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Key Points: 

• A novel algorithm is presented for selecting multiple donor gauges based on graphical

Markov modeling for streamflow network via Glasso.

• A general method is presented using a multiple objective optimization for systematic

donor gauge selection with noisy data.

• The new method shows superior results comparing to available methods in different

applications.

ar
X

iv
: 

2
0

1
2

.0
8

6
5
2
 v

2
 [

st
at

.A
P

] 
1

5
 D

ec
em

b
er

 2
0

2
0

 

_________________________________________________________________________

This is the author's manuscript of the article published in final edited form as:

Villalba, G. A., Liang, X., & Liang, Y. (2021). Selection of Multiple Donor Gauges via Graphical Lasso for Estimation of 
Daily Streamflow Time Series. Water Resources Research, 57(5), e2020WR028936. https://doi.org/10.1029/2020WR028936

mailto:xuliang@pitt.edu)
https://doi.org/10.1029/2020WR028936


 

2 

 

Abstract 

A fundamental challenge in estimations of daily streamflow time series at sites with incomplete 

records is how to effectively and efficiently select reference/donor gauges from an existing gauge 

network to infer the missing data. While research on estimating missing streamflow time series is 

not new, the existing approaches either use a single reference streamflow gauge or employ a set of 

‘ad-hoc’ reference gauges, leaving a systematic selection of reference gauges as a long-standing 

open question. In this work, a novel method is introduced that facilitates systematical selection of 

multiple reference gauges from any given streamflow network. The idea is to mathematically 

characterize the network-wise correlation structure of a streamflow network via graphical Markov 

modeling, and further transforms a dense network into a sparsely connected one. The resulted 

underlying sparse graph from the graphical model encodes conditional independence conditions 

among all reference gauges from the streamflow network, allowing determination of an optimum 

subset of the donor gauges. The sparsity is discovered by using the Graphical Lasso algorithm with 

an L1-norm regularization parameter and a thresholding parameter. These two parameters are 

determined by a multi-objective optimization process. Furthermore, the graphical modeling 

approach is employed to solve another open problem in gauge removal planning decision (e.g., 

due to operation budget constraints): which gauges to remove would statistically guarantee the 

least loss of information by estimations from the remaining gauges? Our graphical model-based 

method is demonstrated with daily streamflow data from a network of 34 gauges over the Ohio 

River basin.   
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1. Introduction  

Continuous daily streamflow time series are important for a wide variety of applications in 

hydrology and water resources. Such applications include water supply management, hydropower 

development, flood and drought control, forecasting of agricultural yield, ecological flow 

assessment, navigation, rainfall runoff model calibration, design of engineering structures such as 

highways and reservoirs, and many others (e.g., Archfield & Vogel, 2010; Farmer & Vogel, 2013; 

Parada & Liang, 2010; Razavi et al., 2013; Shu & Ouarda, 2012; Stagnitta et al., 2018). However, 

continuous streamflow data are not available oftentimes where needed due to data gaps in the 

recorded time series at gauged stations (e.g., Huang & Yang, 1998). Also, data gaps of different 

time periods could exist at different gauged locations within a large river basin (e.g., Hughes & 

Smakhtin, 1996). Furthermore, there is an increasing decline, such as the shutting-down of gauged 

stations, in the hydrometric network density worldwide (Mishra & Coulibaly, 2009; Samuel et al., 

2011; Hannah et al., 2011). For example, the U.S. Geological Survey (USGS) is in the process of 

discontinuing operations of some streamflow stations nationwide due to budget cuts (USGS, 2019) 

which has been a serious concern (Lanfear & Hirsch, 1999; Stokstad, 2001; Vorosmarty et al., 

2001; Witze, 2013). In fact, numerous streamflow stations with long historical records have been 

discontinued in the past (e.g., Hannah et al., 2011; Mishra & Coulibaly, 2009). For example, 

Hannah et al. (2011) pointed out that there is shrinkage in river gauging networks worldwide. The 

World Water Assessment Programme (2009) indicated that from 1980 to 2004, 2051 river gauges 

in the USA that have data records of more than 30 years were discontinued, leaving only 7360 

stations by 2005. Another example is that there were a total number of 467 streamflow stations 

with a record of more than 30 years being closed in Canada from 1987 to 2007 (Hannah et al., 
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2011).  there is, therefore, a critical need to develop an effective, objective and general method to 

fill in data gaps and extend data records for those gauges that have been or will be discontinued. 

 

The estimation techniques for continuous daily streamflow time series can be classified into two 

broad categories: (1) hydrologic model–dependent methods (e.g., Fernandez et al., 2000; Parada 

& Liang, 2010) and (2) hydrologic model–independent methods or data-driven methods (Razavi 

et al., 2013), which are also called statistical methods (Loukas & Vasiliades, 2014) or 

hydrostatistical methods (Farmer & Vogel, 2013). Work related to the former category is abundant 

but has its limitations, such as determining reasonable model parameters (e.g., Farmer & Vogel, 

2013; He et al., 2011; Razavi et al., 2013; Zhang & Chiew, 2009). In this study, we focus on the 

work related to the latter category. Techniques and researches developed in this category include 

methods that require donor stations and those, such as regionally-based methods, that do not 

require a donor station. Studies have shown that methods employing donor stations significantly 

outperform those of the regionally-based methods (e.g. Stagnitta et al., 2018; Swain & Patra, 

2017). The donor-based methods in use include, regression-based such as the MOVE (maintenance 

of variance) method (e.g., Helsel and Hirsch, 2002; Hirsch, 1982), scaling-based (e.g., Laaha & 

Bloschl, 2005; Stagnitta et al., 2018), and machine learning-based methods (e.g., Dibike & 

Solomatine, 2001; Solomatine & Ostfeld, 2008). Farmer and Vogel (2013) summarized the general 

procedure of them as a two-step process: Step 1: selection of one or multiple donor gauges; and 

Step 2: inference of the streamflow time series at the target site (e.g., partially gauged/incomplete) 

based on information from the donor gauge(s).   
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At present, the widely used techniques in the donor gauge selection include nearest neighbour 

method, maximum correlation method, minimum variance method, and methods related to an 

assessment of the hydrologic similarity, such as those based on similar drainage area, similar 

annual precipitation, or other similar basin characteristics, between the target and the donor 

catchments (e.g., Archfield & Vogel, 2010; Arsenault & Brissette, 2014; Farmer & Vogel, 2013; 

Halverson & Fleming, 2015; Mishra & Coulibaly, 2009; Smakhtin, 1999; Smakhtin et al., 1997). 

The similar drainage area method is effective if the climate and hydrologic regimes at the target 

and donor sites are similar and that the area is the only dominant factor affecting the streamflow. 

However, such requirements are generally not met, because a number of factors can significantly 

change the scaling relationship, such as, the orographic effects where the site at a different 

elevation is likely to receive a different amount of rainfall and thus a different amount of runoff 

per unit area; a site in the windward side of the mountain versus the site in the rain shadow side 

where the rainfall characteristics are dramatically different; differences in slopes, soil types, land 

cover and land use which can affect the conditions of runoff generation, leading to differences in 

the basin’s response to rainfall; and differences in temperature that affect the evapotranspiration 

losses and runoff per unit area. Methods based on the similarity concept with multiple 

comphrensive basin characteristics are subjective and mixed results have been reported (e.g., 

Sellami et al., 2014; Stagnitta et al., 2018; Swain & Patra, 2017). Some methods originally 

developed for designing hydrometric networks could also be, in principle, useful for donor gauge 

selection or gauge removal. These methods include clustering algorithms and the use of entropy, 

both of which are devised for identifying redundant stations in a network. Among these two, the 

former identifies redundant stations when they are clustered within the same group for 

rationalizing a hydrometric network (Burn & Goulter, 1991; Mishra & Coulibaly, 2009); the latter 
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looks into the information content each individual site contains, and gauges containing redundant 

information may be removed from the network. With further development, these methods could 

potentially also be useful in donor gauge selection applications. However, with these existing 

methods for donor gauge selection, long-standing open questions remain: what constitutes an 

appropriate number of donor gauges to be selected; and how to select them in a systematic and 

consistent way.  In this study, we propose a novel approach to tackle these open questions. 

 

Among the aforementioned existing donor selection methods, the nearest gauge method is a 

convenient and widely used one due to its simplicity and minimum data requirements (e.g., 

Asquith et al., 2006; Emerson et al., 2005; Farmer & Vogel, 2013; Mohamoud & M., 2008; 

Stagnitta et al., 2018). For example, Farmer & Vogel, (2013) adopted this simple distance-based 

method (referred to as Dist hereafter) in the donor selection procedure. Stagnitta et al. (2018) 

showed that the nearest gauge method led to better inferred low streamflow in most of the cases 

compared to other donor selection methods including the most similar drainage area, site 

producing the minimum variance flow estimator within 100 km from the target site, and a 

combination of the similarity in drainage area and the estimated flow variance, where the same 

inference methods were employed.  The correlation-based approach (referred to as Corr hereafter), 

another popular method, uses the pair-wise correlation between the target and each of the donor 

gauges. It has been found that Corr is generally better than Dist (e.g., Archfield and Vogel, 2010; 

Ergen & Kentel, 2016; He et al., 2011) because information contained in the streamflow data is 

more effectively used in Corr and the marginal independence between any pair of gauges can be 

easily determined (Koller & Friedman, 2009). Two gauges are deemed independent of each other 

if their pair-wise correlation is below a given threshold (Halverson & Fleming, 2015).   
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Although using a single donor gauge to estimate streamflow time series has been a dominant 

approach (Farmer, 2016) based on either distance or correlation, Smakhtin et al. (1997) and 

Smakhtin (1999) proposed to use more than one donor gauge from nearby gauges to improve the 

streamflow estimations for the target basins. Stagnitta et al. (2018) also compared a single donor 

gauge versus multiple donor gauges in which the multiple donor gauges were selected based on 

criteria such as gauges within a given distance (e.g., 100 km and 200 km) and gauges having 

drainage areas within ±50%. Their findings for the low flow inferences were that the single donor 

gauge based on the nearest neighbor method is the best most of the time, while the second best is 

to use multiple donor gauges selected based on the distance within 100 km.  Granato (2009) 

summarized that in general, the use of multiple donor gauges provides more accurate estimates of 

streamflow for gap-filling and/or record extension. Harvey et al. (2012) compared 15 different 

existing methods, including least-squares linear regression, least-squares multiple linear 

regression, MOVE.1, catchment area scaling, and long-term mean scaling, for gap-filling for a 

single donor and two donor gauge cases at 26 streamflow stations in the United Kingdom (UK), 

and concluded that overall, methods using two donor gauges outperformed their counterparts that 

used a single donor gauge. Also, the catchment area scaling method provided the poorest 

performance.  The challenges of these approaches include: (1) how to measure the similarity; (2) 

how to systematically determine which gauges should be the donor gauges; and (3) how many 

donor gauges each individual target gauge should have. As can be seen, these multiple donor gauge 

selection criteria are basically ad hoc and some aspects of them are highly subjective.  
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In addition to the single or multiple donor gauge selection approaches, there are some alternative 

methods which try to use all of the available gauges in the study region. For example, researchers 

(e.g., Farmer, 2016; Skøien & Blöschl, 2007; Solow & Gorelick, 1986) applied geostatistical 

methods, such as methods from the kriging family, as effective alternatives. The kriging method 

is an spatial interpolation technique that estimates values at target locations as a linear weighted 

combination of the observations from different locations. The weights are assigned based on a 

variogram model which is usually fitted based on the variance between observations as a function 

of the distance between locations. The kriging method thus avoids the problem of donor gauge 

selection by using all available gauges in a region. While the kriging method is useful in some 

situations (Villeneuve et al., 1979), Virdee & Kottegoda (1984) noticed that a major problem with 

kriging is the lack of data with needed density. Thus, for a commonly encountered situation in 

which the density of streamflow network is sparse, kriging is not a good candidate. Along the same 

line of the kriging method, Archfield and Vogel (2010) developed a procedure called Map 

correlation method that uses time series from streamflow gauges in the study area to create a 

correlation map based on a kriging method and then uses that map to estimate the correlation 

between a given target location and nearby gauges. They concluded that the accuracy based on the 

most correlated gauge outperforms the one based on the distance in most cases.  

