relations as follows, where the logical
A

semantics of Figure 6 is extended with L(V};, ;) =V, 1 and [fold o], £ 0.
[RTTnie = At [RI7x: = [ (R x R [}
[R]toid 20 [R];’w = [[_HL;RZ[t/,utO']; [-1%
[Rlg.r = [=]ss Ry + R[] [Rlg —or =[] (A7 R [
[RI5 = [-1e:TRG: [-1: [RIY, = [-]sLRe: [-1

We say that a closed term relation R is an applicative simulation if R C [R].

Since I' and !5 are monotone by definition, and, thanks to the presence of [A, —]. all the construc-
tions involved in the definition of [R] are monotone (see laws in Figure 3), the map X — [X] is
monotone too, and thus it has a greatest fixed point, which we call applicative similarity.

DEFINITION 21. Define applicative similarly < as the term relation vX.[X]. We extend < to open
terms by taking its open extension <°.

Notice that applicative similarity < being defined coinductively it comes with an associated
coinduction proof principle: R € [R] = R C <. For instance, we easily prove that < (and thus
<°) is reflexive and transitive by showing A C [A] and <; < € [S; <.

Coeffectful Howe’s Method. We have seen that (the open extension of) applicative similarity is a
preorder. We now show that it is also compatible and substitutive (and thus a precongruence, in
particular). The proof of such a result is highly nontrivial, and requires to extend Howe’s method
[Howe 1996; Pitts 2011] (and its effectful extension [Dal Lago et al. 2017a]) to combined effectful
and coeffectful setting.

Howe’s method works by constructing a term relation (called the precongruence candidate)
<F which is substitutive and compatible by construction, and that extends <°. The so-called Key
Lemma then states that (the closed restriction of) <" is an applicative simulation, so that one
concludes < and <" to coincide. In non-coeffectful calculi, the proof of substitutivity of < consists
of a routine induction, whereas proving the Key Lemma is more challenging, as it requires a mixed
induction-coinduction argument built upon the axiomatic of a relator. Modal and coeffectful calculi
present an additional difficulty: in those calculi also proving substitutivity of < is nontrivial. And
in fact, the axiomatics of a corelator turns out to be precisely what is needed to ensure such a
property. Finally, the proof of the Key Lemma relies to the lax distributive law in Definition 12 to
handle the interact between the relator I (effects) and the corelator ! (coeffects). This is exactly the
same patter one has in the proof of the Fundamental Lemma (Lemma 1).

DEFINITION 22. The Howe extension R of a closed term relation R is defined as ,uXX;R°.
The Howe extension of a term relation enjoys several nice properties.

LEMMA 7. Let R be a reflexive and transitive closed term relation. Then R is a compatible term
relation such that R° C R and R";R° C R". In particular, <" is a compatible and reflexive term
relation that extends <.

LEMMA 8 (SUBSTITUTIVITY). IfR is a reflexive and transitive term relation, then R™ is substitutive.

Proor skeTCH. Define the substitution map subst : Arx. orr X [1; Vo,ro, = Ar+sssorr by
subst(e,v1,...,vn) = e[v1, ..., Un/X1, ..., Xn]. Substitutivity amounts to show R” ® ®i IR¥ C
subst; R¥; subst™. Denoting by R the n-th approximation of R”, we have

R ® (X) !5,k = (| R @ (X) 1R < | R @ (X) 15,R").

n>0 i n>0 i
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It is thus sufficient to show VYn > 0. R¥ ® ®i Is;R® C subst; R¥;subst” The latter is proved by

induction on n relying on the axiomatics of a corelator. O
Finally, we have the so-called Key Lemma.

LEmMMA 9 (KEY LEMMA). For any reflexive and transitive applicative simulation R, R™ (restricted to
closed terms) is an applicative simulation.

Proor SKeTcH. The proof follows the strategy of effectful Howe’s method [Dal Lago et al. 2017a].
The crux of the argument is showing that (R”)5 C [~]¢; TR™; [-]z. Assuming - +* al-e R” f : o,
we proceed by induction on the evaluation of e relying on the fact that I is continuous. The base
case of the induction is trivial, whereas for the inductive step we proceed by cases analysis on the
shape of e. The difficult case is given by sequencing, which is handled by the axiomatic of a relator.
To do so, however, we have to “permute” !y; with T, which is precisely what the lax distributive
law (Definition 12) does: !syiT'R C T'lsy 1R (notice that s V 1 > 1). O

THEOREM 2. Applicative similarly is a precongruence.