 

Halverson & Fleming (2015) were one of the first groups who used network theory to investigate 

properties of the streamflow network consisting of 127 gauges located in the Coast Mountains of 

British Columbia and Yukon in Canada. Based on 10 years of daily streamflow data, the study 

constructed a streamflow network by connecting streamflow gauges if the pair-wise correlation 

between two gauges is or greater than 0.7. They then further applied the edge betweenness 
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algorithm to the streamflow network to investigate its community (i.e., cluster) structure so that 

gauges with similar hydrologic behaviors were grouped into the same community. They 

concluded, based on the identified communities, that there are three types of gauges within the 

network that are important and should not be removed if the network is under a budget constraint. 

These three types of gauges are: (1) the gauges within each community that have a large number 

of intracommunity links, (2) gauges with high betweenness values which embed information about 

multiple communities, and (3) gauges that are members of single-membership or small-

membership communities. While Halverson & Fleming (2015) studied which gauges in a 

streamflow network could be removable via graph theory-based community detection algorithm, 

their work, due to its different focus, did not address how to select donor gauges for each individual 

target gauge to infer the missing information after these target gauges are removed. Neither was 

the issue of high noises in the data that affected the correlation structure addressed. Also, among 

the removable gauges, their approach does not offer any quantitative estimates on the differences 

of the information loss for each individual gauge’s removal, and thus does not provide any possible 

preferred order in the gauge removal process.   

 

By and large, donor gauge selection is a long-standing challenge for streamflow estimation. It 

appears that the distance-based and correlation-based single donor methods (i.e., pair-wise 

marginal independence approach) are less subjective and generate more or less consistent results 

but there is plenty of room for significant improvement of the accuracy of their estimations. On 

the other hand, when multi-donor gauge selection methods are applied, due to their subjective and 

‘ad hoc’ selection process on the donor gauges (including the repeated use of distance- or 

correlation- based single donor method), they are in general subjected to significant inconsistency 
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in their performance. The pair-wise correlation approach represents a localized view and misses 

the global dependence structure of the daily streamflow embodied by its underlying streamflow 

network. This is so because the conditional independencies among gauges in a streamflow network 

are typically not apparent in the correlation matrix but in its inverse matrix, i.e., the precision 

matrix (Koller & Friedman, 2009), the existing pair-wise correlation-based methods on multi-

donor selection process are thus ineffective.  

 

It is critical to simultaneouly achieve objectivity and consistently good performance in donor 

gauge selection.  Our approach, as presented in this paper, is to embrace global dependence 

structure, which makes it possible to systematically tackle the long-standing challenging donor 

gauge selection problem. In the process, a novel method is developed that can explictly and 

effectively consider the global dependence structure among a set of gauge stations from the 

viewpoint of the entire gauge network based on conditional independence conditions embedded in 

the graphical Markov models. We devise a new algorithm that makes use of such identified 

dependence structure to systematically optimize multiple donor gauges selection. In contrast to the 

commonly used correlation matrix, our method extracts and expresses the hidden information of 

conditional independence structure of the underlying streamflow network using a sparse precision 

matrix. This formulation further provides a framework that could be used in better understanding 

the essence of how multiple donor (or reference) gauge selection decision is made.  Furthermore, 

we devise an additional new algorithm based on our new donor gauge selection method to 

determine which gauge(s), when required, could be discontinued from an existing streamflow 

network with the least loss of information.  
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The remainder of this paper is organized as follows. Section 2 briefly describes the necessary 

mathematical background. Section 3 presents our new approach. Section 4 presents two 

applications with our new approach: one is to fill data gaps for active gauges or to extend data 

records for terminated gauges or inactive gauges which are defined as those that are no longer 

collecting data but collected data in the past; and the other is to decide which gauges are best 

candidates to be removed from an existing hydrometric network with the least loss of information. 

Section 5 describes data used for evaluating the new approach and algorithms presented in Sections 

3 and 4. Section 6 presents results and discussions. Finally, Section 7 provides a summary of the 

main findings from this work. 

 

2.  Mathematical Background  

To make this paper self-contained, some mathematical background is briefly reviewed in this 

section. Section 2.1 describes streamflow estimations with linear regression where a single, 

multiple or all available gauges can be used as donor gauges. Section 2.2 describes covariance and 

precision matrices. Section 2.3 reviews Gaussian graphical models which serves as the 

mathematical foundation of our donor gauge selection work. Section 2.4 describes the Graphical 

Lasso algorithm which makes precision matrix sparse.   

 

2.1 Streamflow estimation with linear regression 

2.1.1 A single donor gauge  

Let 𝐐𝐣 and 𝐐𝐢 represent the streamflow vector with n records from a target and a donor gauge, 

respectively, and assume that the estimated streamflow time series, i.e., a vector with n records as 

well, at the target location (�̂�𝐣) is obtained by transferring the streamflow time series from a single 
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donor gauged catchment by a scaling function such that �̂�𝐣  is an approximation of 𝐐𝐣  (e.g., 

Archfield & Vogel, 2010; Farmer & Vogel, 2013). The scaling has been conducted via a simple 

least square linear regression (e.g., Sachindra et al., 2013) as follows,  

 

 �̂�𝐣 = 𝛾0𝑗 + 𝛾𝑖𝑗 ∙ 𝐐𝐢 (1) 

where 𝜸𝒊𝒋 and 𝜸𝟎𝒋 are the regression coefficients of the slope and intercept, respectively.  

 

2.1.2 Multiple donor gauges 

When multiple donor gauges are used, a multiple linear regression (MLR) is a natural approach 

for estimating the streamflow at the target gauge. Here, the discussion goes beyond the inference 

application using multi-donor gauges and is extended to lay out the foundation for the Graphical 

Lasso (Glasso) algorithm of this study. A generalization is thus made herein that given a set of 

total p gauges with daily streamflow records, any one of them may serve as a potential target gauge 

while the rest of p-1 gauges as the donors. Estimation of the streamflow at the selected target, j, 

by MLR using all available p-1 donor gauges can be expressed as follows,  

 

�̂�𝐣 = 𝜂0𝑗 + ∑ 𝜂𝑖𝑗 ∙ 𝐐𝐢

𝑝

𝑖=1,𝑖≠𝑗

 

(2) 

 

where 𝜂𝑖𝑗 and 𝜂0𝑗 represent the multiple regression coefficients.  

 

Since the probability distribution of streamflow, Q, is often well approximated by a log-normal 

distribution (e.g., Stedinger, 1980), equation (2) can be modified and written as,  

 

�̂�𝐣 = 𝜌0𝑗 + ∑ 𝜌𝑖𝑗 ∙ 𝐘𝐢

𝑝

𝑖=1,𝑖≠𝑗

 

(3) 
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where Y follows a normal distribution with 𝐘 = ln(𝑸), and 𝜌𝑖𝑗  and 𝜌0𝑗  represent the multiple 

regression coefficients. To avoid numerical issues with the logarithm of zero-valued streamflow, 

Farmer (2016) assigned a small constant value (e.g. 0.00003 m3/s) to replace zero. Here we add 1 

to it instead so that Q = 0 comes out as Y = 0 as well,  

   

 𝐘𝐢 = 𝑙𝑛(𝐐𝐢 + 1) (4) 

The results of applying either Farmer’s approach or equation (4) are almost identical as shown in 

this study (see Section 3.1.2).  

 

For convenience and simplicity, Z, the standard Gaussian form of Y is instead used, i.e.,  

 
𝐙𝐢 =

𝐘𝐢  −  𝜇𝑦𝑖

𝜎𝑦𝑖

 
(5) 

 

The corresponding regression equation thus has zero intercept: 

 

�̂�𝐣 = ∑ 𝐙𝐢 ∙ 𝛼𝑖𝑗

𝑝

𝑖=1,𝑖≠𝑗

 

(6) 

 

It can be further written in a matrix form by posing Z as the join of the column vectors, (𝐳𝟏, … , 𝐳𝐩),  

as follows, 

 

 �̂� = 𝐙 ∙ 𝐀 (7) 
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where A is the p by p regression coefficient matrix, 

 

𝐀 = [

0 𝛼12

𝛼21 0

⋯ 𝛼1𝑝

⋯ 𝛼2𝑝
⋯ ⋯

𝛼𝑝1 ⋯
0 ⋯
⋯ 0

] 

(8) 

�̂� and 𝐙 are n by p matrices where n, as defined before, is the number of daily streamflow records. 

Note that if the streamflow data do not follow the log-normal distribution as assumed, one can 

easily transform the data into the log-normal distribution so that equations (3)-(8) are applicable.  

 

2.2 Covariance and precision matrices 

Two methods used in computing matrix 𝐀 are described herein.  The first method is based on the 

covariance matrix 𝚺 and the second one, which forms the core step of Graphic Lasso,  uses the 

inverse of the covariance matrix, which is called the precision matrix, 𝚯, i.e., 

 𝚯 = 𝚺−1 (9) 

Since the true covariance (𝚺) or precision (𝚯) matrices are unknown, estimates are used, in which 

an estimated covariance matrix is denoted by W, and from it an estimated precision matrix is 

denoted by �̂�. Following Friedman et al. (2008), the columns and rows of W can be permuted so 

that the target gauge j is the last and thus it facilitates a partition of the W matrix into four blocks 

consisting of a square submatrix 𝐖𝟏𝟏 of size (𝑝 − 1) × (𝑝 − 1), a column vector 𝐰𝟏𝟐 of 1 × (𝑝 −

1), its transpose 𝒘𝟏𝟐
𝑻 , and a scalar 𝑤22. The same partition is also applied to �̂� giving the four 

blocks of �̂�𝟏𝟏 ,  �̂�𝟏𝟐 , �̂�𝟏𝟐
𝑻  and 𝜃22 , respectively. The identity matrix 𝐈 , 𝐖 ∙ �̂� = 𝐈 , can then be 

written as (Friedman et al., 2008),  

 
(

𝐖𝟏𝟏 𝐰𝟏𝟐

𝒘𝟏𝟐
𝑻 𝑤22

) (
�̂�𝟏𝟏 �̂�𝟏𝟐

�̂�𝟏𝟐
𝑻 𝜃22

) = (
𝐈 𝟎

𝟎𝑇 1
)  

(10) 

By decomposing 𝐀 into column vectors as follows, 
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 𝐀 = [𝛂𝟏
… 𝛂𝐣 … 𝛂𝐩] (11) 

a solution based on the covariance matrix can be obtained by,  

 𝛂𝐣  =  𝐖𝟏𝟏
−1 ∙ 𝐰𝟏𝟐 (12) 

In contrast, the solution using the precision matrix which does not involve matrix inverse but a 

simple division can be obtained by,  

 
𝛂𝐣 = −

1

𝜃22

�̂�12 
(13) 

Equation (13) is derived by making use of 𝐖𝟏𝟏 ∙ �̂�𝟏𝟐 + 𝐰𝟏𝟐 ∙ 𝜃22 = 𝟎 from equation (10) and 

equation (12). Equation (13) shows how the precision matrix �̂� and the matrix of regression 

coefficients, 𝐀, are related to each other. The elements of the matrix 𝐀 are computed as 𝛂𝐣 for 1 ≤

𝑗 ≤ 𝑝. The vector of regression coefficients 𝛂𝐣 for the jth column of 𝐀 is proportional to the vector 

�̂�12 of �̂�. 

 

If in the place of W, the sample covariance matrix S is used, with its corresponding precision 

matrix estimate, T, the coefficient 𝛂𝐣 in matrix 𝐀 can then be expressed by, 

 

 𝛂𝐣 = 𝐒𝟏𝟏
−1 ∙ 𝐬𝟏𝟐 (14) 

 
𝛂𝐣 = −

1

𝑡22
𝐭𝟏𝟐 

(15) 

 

where 𝐒𝟏𝟏, 𝐬𝟏𝟐, 𝐭𝟏𝟐, and t22 correspond to 𝐖𝟏𝟏, 𝒘𝟏𝟐, �̂�𝟏𝟐, and 𝜃22, respectively, and S and T are,  

 
𝐒 =

1

𝑛 − 1
𝐙𝐓 ∙ 𝐙 

(16) 

 𝐓 = 𝐒−1 (17) 
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2.3 Concept and construction of Gaussian graphical models  

A graph G (v, e) is used to describe the correlation topology of a streamflow gauge network in our 

graphical Markov modeling. Let G (v, e), represented by a set of vertices v (i.e., gauges in our 

model) and a set of edges e with each edge connects two vertices, define a conditional 

independence structure of a given streamflow gauge network.  Namely, if there is no edge between 

any two vertices, then these two vertices are conditionally independent from each other given the 

remaining connections in the graph. Thus, a graph G (v, e) so constructed represents a global view 

of the dependence structure of all the vertices in the graph. That is, if there is an edge between two 

gauges, the streamflows between these two gauges are conditionally dependent on each other, 

otherwise conditionally independent given the remaining gauges’ dependency in the network. It 

follows that a gauge can only be a donor gauge if it is connected to the target gauge with an edge. 

Because the streamflow data are converted into  standard Gaussian vectors, Z, a graph model for 

the streamflow network, G, built on top of these gauges, is a Gaussian graphical model.  If each 

gauge in the network depends (conditionally) on all of the remaining gauges in the hydrometric 

network, then, all of the gauges are connected. That is, each vertex is connected to all of the 

remaining vertices in the graphical modeling network. Such a network graph is called a full or 

complete graph with 
𝑝2− 𝑝

2
 edges. From the graphical modeling concept point of view, the key to 

find the donor gauges for each target gauge in the streamflow network is to first construct the 

network graph G in such a way that G defines a conditional independence structure. Our insight 

is that any graph constructed based on the pair-wise correlations does not define a conditional 

independence structure. Therefore, just considering the pair-wise correlation would result in a 

misleading situation that more donor gauges than necessary appear to be needed for each selected 



 

17 

 

target gauge in the network. This is why in the past when pair-wise correlations were used, often 

a high threshold value has to be used to sort of walk around this issue, or simply a fixed number 

of donor gauges are decided a priori, such as, 1, 2, or 3 donor gauges, for each target gauge. It 

should be emphasized here that the pair-wise correlations are computed directly from the 

covariance matrix, which does not reflect the important global conditional independence structure 

among the gauges in the network. Therefore, using the covariance matrix cannot provide an 

effective pathway to the donor gauge selection. In contrast, the precision matrix, an inversion of 

the covariance matrix, reveals the global conditional independence structure among the gauges in 

the network (Friedman et al., 2008; Koller & Friedman, 2009). If discharges at two gauges i and j 

are conditionally independent, then 𝜃𝑖𝑗 = 0 in the estimated precision matrix,  �̂�,  and otherwise 

𝜃𝑖𝑗 ≠ 0. Indeed, the gauge network graph, G, should be contructed based on the precision matrix, 

�̂�, instead of the covariance matrix W. A graph G can be represented by an adjacency matrix 

defined as follows,  

 
𝐆 = {

𝑔𝑖𝑗 = 1 𝑖𝑓 |𝜃𝑖𝑗| > 0

𝑔𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(18) 

 

where 𝑔𝑖𝑗 and θ̂𝑖𝑗 represent the element of the ith row and jth column of G and �̂�, respectively, 

𝑔𝑖𝑗 = 1 means the gauges 𝑖 and 𝑗 are linked or adjacent.  In practice, both the estimated 

covariance matrix W and the estimated precision matrix  �̂�  are approximated by the sample 

covariance matrix S defined by equation (16) and the sample precision matrix T, defined by 

equation (17).  The graph G  thus obtained with the sample precision matrix T generally is dense 

(d’Aspremont et al., 2008) due to the nature of the noisy data. An unnecessary dense graph, 

especially the one caused by noisy data, is not useful since it provides no distinction in relevance.  
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As the number of gauges, p, in graph G increases, the complexity of the graph grows rapidly as 

the number of edges grows rapidly. The graphical Lasso is used in trimming a graph sparse and 

makes it useful.  

 

2.4 The Graphical Lasso 

The Graphical Lasso (Glasso) is an algorithm developed initially by Friedman et al. (2008) which 

imposes sparsity on the precision matrix by tuning a regularization parameter 𝜆. This algorithm 

has been actively used, analyzed and improved by several authors (Mazumder & Hastie, 2012; 

Sojoudi, 2014; Witten et al., 2011).  Our work used the Glasso Matlab package (glasso) and also 

a more recent efficient implementation called GLASSOFAST (Sustik & Calderhead, 2012).  

 

The Glasso algorithm provides an efficient solution by maximizing the Gaussian log-likelihood 

according to the formulation given in equation (19), adapted from Friedman et al. (2008), where 

det and tr are the determinant and trace of a square matrix respectively, ||𝚯||1, is the 𝐿1 norm of 

the precision matrix 𝚯 (i.e., the sum of the absolute value of all the elements in the matrix) and 𝜆 

is the 𝐿1 norm regularization parameter.  

 �̂�Glasso ≡ 𝑎𝑟𝑔𝚯𝑚𝑎𝑥[𝑙𝑜𝑔(𝑑𝑒𝑡𝚯) − 𝑡𝑟(𝐒 ∙ 𝚯) − 𝜆||𝚯||1] (19) 

The Glasso algorithm requires that the probability distribution of the input data be relatively well 

described by a multivariate Gaussian distribution as in our case for Z. The inputs required by the 

Glasso algorithm are the empirical covariance matrix S and a regularization parameter  𝜆. The 

output from the Glasso algorithm is a potentially sparse precision matrix estimate, �̂�Glasso . 

Equation (20) shows the inputs and output of the Glasso algorithm expressed as,  

 �̂�Glasso = 𝐺𝑙𝑎𝑠𝑠𝑜(𝐒, 𝜆)   (20) 
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For estimating the target streamflow time series using MLR after donor gauge selection, the 

regression coefficients of matrix A can be found from �̂�Glasso by applying �̂�Glasso to equation (13) 

in which  �̂� is replaced by �̂�Glasso as shown in equation (21) below,  

   

 
𝛂𝐣 = −

1

𝜃𝐺𝑙𝑎𝑠𝑠𝑜22

�̂�𝐺𝑙𝑎𝑠𝑠𝑜12
 

(21) 

If the regularization parameter 𝜆 is equal to zero, no regularization is imposed, and the estimated 

precision matrix �̂�Glasso  is equivalent to 𝐓 = 𝐒−1 and the corresponding graph G remains not 

sparse. On the other hand, if the regularization parameter is a large value, �̂�Glasso  will be over-

regularized, and the underlying graph G would have no edges. Given the importance of the 𝜆 

parameter, we devise a new algorithm called Selection of Graph Model (SGM) in this study to 

obtain an optimal graph, which is presented in Section 3.2. SGM is to select the 𝜆 parameter based 

on a multi-objective optimization procedure that minimizes the number of edges of the underlying 

Gaussian graphical model and also the errors in streamflow estimates. The objective is to keep a 

good balance between the complexity of a graph and the accuracy of an estimation for the target 

gauge. This is achieved by promoting sparsity while minimizing the estimation error.  

 

3. New Approach of Selecting Multiple Donor Gauges via Graphical Models 

 

Given a target gauge, our new approach objectively selects a set of necessary gauges from all the 

gauges in a streamflow network as donor gauges via the sparse graph model built for the network. 

Our new donor selection algorithm comprises two intertwined procedures: First, we apply the 

Glasso method on the precision matrix to trim the graph sparse. Second, we adopt an estimator, 
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such as a multiple linear regression method, to obtain the streamflow estimation errors. The final 

sparse graph is determined by balancing between the graph sparsity and the estimation errors. Such 

a balance is achieved by minimizing two main objectives: (1) the model complexity and (2) the 

inferred streamflow estimation error. Here, model complexity refers to the number of edges 

included in the graph. Thus, the simplest model would be a graph with the smallest number of 

edges with which there is only one single donor gauge for each target gauge, while the most 

complex model would be a complete graph with which all of the available gauges in the network 

become the donor gauges for each target gauge. We argue, and show in the example applications, 

that there is an appropriate trade-off between the model complexity and the accuracy of the inferred 

streamflow estimates, and that a more complex model is not necessarily better than a simpler model 

due to noises and relevance. The balance between sparsity and estimation error is achieved through 

a multiple objective optimization using the Pareto front. To minimize the streamflow estimation 

error, we use a regression method for the flow estimates. We use this inference method herein 

because it is simple and computational efficient. In practice, one can certainly apply any other 

available inference methods that one prefers.  At the end of the iteration, the gauges that share their 

edges with the target gauge in the final graph are identified as the donor gauges.  

 

In summary, the essence of our new method is that it explicitly and effectively considers the 

correlation structure of the entire gauge network, based on conditional independence structure, 

embodied by the underlying streamflow network graph G in our graphical modeling, rather than 

the pair-wise correlation between any two gauges as used in the existing methods. When the final 

sparse graph is achieved, the gauges that have edges to the target gauge are identified as the donor 

gauges for the given target gauge. As the donor gauges are selected based on the conditional 
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independence structure of the entire gauge network graph, G, our method is a global approach as 

opposed to the existing pair-wise methods which can be viewed as a local approach. Also, if there 

are multiple target gauges for the study streamflow network, our method provides the donor gauges 

for each target gauge in the network simultaneously. One does not need to select the donor gauges 

one at a time for each target gauge. Major steps involved in the donor gauge selection process via 

the graph model are summarized in Figure 1.  

 

 

Figure 1. A diagram for the new donor gauge selection method with major steps in the overall 

process of building the graph and pruning it.   