Proor. It is sufficient to show that (<)° = (<)*. Since (<)° € ()7, is enough to prove the
converse inclusion. First, notice that since ((<)")¢ is an applicative simulation, ((<)¥)¢ is contained
in <, and thus (((<)*)°)° is contained in (<)°. We are done since (S)2 € (((S)7)9)°. m|

8 CONCLUSION

In this work, we have developed a theory and calculus of program relations for a higher-order
language with effects and coeffects. Such calculus has its semantic foundations in the notions
of modal relations, relators, and the novel notion of a corelator. We have witnessed the strength
and robustness of our calculus by defining and studying three notions of (combined effectful
and coeffectful) program refinement: contextual approximation, logical preorder, and applicative
similarity. To the best of the authors’ knowledge, these are the first operationally-based notions
of program refinement (and de facto equivalence) accounting for combined effects and coeffects
appearing in the literature. Using the axiomatics of a relator and of a corelator, we prove general
precongruence theorems for such program refinements, this way achieving the first form of
compositional relational reasoning for combined effects and coeffects in the field. Even if our
proofs are highly nontrivial and require major improvements on the existing proof techniques,
it is remarkable that the very same abstract, relational notions of a relator and corelator ensure
precongruence properties of both logical and applicative refinements.

Our analysis is foundational and, due to space constraints, several examples have been omitted.
Nonetheless, the notions of effects and coeffects we deal with are mainstream, and several examples
to which our results directly apply can be easily found in the literature. For instance, it is easy to
see [Dal Lago and Gavazzo 2021b] that our precongruence results generalise cornerstone results
on coffectful languages, such as metric preservation [Reed and Pierce 2010] and non-interference
[Abadi et al. 1999].

Modalities as Metrics, Metrics as Modalities. An interesting observation that we have not treated
in this paper is the relationship between our relational techniques and the abstract, quantale-based
[Lawvere 1973] theory of program distances [Gavazzo 2018]. In a nutshell, the two approaches
(properly generalised) are two faces of the same coin: under some mild conditions, modal relations
(on a frame ‘W) correspond to distances taking values in the quantale 2V of modal predicates. Vice
versa, any quantale-valued distance defines a modal relation on the frame given by the quantale
itself. This correspondence is fruitful in both directions: on the one hand, the theory of relators/lax
extensions has been extensively studied in the setting of abstract metrics [Clementino et al. 2004;
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Hoffman 2015; Hofmann et al. 2014]; on the other hand, one can use modal relations to define new
metrics (such as Bohm tree-like metrics) taking advantages of the notion of a corelator.

Future Work. Concerning future work, the authors plan to use the relational calculus intro-
duced in this work to develop other notions of equivalence and refinement, such as normal-forms
(bi)simulations [Dal Lago and Gavazzo 2019a; Lassen 2005]. Another interesting, more challenging
research direction is to establish relationship between the notions of refinement (and equivalence)
developed: our precongruence theorems imply that, as long as logical relations and applicative
similarity are adequate, then they are contained in contextual approximation. Are there some
conditions ensuring the opposite inclusion to hold as well? This is challenging question to answer,
as the combined presence of effects drastically improve the discriminating power of contextual
approximation/equivalence [Dal Lago and Gavazzo 2021c]. Finally, it is yet unclear what is the
relationship between coeffectful relational reasoning and other forms of contextual reasoning, such
as resource-sensitive and differential ones [Dal Lago and Gavazzo 2020, 2021a,c, 2022; Dal Lago
et al. 2019].

Related Work. In recent years, there has been a growing interest for typing disciplines regulating
how code can be manipulated. Specific examples of such disciplines date back at least to the 90s,
originating from (bounded) linear logic [Benton and Wadler 1996; Girard 1987; Girard et al. 1992],
programming languages-based approaches to information flow [Abadi et al. 1999; Volpano et al.
1996], and investigations into the Curry-Howard correspondence for modal logic(s) [Bierman and
de Paiva 2000; Pfenning and Davies 2001; Pfenning and Wong 1995]. More recently, researchers
started to design calculi with types governing more general notions of resource consumptions
[Brunel et al. 2014; Ghica and Smith 2014], quantitative aspects of code usage [Atkey 2018; Orchard
et al. 2019; Reed and Pierce 2010], and environmental requirements [Orchard 2014; Petricek et al.
2014], this way obtaining general modal-like type systems [Abel and Bernardy 2020; Gaboardi
et al. 2016; Orchard et al. 2019]. From a semantic perspective, such systems have been investigated
by means of (comonadic) denotational semantics [Breuvart and Pagani 2015; Gaboardi et al. 2016;
Ghica and Smith 2014] and (mostly heap-based) resource sensitive operational semantics [Abel and
Bernardy 2020; Bernardy et al. 2018; Brunel et al. 2014; Choudhury et al. 2021; Orchard et al. 2019].
From a denotational perspective, we can think about our program refinements (and equivalences) as
defining a denotational model in a category of modal relational spaces and relational homomorphism.
Relators and corelators then define ways to extend monads and (the identity) comonads on such a
category. From that perspective, our work can be place in the general categorical framework based
on monads, comonads, and distributive laws between them by Gaboardi et al. [2016].

Concerning (operationally-based) program equivalence, the work closest to ours is the one by
Abel and Bernardy [2020], where logical relations for a (call-by-name) A-calculus with modal and
polymorphic types are introduced. The language of Abel and Bernardy includes polymorphism
(which we do not have) but it does not support computational effects.
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