 

3.1 Donor gauge selection via Graphical Model  

Our approach in selecting a proper set of donor gauges to be used for inferring streamflow for each 

target gauge is to exploit the conditional independence structure encoded in the precision matrix. 

This is accomplished by promoting sparsity on the precision matrix that results in fewer edges of 

the underlying graph G. This is consistent with the parsimonious principle.  A simpler model that 

3. Identify donor gauges for a given target gauge by 
selecting the target’s direct neighbor gauges in the 

resulting new sparse graph. In other words, select the 
gauges that share an edge with the target gauge in the 

resulting new sparse graph.   

2. Apply the new donor gauge selection method, i.e., 
SGM algorithm, to obtain a new sparse graph which has 
a suitable balance between the sparseness of the graph 
(using Glasso) and the accuracy of inferred streamflow 

(e.g., using regression), i.e., a suitable balance between 
complexity and error (i.e., Section 3) 

1. Compute the sample covariance matrix S from the 
daily streamflow data for the study area 
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explains well the observations should be preferred over more complex models. Under such a 

context, the parsimonious principle implies a selection of an underlying graphical model that is as 

sparse as possible while keeping the estimation error relatively low.  

 

3.1.1 Imposition of sparsity to underlying graphical model 

The sparsity is achieved by adjusting the regularization parameter 𝜆 for the Glasso algorithm in 

conjunction with a thresholding procedure that uses a truncation parameter 𝜏, which modifies 

equation (18) as follows, 

 
𝐆𝜏 = {

𝑔𝑖𝑗 = 1 𝑖𝑓 |𝜃𝑖𝑗| > 𝜏

𝑔𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(22) 

The thresholding procedure is required in addition to the 𝐿1 norm regularization because even 

though the 𝐿1 norm of the precision matrix decreases monotonically as 𝜆 increases, the number of 

edges in the graph G does not necessarily decrease monotonically. Therefore, a multi-objective 

optimization is needed to simultaneously minimize the mean error between the observed random 

variable Z and the inferred data matrix �̂� from equation (7), and the number of edges of the 

underlying graph G. There are some situations where a particular edge has to be removed from the 

underlying graphical model by setting the element 𝑔𝑖𝑗 to zero. One example of such situation is 

when both gauges are known to be donor gauges, therefore none of them will be inferred from 

each other and the corresponding edge in the graphical model should be removed. A similar case 

arises when both gauges are known to be the target gauges, the edge between them does not help 

in this situation, as one gauge should not be infered using the other as a donor. In implementing 

the Glasso procedure, representing by Equation (23), an optional input parameter, graph 𝑮𝜏 , 

facilitates removal of some edges. If that graph 𝑮𝜏 is ommitted in the input, all edges are available. 

The implementation also allows one to compute the sparse precision matrix with a prescribed 
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sparsity pattern. Through the process of pruning the original dense graph, the donor gauges are 

identified as those which are directly linked to the target gauge in the resulting sparse graph.  

 �̂�𝑡𝑟𝑎𝑖𝑛(𝜆,𝐺𝜏) = 𝐺𝑙𝑎𝑠𝑠𝑜 (𝐒𝒕𝒓𝒂𝒊𝒏, 𝜆, 𝑮𝜏,
) (23) 

 

3.1.2 Estimation of streamflow errors 

The normalized standard Gaussian daily streamflow data set, Z, is sorted chronologically and then 

divided into three disjoint subsets of approximately same size. The subsets are used for training, 

validation and testing and designate, respectively, as 𝐙𝑡𝑟𝑎𝑖𝑛, 𝐙𝑣𝑎𝑙 , and 𝒁𝑡𝑒𝑠𝑡 . 𝐙𝑡𝑟𝑎𝑖𝑛 is used for 

training the inference model by computing the regression coefficients in matrix A. 𝐙𝑣𝑎𝑙 is used for 

choosing the 𝜆 and 𝜏 values that minimize the validation error and the number of edges of the 

underlying graph G. 𝐙𝑡𝑒𝑠𝑡 is used for assessing the predictive capability of the streamflow using 

the new donor gauge selection method together with the MLR inference method through 

estimating the error based on the 𝐙𝑡𝑒𝑠𝑡 data. It is worth mentioning that accuracy of the inferred 

daily streamflow estimates depends on how well donor gauges are selected; and that an inference 

approach can be selected with much freedom. The first two thirds of the daily streamflow records 

are randomly assigned to the training 𝐙𝑡𝑟𝑎𝑖𝑛 and validation 𝐙𝑣𝑎𝑙 data sets with a split ratio of 50%. 

The remaining one third of the most recent data are used as the test set 𝐙𝑡𝑒𝑠𝑡. Streamflow errors 

are estimated based on the following process: 

 

(1) Estimation of training covariance and sparse precision matrices 

The training precision matrix, �̂�𝑡𝑟𝑎𝑖𝑛(𝜆,𝐺), under a given value of the regularization parameter 𝜆, 

is computed in the Glasso algorithm of equation (20) using its sample variance 𝐒𝑡𝑟𝑎𝑖𝑛. The initial 

sparsity of the training precision matrix, �̂�𝑡𝑟𝑎𝑖𝑛(𝜆,𝐺), is determined by the regularization parameter 
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𝜆. Additional sparsity is achieved for a given value of the truncation parameter 𝜏  defined in 

equation (22). A new training precision matrix �̂�𝑡𝑟𝑎𝑖𝑛(𝜆,𝐺𝜏) is then computed using equation (23) 

and the sparse graph 𝑮𝜏. This sparse precision matrix has a value of zero on all elements where 

the graph 𝑮𝜏 has missing edges.  

 

(2) Estimation of regression coefficients and streamflow  

�̂�𝑡𝑟𝑎𝑖𝑛(𝜆,𝐺𝜏) is used in obtaining the regression coefficient matrix, 𝐀𝑡𝑟𝑎𝑖𝑛, with equation (21). The 

standardized validation streamflow time series, �̂�𝑣𝑎𝑙 , are then estimated using 𝐀𝑡𝑟𝑎𝑖𝑛  and the 

validation dataset, 𝐙𝑣𝑎𝑙, as below, 

 �̂�𝑣𝑎𝑙 = 𝐙𝑣𝑎𝑙 ∙ 𝐀𝑡𝑟𝑎𝑖𝑛 

 

(24) 

The estimated log-transformed validation streamflow data, �̂�𝑣𝑎𝑙, is calculated from �̂�𝑣𝑎𝑙. That is, 

�̂�𝑣𝑎𝑙𝑗
.is computed as follows, 

 �̂�𝑣𝑎𝑙𝑗
= �̂�𝑣𝑎𝑙𝑗

∙ 𝜎𝑦𝑣𝑎𝑙𝑗
+ 𝜇𝑦𝑣𝑎𝑙𝑗

 (25) 

where 𝜇𝑦𝑣𝑎𝑙𝑗
 and 𝜎𝑦𝑣𝑎𝑙𝑗

 are, respectively, the mean and standard deviation of �̂�𝑣𝑎𝑙𝑗
. The estimated 

validation streamflow data, �̂�𝑣𝑎𝑙, is then obtained by,  

 �̂�𝑣𝑎𝑙𝑗
= 𝑒𝑥𝑝 (�̂�𝑣𝑎𝑙𝑗

) − 1 (26) 

 

(3) Score function and validation error 

Selection of the graphical model should maximize the quality of the inferred daily streamflow time 

series, that is, the daily streamflow time series estimates at the target site should be as accurate as 

possible. A score function is designed to measure the accuracy of the inferred values. Equation 
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(27) defines a conditional goodness-of-fit metric that calculates the value of the coefficient of 

determination, R2 , between the observed and estimated daily streamflow time series for the 

validation data set, where R𝑣𝑎𝑙𝑗

2
 is the R2  between the observed streamflow 𝐐𝑣𝑎𝑙𝑗

 used for 

validation and the estimated streamflow �̂�𝑣𝑎𝑙𝑗
, for 1 ≤ 𝑗 ≤ 𝑞, where j is an index representing the 

jth gauge and q is the number of target gauges. By default, all of the gauges are considered as 

potential target sites, where q is equal to p. The score is positive if 𝑹𝑣𝑎𝑙𝑗

𝟐   is greater than an assigned 

threshold 𝛤, otherwise, it is taken as zero. Equation (28) calculates the validation score. Equation 

(29) defines the validation error, ranging within [0, 1], that is used in our multi-objective 

optimization procedure.   

 
𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑗

= {
R𝑣𝑎𝑙𝑗

2 = R2 (𝐐𝑣𝑎𝑙𝑗
, �̂�𝑣𝑎𝑙𝑗

) 𝑖𝑓 R𝑣𝑎𝑙𝑗

2 > 𝛤

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(27) 

 

𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙 = ∑ 𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑗

𝑞

𝑗=1

, 𝑞 ≤ 𝑝 

(28) 

 

 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙 =
𝑞 − 𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙

𝑞
 (29) 

The validation error of the graphical model is selected in such a way that it will maximize the 

validation score thus minimize the error. 

 

3.2 Donor selection: Selection of Graph Model algorithm 

On this basis of the proceeding procedures, we devise an algorithm called Selection of Graph 

Model (SGM) to obtain an optimal underlying graph. A graph determined by the SGM algorithm 

is denoted as 𝑮𝑠𝑔𝑚.  The SGM algorithm implements a multi-objective optimization procedure 

where the optimization objectives include: (1) minimizing the number of edges of the underlying 
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graph to make it as sparse as possible, and (2) minimizing validation error. SGM generates a set 

of regularization parameter 𝜆 within the range of [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]. For each 𝜆, a truncation parameter, 

𝜏, is selected such that the underlying graph has the given number of edges between [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥]. 

Given the multi-objective nature of the problem, a set of graphs corresponding to a set of non-

dominated solutions on the Pareto front are obtained as a result. A graph 𝑮𝑠𝑔𝑚 thus represents one 

of the graphs from the set. A final graph or a graph set, {𝑮𝑠𝑔𝑚}, is selected from the set of candidate 

solutions by balancing the trade-offs between the model complexity and error.  

 

The pseudo code for SGM algorithm is provided in the Algorithm 1. The parameter res is an integer 

that represents the resolution of a sequence of sampling values to create res number of lamba_set 

vector with values between 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥. DonorSet and TargetSet are optional parameters that 

represent a set of identifiers of the gauges that are known to be donors or targets, respectively. The 

defaults for DonorSet and TargetSet, in Algorithm 1, are empty sets. That is, any gauge can 

potentially be used as a Donor or Target gauge. If DonorSet or TargetSet are non-null sets, then 

their corresponding gauges are treated as donor gauges or target gauges, respectively. For them, 

the graph model 𝑮𝜏 defined in equation (22) removes all the edges between the ith and jth gauge 

when both, i and j, belong to DonorSet or both belong to TargetSet. The getSequence function 

generates the lamba_set vector, which can be generated using a linear sequence.  

 

 Algorithm 1: Selection of Graph Model (SGM)  

STEP 0. Define the SGM inputs (assignment of default values) 

𝜆𝑚𝑖𝑛 = 0.01;  𝜆𝑚𝑎𝑥 = 0.10; 𝐾𝑚𝑖𝑛 = 10; 𝐾𝑚𝑎𝑥 =
𝑝2− 𝑝

2
;   res = 30; Γ = 0.7  

DonorGroup:={}; TargetGroup:={} 

Retrieve training (𝐙𝑡𝑟𝑎𝑖𝑛) and validation (𝐙𝑣𝑎𝑙) data sets;   

STEP 1. Compute the empirical covariance matrix using equation (16) from the training set:  
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𝑛𝑡𝑟𝑎𝑖𝑛 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐒𝑡𝑟𝑎𝑖𝑛) 

𝐒𝑡𝑟𝑎𝑖𝑛 =
1

𝑛𝑡𝑟𝑎𝑖𝑛−1
𝐙𝑡𝑟𝑎𝑖𝑛

𝐓 ∙ 𝐙𝑡𝑟𝑎𝑖𝑛; 

STEP 2. Generate Multi-objective optimization sampling points: 

lambda_set = getSequence(minVal=𝜆𝑚𝑖𝑛, 𝑚𝑎𝑥𝑉𝑎𝑙 = 𝜆𝑚𝑎𝑥, res); 

for r=1 to res: 

 𝜆𝑟= lambda_set[r]; 

 Compute the initial precision matrix from 𝐒𝑡𝑟𝑎𝑖𝑛 using equation (20): 

 �̂�𝑡𝑟𝑎𝑖𝑛𝑟
= 𝐺𝑙𝑎𝑠𝑠𝑜(𝐒𝑡𝑟𝑎𝑖𝑛, 𝜆𝑟);  

 for k= 𝐾𝑚𝑖𝑛 to 𝐾𝑚𝑎𝑥: 

choose 𝜏𝑟,𝑘  to compute the underlying graph model with at most k edges using 

equation (22): 

𝐆𝑟,𝑘  = {
𝑔𝑟,𝑘𝑖𝑗

= 1 𝑖𝑓 |θ̂𝑡𝑟𝑎𝑖𝑛𝑟𝑖𝑗
| > 𝜏𝑟,𝑘

𝑔𝑟,𝑘𝑖𝑗
= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

; 

 Compute the sparse training precision matrix, using equation (23): 

�̂�𝑡𝑟𝑎𝑖𝑛𝑟,𝑘
= 𝐺𝑙𝑎𝑠𝑠𝑜(𝐒𝒕𝒓𝒂𝒊𝒏, 𝜆𝑟 , 𝐆𝑟,𝑘); 

Compute the training matrix of regression coefficients 𝐀𝑡𝑟𝑎𝑖𝑛𝑟,𝑘
 from �̂�𝑡𝑟𝑎𝑖𝑛𝑟,𝑘

, 

using equation (21), for 1 ≤ 𝑗 ≤ 𝑝: 

𝛂𝑡𝑟𝑎𝑖𝑛𝑟,𝑘 j
= −

1

θ̂𝑡𝑟𝑎𝑖𝑛𝑟,𝑘22

�̂�𝑡𝑟𝑎𝑖𝑛𝑟,𝑘12
; 

Compute the inferred Z-score log-transformed validation streamflow from equation 

(24): 

�̂�𝑣𝑎𝑙𝑟,𝑘
= 𝐙𝑣𝑎𝑙 ∙ 𝐀𝑡𝑟𝑎𝑖𝑛𝑟,𝑘

; 

Compute the inferred log-transformed validation streamflow using equation (25) 

for 1 ≤ 𝑗 ≤ 𝑝: 

�̂�𝑣𝑎𝑙𝑟,𝑘𝑗
= �̂�𝑣𝑎𝑙𝑟,𝑘𝑗

∙ 𝜎𝑦𝑣𝑎𝑙𝑗
+ 𝜇𝑦𝑣𝑎𝑙𝑗

; 

Compute the inferred validation streamflow using equation (26) for 1 ≤ 𝑗 ≤ 𝑝: 

�̂�𝑣𝑎𝑙𝑟,𝑘𝑗
= 𝑒𝑥𝑝 (�̂�𝑣𝑎𝑙𝑟,𝑘𝑗

) − 1; 

 Calculate the validation score using equation (27) and equation (28) for 1 ≤ 𝑗 ≤ 𝑞: 

 𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑟,𝑘𝑗
= {

R𝑣𝑎𝑙𝑗

2 = R2 (𝐐𝑣𝑎𝑙𝑗
, �̂�𝑣𝑎𝑙𝑗

) 𝑖𝑓 R𝑣𝑎𝑙𝑗

2 > Γ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑟,𝑘
= ∑ 𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑟,𝑘𝑗

𝑞
𝑗=1 , 𝑞 ≤ 𝑝;  

Calculate the validation error using equation (29): 

𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙𝑟,𝑘
=

𝑞−𝑠𝑐𝑜𝑟𝑒𝑣𝑎𝑙𝑟,𝑘

𝑞
; 

 store the sampling results: multi_objective_points = [k, 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙𝑟,𝑘
], 𝜆𝑟 and 𝐆𝑟,𝑘. 

STEP 3. Select the set of non-dominated solutions from multi_objective_points 

STEP 4. From the set of non-dominated solutions, select a sparse graph (as the output), 𝑮𝑠𝑔𝑚, 

with a suitable tradeoff between the number of edges and validation error and optionally the 

corresponding matrix of regression coefficients 𝑨𝑠𝑔𝑚. 
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4. Application Examples 

To illustrate the proposed method, two example applications are presented. One is about the stream 

flow inference; and the other the removal of streamflow gauges with the least loss of information. 

The problem involved and the solution procedures are given herein, but the study area, the data 

and problem setup are given in the next section. This section starts at the completion of the 

Algorithm 1 where the optimized underlying graph or graph set {𝑮𝒔𝒈𝒎} has already been obtained. 

 

4.1 Donor gauge selection and flow inference example 

The donor gauge selection task is greatly simplified once the underlying graph 𝑮𝑠𝑔𝑚 is identified 

by the SGM algorithm as this graph 𝑮𝑠𝑔𝑚 reveals conditional independent conditions between the 

streamflow gauges for a given hydrometric streamflow network. A set of donor gauges best for 

each target gauge is explicitly contained in the graph 𝑮𝑠𝑔𝑚. That is, a best set of donor gauges for 

a given target gauge is the set of gauges that are directly connected to it in the graph, 𝑮𝑠𝑔𝑚. Such 

a set of donor gauges includes only those on which each target station depends.  We note that once 

the donor gauges are identified based on our new donor gauge selection algorithm (i.e., SGM), one 

can apply any inference method, including the advanced machine learning methods, to estimate 

the streamflow for the target gauges. In this study, we apply a regression-based inference method 

described in Section 2 due to its simplicity, for the objective of its use here is to form the basis for 

comparisons. In all comparisons with the other different donor gauge selection approaches in this 

study, the inference method used is identical.  

 



 

29 

 

4.1.1 Inference of daily streamflow time series with graph 𝑮𝑠𝑔𝑚 

In this application example, the streamflow data at gauge sites are divided into three sets as 

previously described. We further consider that each gauge in the network could become a target 

gauge with its latest one third of data missing. The inference of daily streamflow is thus performed 

for every single gauge in the study area.  

 

With the selected donor gauges taken from graph 𝑮𝑠𝑔𝑚 , there are three ways in obtaining the 

streamflow time series �̂�𝑡𝑒𝑠𝑡  based on the MLR method. Each is slightly different from one 

another in how the regression coefficients are obtained. The first approach directly applies the 

MLR to the normalized Gaussian variable 𝐙𝑡𝑒𝑠𝑡 as follows. Let matrix 𝑨𝑠𝑔𝑚 represent matrix 𝐀 of 

equation (8) whose element 𝛼𝑖𝑗   is determined based on graph 𝑮𝑠𝑔𝑚.  The log-transformed 

streamflow time series for the test set �̂�𝑡𝑒𝑠𝑡 can then be estimated directly using matrix 𝑨𝑠𝑔𝑚 and 

the test dataset 𝐙𝑡𝑒𝑠𝑡 as follows, 

 �̂�𝑡𝑒𝑠𝑡 = 𝐙𝑡𝑒𝑠𝑡 ∙ 𝑨𝑠𝑔𝑚 

 

(30) 

To obtain �̂�𝑡𝑒𝑠𝑡 from �̂�𝑡𝑒𝑠𝑡, the unknown mean 𝜇𝑌𝑡𝑒𝑠𝑡𝑗
 and standard deviation 𝜎𝑌𝑡𝑒𝑠𝑡𝑗

  for the test set 

are assumed to be the same as those for the training set. Then, the streamflow time series �̂�𝑡𝑒𝑠𝑡 

can be obtained from �̂�𝑡𝑒𝑠𝑡.  The weakness of this approach is that the assumption made here is 

not usually held.  

 

The second approach applies the MLR over the log-transformed streamflow time series for the 

training data set over 1 ≤ 𝑗 ≤ 𝑝, using only the donors for the jth target site as expressed by 

equation (31),  
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�̂�test𝑗
= 𝛽0𝑗 + ∑ 𝛽𝑖𝑗 ∙ 𝐘𝑡𝑟𝑎𝑖𝑛𝑑𝑜𝑛𝑜𝑟𝑠(𝑗)𝑖

𝑠𝑖𝑧𝑒(𝑑𝑜𝑛𝑜𝑟𝑠(𝑗))

𝑖=1

 

(31) 

 

where 𝑑𝑜𝑛𝑜𝑟𝑠(𝑗) = 𝑑𝑜𝑛𝑜𝑟𝑠(𝑮𝑠𝑔𝑚, 𝑗) ,  𝛽𝑖𝑗  and 𝛽0𝑗  are the regression coefficients. The daily 

streamflow time series, �̂�test𝑗
, is then estimated from �̂�test𝑗

 as follows,  

 �̂�test𝑗
= 𝑒𝑥𝑝 (�̂�test𝑗

) − 1 (32) 

 

The third approach simply applies the MLR to the non-transformed streamflow time series 

avoiding the logarithmic transformation. Among these three approaches, we used the second one 

with equations (31-32). As pointed out by Farmer (2016), this approach generally produced either 

more accurate or more stable results than the third approach.   

 

4.1.2 Building base graphs for distance- and correlation-based approaches for comparisons 

To evaluate the performance of our new donor gauge selection method based on graph 𝑮𝑠𝑔𝑚 in 

inferring daily streamflow time series, we compare our new method with two widely used donor 

gauge selection methods, the distance-based method (“Dist”) and the pair-wise correlation-based 

method (“Corr”). These two selection methods have also been shown in the literature to be 

effective and are evaluated here for comparison purpose. To put into a consistent framework for 

fair comparison, we construct two graphs: 𝑮𝑑𝑖𝑠𝑡 (distance-based) and 𝑮𝑐𝑜𝑟𝑟 (pair-wise correlation-

based). Starting from an empty graph with no edges, the 𝑮𝑑𝑖𝑠𝑡 graph is built by adding to each 

target site a link to its nearest neighbor site. In this case, each target site has one donor site, 

expressed as 𝑮𝑑𝑖𝑠𝑡,1, and the constructed graph structure is determined by the number of edges 

added and their relative locations in the gauge network. For the case of each target having m donor 
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gauges, edges between each target site and its nearest m neighbor gauges are added in the graph. 

Here we consider only up to three donor gauges for a target gauge, that is, graph 𝑮𝑑𝑖𝑠𝑡,2 and  

𝑮𝑑𝑖𝑠𝑡,3. The graph of 𝑮𝑐𝑜𝑟𝑟  is built in a similar way to 𝑮𝑑𝑖𝑠𝑡   except that the highest pair-wise 

correlation is used, forming 𝑮𝑐𝑜𝑟𝑟,1, 𝑮𝑐𝑜𝑟𝑟,2 and 𝑮𝑐𝑜𝑟𝑟,3. These 𝑮𝑑𝑖𝑠𝑡,𝑚 and 𝑮𝑐𝑜𝑟𝑟,𝑚 (m = 1, 2, and 

3) are built mimicking the current practice. For 𝑮𝑠𝑔𝑚  constructed by our new donor gauge 

selection method, the number of donors for each target site is automatically determined via the 

SGM algorithm. The same inference method is used for all three methods in the comparison. 

 

4.1.3 Estimations of test error and inference accuracy 

The test error, 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑠𝑡, is computed in the same way as the validation error, 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙, with 

equation (29), but using the test set instead of the training set in equations (27-29).  

 

The accuracy of each inferred streamflow at the target gauges associated with the graphs 𝑮𝑠𝑔𝑚,  

𝑮𝑑𝑖𝑠𝑡,𝑚 and 𝑮𝑐𝑜𝑟𝑟,𝑚 (m = 1, 2, and 3) is evaluated by the Nash–Sutcliffe efficiency coefficient 

(NSE) (Nash & Sutcliffe, 1970) with the testing data set. The NSE with the testing data set for 

target site j (𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑗
) is computed from the observed (𝐐test𝑗

) and the inferred (�̂�test𝑗
) streamflow 

time series as follows,  

 𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑗
= 𝑁𝑆𝐸 (𝐐test𝑗

, �̂�test𝑗
) (33) 

 

 

4.2. Removal of streamflow gauges example 

Our method can readily be applied to removal of streamflow gauges (RG) problems. A new RG 

algorithm is devised to facilitate repeatedly removing the gauge inferred by the remaining gauges 
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with the highest effectiveness. That is, RG first removes gauge j in the network with the highest 

𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑗
 from the set of p gauges of the network, and then marks the removed gauge as a “target 

gauge” and each of its neighbors as a “donor gauge”; this process is repeated for the remaining 

available gauges in the network until all gauges are checked, with the exception that isolated 

gauges should not be removed. Algorithm 2 given below describes the details of this gauge 

removal process with the least loss of information. Upon the completion of running the RG 

algorithm, maxRemRank gives the maximum number of removable gauges, with an accompany 

of removable-queue that contains all removable gauges in the ascending order of the information 

loss.  

 

Equation (34) defines a new score, 𝒈𝒓𝒂𝒑𝒉_𝒔𝒄𝒐𝒓𝒆𝒕𝒆𝒔𝒕, for the graph, based on the NSE, for gauges 

that can be removed from the hydrometric network. In equation (34), the index k = ‘Dist’, ‘Corr’, 

or ‘SGM’ represents each of the three approaches, and 𝑴𝒓𝒆𝒎 represents the largest number of 

removable gauges among all three approaches whose NSEs are greater than or equal to the 

threshold 𝛅 used.  

 

𝑔𝑟𝑎𝑝ℎ_𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡,𝑘 =
1

𝑀𝑟𝑒𝑚
∑ 𝑁𝑆𝐸𝑖,𝑘

𝑀𝑟𝑒𝑚

𝑖=1

 

(34) 

 

The 𝑔𝑟𝑎𝑝ℎ_𝑠𝑐𝑜𝑟𝑒𝑡𝑒𝑠𝑡,𝑘  is useful to assess the quality and quantity of the inference of daily 

streamflow time series for the removable gauges from a given graph k. The higher the score, which 

has a highest value of 1, the better.  

 

Algorithm 2: Removal of Gauges (RG) Algorithm 
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STEP 0. RG inputs: [𝑁𝑆𝐸𝑡𝑒𝑠𝑡1
, …, 𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑞

], 𝑮 

STEP 1. Mark all isolated nodes in the graph 𝑮 as unavailable for removal. 

STEP 2. Initialize the maximum number of removable gauges: maxRemRank=0. 

STEP 3. Initialize the queue of removable gauges: removable-queue = {}. 

STEP 4. Sort [𝑁𝑆𝐸𝑡𝑒𝑠𝑡1
, …, 𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑞

] as the current queue of gauges (i.e., current-queue) in the 

descending order of NSEtest values.    

STEP 5. Check the first item of the current-queue, 𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑟
. If the rth gauge is not marked as 

unavailable for removal, do steps 6 and 7; otherwise go to step 8.  

STEP 6. Add the rth gauge into the removable-queue and mark its neighbors on the graph 𝑮 as 

unavailable for removal. 

STEP 7. Update maxRemRank: maxRemRank = maxRemRank + 1. 

STEP 8. Remove 𝑁𝑆𝐸𝑡𝑒𝑠𝑡𝑟
 from the current-queue. 

STEP 9. Repeat from step 5 to step 8 until the current-queue becomes empty 

 

5. Study Area and Data Sets  

Our application examples use Ohio River basin as the test base for its size, relevance and good 

quality of long-term historical daily streamflow data.  The Ohio River is the third largest river in 

terms of discharge in the United States.  It is the largest tributary of the Mississippi River and 

accounts for more than 40% of the discharge of the Mississippi River (Benke & Cushing, 2011). 

The Ohio River is located between the 77° and 89° west longitude and between the 34° and 41° 

north latitude.  

 

Table 1 lists the National Weather Service Location Identifier (NWSLI) which is used in this study 

to index each of the 34 gauges, the drainage area of the corresponding sub-basin, and the USGS 

station identifier. The naturalized daily streamflow data are taken from the National Water 

Information System (NWIS: National Water Information System), United States Geological 

Survey (USGS). This data set spans the time period from January 1st, 1951 to December 31st, 1980 

with a total of 10958 consecutive days (30 years) of measurements for all of the 34 streamflow 

gauges. There are no missing streamflow records for any day or gauge over the selected study 

period. 



 

34 

 

 

Table 1– List of 34 streamflow gauges over the Ohio River basin 

# NWSLI USGS 

STAID 

Drainage Area 

(Km2) 

# NWSLI USGS 

STAID 

Drainage Area 

(Km2) 

1 ALDW2 03183500 3,533 18 GRYV2 03170000 777 

2 ALPI3 03275000 1,352 19 KINT1 03434500 1,764 

3 ATHO1 03159500 2,442 20 MROI3 03326500 1,766 

4 BAKI3 03364000 4,421 21 NHSO1 03118500 453 

5 BELW2 03051000 1,052 22 NWBI3 03360500 12,142 

6 BOOK2 03281500 1,870 23 PRGO1 03219500 1,469 

7 BSNK2 03301500 3,364 24 PSNW2 03069500 1,870 

8 BUCW2 03182500 1,399 25 SERI3 03365500 6,063 

9 CLAI2 03379500 2,929 26 SLMN6 03011020 4,165 

10 CLBK2 03307000 487 27 SNCP1 03032500 1,368 

11 CRWI3 03339500 1,318 28 STMI2 03345500 3,926 

12 CYCK2 03283500 938 29 STRO1 04185000 1,062 

13 CYNK2 03252500 1,608 30 UPPO1 04196500 772 

14 DBVO1 03230500 1,383 31 VERO1 04199500 679 

15 ELRP1 03010500 1,424 32 WTVO1 04193500 16,395 

16 FDYO1 04189000 896 33 WUNO1 03237500 1,002 

17 GAXV2 03164000 2,929 34 WYNI2 03380500 1,202 

 

Following the procedure described in Section 3.1.2, the dataset was separated into 3 subsets as 

described in the preceding section. Data between 1951 and 1970 were used for “training” and 

“validation”.  The training data set consists of 50% of the data randomly selected from 1951 and 

1970.  The remaining data over the period of 1951 and 1970 constitute the validation set.  The data 

between 1971 and 1980 are used as the “test” set. 

 

6. Results and Discussion 

6.1 Inference on streamflow  

The inferred daily streamflow time series based on the new graphical model donor gauge selection 

method (i.e., graph 𝑮𝑠𝑔𝑚) and the conventional distance- and correlation-based methods (i.e., 
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graphs of 𝑮𝑑𝑖𝑠𝑡,𝑚 and 𝑮𝑐𝑜𝑟𝑟,𝑚 with m = 1, 2, and 3) are compared. 𝑮𝑑𝑖𝑠𝑡,𝑚 and 𝑮𝑐𝑜𝑟𝑟,𝑚 with m = 

1, 2, and 3 are constructed as described in Section 4.1.2.  For our new method with the SGM 

algorithm, a Pareto front is obtained and we choose among the candidates on the front the graphs 

that have similar number of edges as 𝑮𝑑𝑖𝑠𝑡 and 𝑮𝑐𝑜𝑟𝑟 for fair comparison.  Our method was run 

with default parameters defined in Algorithm 1. That is, 30 different values of the regularization 

parameter 𝜆 were used for graphs with edges between 10 (very sparse) and 561 (complete graph). 

Thus, the number of sampling points is (561 - (10-1)) *30 = 16560 (based on Step 2 in Algorithm 

1). The SGM algorithm selected 74 out of 16560 (0.45%) distinct graphs with different number of 

edges as the candidate solutions according to our two multi-objective optimization criteria.   

 

From the distance-based method, 1, 2 and 3 donors result in 24, 43 and 65 edges, respectively, 

denoted as Dist(24), Dist(43) and Dist(65), respectively; for the correlation-based method, they 

are Corr(24), Corr(47) and Dist(68). Thus, SGM(25), SGM(47) and SGM(65) are selected from 

our SGM method to have similar number of edges.  

 

For our method, Figure 2 (a) shows trade-offs between the number of edges and the validation 

error, 𝑒𝑟𝑟𝑜𝑟𝑣𝑎𝑙, with the threshold 𝛤 = 0.7 in equation (27). The black dots represent the dominated 

solutions in the multiple-optimization space. The three red dots of the non-dominated solutions are 

from SGM graphs of SGM(25), SGM(47) and SGM(65). The remaining non-dominated solutions 

(i.e., solutions along the Pareto front) are represented by the green dots. Figure 2 (b) shows the 

comparison of the mean test error associated each method. The mean test error is calculated based 

on 500 individual test errors, 𝑒𝑟𝑟𝑜𝑟𝑡𝑒𝑠𝑡, each of which is computed based on the parameters from 

one random sampling from the training and validation data set but using the same testing data set.  
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At the top portion of the Pareto front (e.g., green and red dots) in Figure 2 (a), large validation 

errors occur when the graphs are very sparse. But the error decreases quickly as the number of 

edges increases until about 44 edges, from where to about 92 edges, the change in error is 

negligible. At 93 edges there is a noticeable decrease in the validation error.  From 93 to about 211 

edges the change in validation error is negligible again.  The next set of non-dominated solutions 

is from 211 edges onward with a slight decrease in the validation error where the Pareto front 

becomes nearly flat and reaches the minimum validation error at 222 edges. For this study region, 

it appears that a good trade-off between the sparsity and validation error stands at about having 44 

or 45 edges; starting with the number of edges around 45, an increase in the number of edges only 

reduces the error slightly. When the number of edges increases to about 93 or more, the 

improvement in error reduction becomes almost unnoticeable. Figure 2 (a) also shows that the 

relationship between the error and the number of edges has an L-shape in which the error 

approaches almost a constant when the graph grows to have 93 edges. The few “sudden” 

discontinuities observed in Figure 2 (a) are due to the nature of the error function which includes 

conditional terms above/below a threshold, Γ in equation (27), that might affect continuity of the 

total validation error when the threshold bound is reached. The complete graph with 561 edges is 

not in the set of non-dominated solutions, which means that using all of the gauges available in the 

network to infer the streamflow for the target gauge gives worse results than many of the sparser 

graphs. This can be attributed to the noisy correlation calculated due to the large noises involved 

in the data. In fact, Figure 2 (a) shows that using graphs with more than 222 edges is unlikely to 

reduce the validation error anymore. This result clearly shows that more complexity is not 

necessarily better.  
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In Figure 2 (b) the mean test errors for three different levels of sparsity are represented by the three 

red, green, and magenta bars for the graphs of 𝑮𝑠𝑔𝑚, 𝑮𝑑𝑖𝑠𝑡, and 𝑮𝑐𝑜𝑟𝑟, respectively. It shows that 

the mean test errors are the lowest for the inferred daily streamflow time series using 𝑮𝑠𝑔𝑚, and 

are the highest based on 𝑮𝑑𝑖𝑠𝑡 , with 𝑮𝑐𝑜𝑟𝑟 from the pair-wise correlation-based approach lying in 

the middle.  

 

The statistical significance test of the results shown in Figure 2 (b) was performed as follows: six 

single tailed t-tests were run using a significance level of 0.05, and a null hypothesis that the mean 

test error for the SGM graphs is equal to the Dist or Corr graphs; the null hypothesis was rejected 

in all cases (p-value < 0.0001), and the alternative hypothesis was accepted. That is, the mean error 

with the testing data set from SGM are all significantly lower than their counterparts from Dist 

and Corr. In other words, the results obtained using our new donor gauge selection method with 

the SGM algorithm, as shown in Figure 2 (b), are significantly better than those of using either the 

least distance-based or the maximum correlation-based approaches.  

 

Figure 2 (c) shows the relationships between the mean test error and the number of training days 

used for Dist (green), Corr (magenta) and SGM (red), respectively. The length of the training set 

varies from 45 days to 3650 days (ten years). The fifth point in each curve in Figure 2 (c) 

corresponds to 730 days (about two years). It shows that two years of training data are almost as 

good as the full range of 10 years. This result is important because for the case of ungauged basins, 

it is possible to place a temporary gauge station to collect data for about two years and then use 

the collected data to train the algorithms presented in this work to infer the streamflow time series 
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for that specific ungauged location in the future provided no dramatic environment change occurs 

for the study region.  

 

Figure 3 presents graphs obtained using SGM, Dist, and Corr. Only the graphs corresponding to 

1-, 2-, and 3-donors per target site for Dist and Corr with their counterparts for SGM are plotted: 

green edges for Dist, magenta edges for Corr and red edges for SGM.  It can be observed that the 

graphs associated with each of the three approaches are different albeit some features in their 

graphic structures are similar.  

 

From the comparisons shown in Figure 2 (b) and the statistical significance testing results, it is 

clear that the new SGM method is the best of the three. This is because our new method with the 

SGM algorithm accounts for the dependence structure in the entire streamflow network based on 

the concept of conditional independence and employs the Glasso method to effectively extract 

such dependence structure by making the precision matrix sparse. Our results demonstrate that a 

good use of the conditional independence structure of the underlying streamflow network (i.e., use 

sparse precision matrix) is important and it outperforms the widely used pair-wise correlation-

based method (i.e., Corr) which only directly uses the local correlation information. Furthermore, 

the conditional independence structure embedded in the graph 𝑮𝑠𝑔𝑚 guarantees that all multiple 

donor gauges identified for each target gauge are not linearly dependent. If they were, some of 

these gauges would be conditionally independent to the target gauge given the other identified 

donor gauges, and therefore there would be no direct link(s) between such  gauge(s) and the target 

gauge in our 𝑮𝑠𝑔𝑚. However, for the Dist and Corr methods, the linear dependence issue is likely 

to occur among their identified multiple donors.  Our results also confirm that in comparison with 



 

39 

 

the distance-based method (Dist), the correlation-based method (Corr) performs much better as 

reported in the literature (e.g., Archfield & Vogel, 2010; Ergen & Kentel, 2016; He et al., 2011). 

Again, the different results are simply due to the different donor gauge selection methods as the 

inference method used is the same in all of the scenarios.  
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Figure 2. Result with the Ohio River Basin dataset. The training set is composed by a random 

selection of daily streamflow records between 1951 and 1970, while the validation set is composed 

by the remaining 50% dataset for the same time span. The test data set is composed by the most 

recent 10 years of data (i.e. 1971-1980).  (a) Validation error from the multi-objective optimization 

procedure of the SGM algorithm, between the observed and inferred daily streamflow time series 

versus the number of edges in the underlying graph. The black dots represent sub-optimal 

(dominated) solutions. The green dots represent the set of non-dominated (optimal) solutions. The 

red dots represent the graphs SGM(25), SGM(47) and SGM(65) with 25, 47 and 65 edges, 

respectively, chosen from the set of non-dominated solutions. (b) Comparison of the mean test 

error among our new method (SGM algorithm) and the other two donor gauge selection methods 

of the least distance (Dist) and maximum correlation (Corr) for 1, 2 and 3 donor gauges, 

respectively. From left to right, Dist(24) and Corr(24) with one donor gauge and their counterpart 

of SGM(25); Dist(43), and Corr(47) with two donor gauges and their counterpart of SGM(47); and 

Dist(65) and Corr(68) with three donor gauges and their counterpart of SGM(65). (c) Comparison 

of the mean test error as a function of the number of training days. Each point is calculated by 

averaging the values of the test error for 1-, 2-, and 3-donor gauges or their equivalent counterparts 

in the SGM case using a given number of training days. The series for Dist, Corr and SGM 

algorithm are depicted in green, magenta and red, respectively. The size of the training sets used 

is 45, 90, 180, 365, 730, 1095, 1460, 1825, 2190, 2555, 2920, 3285, and 3650 days, respectively.  
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Figure 3 – Comparison of the graphs generated by Dist on the left, the Corr in the center and SGM 

on the right, for 1 (on the top), 2 (in the middle) and 3 (at the bottom) donor gauges, respectively, 

for both Dist and Corr. The number of edges in the graphs for the ‘Dist’ and ‘Corr’ methods is 

fixed albeit depending on the number of donor gauges used to build it, as opposed to the graphs 

from the SGM algorithm, where the number of edges is selected from the set of non-dominated 

solutions to approximately match the sparsity of the ‘Dist’ and ‘Corr’ graphs for 1-, 2- and 3-donor 

gauges, respectively. (a) Dist(24) with a single donor gauge. (b) Corr(24) with a single donor 

gauge, (c) SGM(25) with 25 edges. (d) Dist(43) with two donor gauges. (e) Corr(47) with two 

donor gauges. (f) SGM(47) with 47 edges. (g) Dist(65) with three donor gauges. (h) Corr(68) with 

three donor gauges. (i) SGM(65) with 65 edges.   

 

6.2 Removal of gauges with least loss of information  

We demonstrate how easily our new method can be applied to gauge removal problems. One can 

simply take each of the nine graphs plotted in Figure 3 as the input separately to the Removal of 

Gauges (RG) algorithm given in Section 4.2. For this study the threshold value of 𝛿 used for 
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𝑀𝑟𝑒𝑚 in equation (34) was set to 0.7. While the results of RG algorithm indicate that there are 8 – 

16 gauges that are potentially removable, but only about 7 – 8 gauges of them can be inferred with 

an NSE higher than the set threshold value δ of 0.7 if removed.  It is important to note that the RG 

algorithm (i.e., Algorithm 2) does not use the δ. It simply tries to remove gauges until there are no 

more available gauges to be removed, i.e., until the current-queue in Algorithm 2 becomes empty. 

On the other hand, the threshold value δ is used to assess the number of gauges that can be removed 

with given confidence, i.e., when their corresponding NSEs are greater than or equal to δ. This is 

why there are 8-16 gauges can be removed using the RG algorithm, but only a sub-set of them 

(i.e., 7-8 gauges) satisfies NSE > 0.7.  

 

Figure 4 shows the results of comparison where removable gauges are represented by color-coded 

solid circles indicating their corresponding inference accuracy measured by an NSE value. NSE 

≥0.9 is drawn in blue; 0.8 ≤ NSE < 0.9 in green; 0.7 ≤ NSE < 0.8 in yellow; 0.6 ≤ NSE < 0.7 in 

orange; and NSE< 0.6 in red. From Figure 4, it can be clearly observed that, in general, more 

gauges are removable based on the SGM approach. Furthermore, for removing the same gauges 

by all three methods, the information lost is the lowest by the SGM method as there are more 

combined blue, green and yellow solid circles present in Figure 4 for the SGM method.   

 

Figure 5 (a) shows the average graph scores based on the 500 simulations with random sampling 

from the training and validation data sets but using the same testing data set for the single, two, 

and three-donor cases, respectively. Each of the graph scores is calculated using equation (34). It 

can be seen that the average graph scores are higher for the SGM approach than those of the other 

two approaches in all three cases (i.e., the single, two, and three donors). The SGM approach 
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significantly outperforms the other two methods in the case with two donors. Figure 5 (b) shows 

the mean graph score calculated by averaging the three average graph scores for each method. It 

can be seen that the mean graph score of 0.811 for the SGM method is the highest, the Corr method 

ranked second with 0.762, and the Dist method the lowest at 0.738. Figure 5 (c) shows a related 

but slightly different measure from that used for Figure 5 (a) in assessing the quality of the 

inference results for the estimated streamflow time series. In Figure 5 (c), the mean is taken from 

the eight removable gauges with the highest NSE for each of the donor scenarios. The SGM, again, 

has the highest mean among the top eight removable gauges. Similar to Figure 5 (b), Figure 5 (d) 

shows the mean NSE presented in Figure 5 (c) for each of the three methods. Clearly, the mean 

NSE for the top eight removable gauges for the SGM method is the highest. To further support the 

observed differences, single tailed t-tests are conducted in a pair-wise fashion, that is, each result 

is tested against results from each different method with compatible number of edges. The results 

show that all the differences as observed in Figures 5 (a), (b), (c) and (d) are all statistically 

significant at a significance level of 0.05.  
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Figure 4 – Comparison of the observed and inferred daily streamflow time series, in the test set 

(records between 1971 and 1980), for removable gauges estimated by the Removal of Gauges 

(RG) algorithm using the graphs in Figure 3 as inputs, with Dist on the left, Corr in the middle, 

and SGM on the right, for donor gauges of 1 (on the top), 2 (in the middle) and 3 (at the bottom), 

respectively for Dist and Corr methods. Note that for the SGM case, the number of donor gauges 

are not fixed but automatically determined. The target gauges chosen by the RG algorithm are 

highlighted in blue for Nash Sutcliffe efficiency (NSE) ≥ 0.9, in green for 0.8 ≤ 𝐍𝐒𝐄 < 0.9, in 

yellow for 0.7  ≤ 𝐍𝐒𝐄 < 0.8, in orange for 0.6 ≤ 𝐍𝐒𝐄 < 0.7, and in red for NSE < 0.6. (a) Dist(24) 

(b) Corr(24) (c) SGM(25) (d) Dist(43) (e) Corr(47) in which five edges are marked in the plot as: 

1 (NWBI3-SERI3), 2 (BAKI3-SERI3), 3 (ALPI3-BAKI3), 4 (NWBI3-BAKI3), and 5 (ALPI3-

SERI3) (f) SGM(47) in which three edges are marked in the plot as: 1 (NWBI3-SERI3), 2 (BAKI3-

SERI3), and 3 (ALPI3-BAKI3). (g) Dist(65) (h) Corr(68) (i) SGM(65).   
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Figure 5 - Comparison of the mean inference accuracy on the removable gauges with the RG 

algorithm applied to graphs corresponding to methods of SGM, Dist and Corr. (a) Averaged graph 

score calculated by equation (34) for each of the individual graphs based on 500 simulations with 

random samples from the training and validation data sets but with the same testing data set (i.e., 

1971 – 1980).  (b) The mean graph score averaged over the 1-, 2- and 3-donors based on values 

shown in (a) for each method. (c) Averaged NSEs of the eight removable gauges with the highest 

NSEs based on the 500 simulations. (d) The mean NSE averaged over the 1-, 2- and 3-donors 

based on values shown in (c) for each method. 

 

6.3 Insights provided by SGM 

In general, the pair-wise correlation-based approach (Corr) is again more accurate than the 

distance-based approach (Dist), since the former requires more and better data to establish the 

correlations. From the correlation perspective, the fundamental difference between the SGM 
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method and the widely used Corr method is that the Corr method uses the pair-wise correlation to 

determine the edges between the gauges, whereas the new SGM method takes advantage of the 

conditional independence structure among all gauges in our graphical model. Due to the pair-wise 

correlation nature of the Corr method, any gauge may have a decent pair-wise correlation with a 

relatively large number of other gauges where some of these pair-wise correlations are actually 

redundant. In contrast, the new SGM method is able to reveal the conditional independence 

structure among the gauges within the entire network, and therefore only identifies those gauges 

that can make unique (i.e., not redundant) contributions to the estimation for target gauge. This 

desirable characteristic of the SGM method enables to capture the cleaner and more accurate 

dependence structure for each individual gauge in the context of the underlying gauge network. 

This, in turn, also leads to the identification of more gauges that can be inferred without a 

significant loss in accuracy. Our results in Figures 4 and 5 have shown that indeed the accuracy of 

the inferred streamflow time series is improved and that the number of potentially removable 

gauges is also increased compared to the Corr approach.  

 

One clear example of the difference between the Corr and the SGM methods is manifested by the 

relationship identified between the sites ALPI3, BAKI3, NWBI3 and SERI3 shown in Figures 4 

(e) and 4 (f). BAKI3, with a catchment area of 4421 Km2, is a sub-basin of SERI3 with a catchment 

area of 6063 Km2 along the main channel. Therefore, the catchment area of BAKI3 accounts for 

73% of the catchment area of SERI3 and the correlation between them is the highest among the 

sites considered in the study area. The edge between them is present in all of the nine graphs shown 

in Figure 4. The sites BAKI3 and SERI3 are also highly correlated to the sites ALPI3 and NWBI3. 

Figure 4 (e) shows the graph for Corr(47), with five edges: 1 (NWBI3-SERI3), 2 (BAKI3-SERI3), 
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3 (ALPI3-BAKI3), 4 (NWBI3-BAKI3), and 5 (ALPI3-SERI3). Figure 4 (f) shows the graph for 

SGM(47) with only three edges which are the subset of the edges with Corr(47), by having edges 

NWBI3-BAKI3 and ALPI3-SERI3 dropped. It is safe for SGM(47) to drop these two edges as 

NWBI3 is conditionally independent to BAKI3 given SERI3, and ALPI3 is conditionally 

independent of SERI3 given BAKI3. Figures 5 (a) and 5 (c) show that among the nine graphs 

shown in Figure 4 the graph with the best trade-off between model complexity and accuracy is 

SGM(47).  

 

Figure 6 shows the comparison between the observed and inferred daily streamflow time series 

based on the testing set for the eight streamflow gauges with the highest NSE, when SGM(47), 

shown in Figure 4 (f), is chosen as the underlying graphical model.   

 



 

48 

 

 

 

Figure 6. Scatter plots between the observed and inferred daily streamflow time series over the 

test period of 1971-1980 (i.e., test data set). Each plot represents one of the eight gauges with the 

highest NSE values among the removable gauges shown in Figure 4 (f).  The RG algorithm is used 

upon SGM(47) to identify the gauges to be removed. The MLR with equations (31) and (32) is 

used to infer the daily streamflow shown in the plots. The root mean squared error (RMSE) and 

the NSE are shown for each gauge over the inferred 10 years of 1971-1980. At the top of each plot, 
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the name of the removed gauge is indicated on the left side of the divide line “|”, and the names of 

gauges used to infer the streamflow of the removed gauge are indicated on the right side of the 

divide line “|”.  

 

For each of the 34 gauges, their corresponding watersheds were delineated using a Geographical 

Information System (GIS) to facilitate our understanding of the identified connections and isolated 

gauges based on the SGM method. Figure 7 shows the elevation (NED: National Elevation 

Dataset), slope (derived from elevation data), soil type (Hybrid STATSGO/FAO Soil Texture) and 

land cover (MRLC: Multi-Resolution Land Characteristics Consortium) along with the selected 

non-dominated graph SGM(25).  

 

On SGM(25), NHSO1 and WUNO1 are two isolated sites. Isolated sites should be maintained as 

much as possible to avoid loss of important regional information. Less sparse graphs, such as 

SGM(47) and SGM(65), have some marginal benefits from having some edges to those sites. 

NHSO1 has a significantly different land use comparing to other watersheds in the study region. 

For NHSO1, more than 50% of its drainage area is developed while others have less than 20%. 

Thus, the hydrological response of this watershed to precipitation events is very different from 

other watersheds.  In the case of WUNO1, its isolation in SGM(25) appears to be related to a 

combination of its geographic location, different land use from its neighboring watersheds, and its 

proximity to the main channel of the Ohio River. This last factor seems to be a natural separator 

for it. There are no edges crossing the Ohio River on the selected sparse graph, SMG(25), as shown 

in Figure 3 (c).  

 

The factors that impact the connections (i.e., conditional dependence) between gauges are complex 

and it is the integrated effect (e.g., the streamflow in this case) that determines the conditional 
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dependence between the gauges. The prime factors that contribute to the generation of streamflow 

in the study area seem to be the elevation, slope and catchment area. There is a relatively high 

correlation between the specific discharge (i.e., streamflow divided by the catchment area) and the 

elevation (0.79), and between the specific discharge and the slope (0.76). The land cover also plays 

an important role, as the edges in SGM(25) are usually present between sites with the same land 

cover class as shown in Figure 7 (d). 

 

Results here have demonstrated again that it can be difficult to justify the use of relatively simple 

and explicit functions to relate streamflow to different factors such as land cover, slope, soil type, 

drainage size in identifying their connections for complicated situations like this study case. This 

point has previously been demonstrated in the literature (e.g., Parada and Liang, 2010).  On the 

other hand, these factors may shed lights on why certain links exist while others do not. For 

example, the land cover types, elevation, and slopes appear to play more important roles than the 

soil type in this study region. It is worth pointing out that gauges are sometimes connected even if 

the correlations between them are not very high. They are connected simply because there are no 

other available gauges nearby with acceptably higher (conditional) dependence. In summary, the 

chosen graph SGM(25) does not have any edges crossing the Ohio River; there exist two gauges 

isolated from the rest, those gauges are geographically far from other gauges and one of them has 

a significantly different land use category distribution with more than 50% of its area being 

developed. Most of the area of the Ohio River basin belongs to the same soil type category and 

therefore, the soil type does not appear to contribute to the identification of the hydrologic 

similarity between sub-basins in this study case. On the other hand, most of the edges on the 

selected underlying graph SGM(25) are between watersheds with the same land use category. 
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These results suggest that in the Ohio River basin, the land use is an important factor for the 

hydrologic similarity among the sub-basins. 

 

 

 

 

Figure 7. Spatial distributions of the elevation, slope, soil type, and land cover over the study 

region structured with graph SGM(25). (a) Elevation map showing a cluster of 4 categories 

indicated by a filled circle of cyan, green, yellow and red respectively. These different colors 

represent, respectively, ”very low”, “low”, “high” and “very high” elevations based on the mean 

elevation of their corresponding watersheds. (b) Slope map showing a cluster of 4 categories 

indicated by a filled circle of blue, green, yellow and red respectively. The colors represent, 

respectively, ”very low”, “low”, “high” and “very high” slope based on the mean slope of their 

corresponding watersheds. (c) Soil type map showing a cluster of 2 categories indicated by a filled 

circle of dark yellow and light yellow, respectively. These two colors represent, respectively, the 

“silt loam” and “loam” soil types. (d) Land cover map showing a cluster of 4 categories indicated 

by a filled circle of pink, green, yellow and brown, respectively. These different colors represent, 
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respectively, the “developed, open space”, “deciduous forest”, “pasture/hay” and “cultivated 

crops” land cover types. 

  

7. Conclusions 

We present a novel donor gauge selection method that utilizes the global conditional independence 

structure of a streamflow network based on graphical Markov modeling. An undirected graphical 

model known as Gaussian Graphical model is first built by mapping all gauges in the network into 

vertices, and each pair of vertices is linked by an edge if the streamflow time series recorded at 

their corresponding gauges are conditionally dependent. This conditional independence structure 

is extracted from the inverse of the data covariance matrix, i.e., the precision matrix, since the 

covariance matrix does not present such conditional independence information. Because of the 

high level of noises included in the streamflow data, the precision matrix directly computed from 

the covariance matrix is not sparse, typically leading to a dense streamflow network graph. The 

Graphical Lasso (Glasso) method is employed to make the graph sparse so that the conditional 

independence structure defined in the streamflow network is sharpened. At the core of our method 

is the Selection of Graph Model (SGM) algorithm that we developed to address the specific 

characteristics of the donor gauge selection problem: First, there must be some threshold level of 

the conditional dependence determined by parameter 𝜏 in equation (22) and below which a link is 

not warranted. Also, an L1 norm regularization parameter 𝜆 in equation (23) is needed in the 

Glasso method to trim the graph sparse while using a different 𝜆 results in a different graph. 

Second, a suitable set of donor gauges taken from candidate graphs should be the set where its 

streamflow data can be used in inferring those at the target gauge site within acceptable errors. By 

identifying complexity and error associated with each graph, our SGM algorithm formulates an 

iterative multi-objective optimization procedure: These two parameters, 𝜆 and 𝜏 are determined by 
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minimizing both the complexity, i.e., the number of edges of the underlying graph, and the error 

with the validation data set to achieve a balance between the sparsity/connectivity and accuracy 

for each graph.  

 

We have also developed a new algorithm, called the Removal of Gauges (RG) algorithm, for use 

in streamflow gauge removal application, should there be such a need to discontinue gauges due 

to budget constraints. The RG algorithm identifies a set of gauges for removal from an existing 

hydrometric streamflow network with the least loss of information using the SGM algorithm.   

 

In this study, the strengths and effectiveness of our new donor gauge selection method are 

illustrated through two types of applications, record extension and gauge removal, by using daily 

streamflow data from a hydrometric network of 34 gauges from the Ohio River Basin between 1 

January 1950 and 31 December 1980.  We have demonstrated that the selected donor gauges based 

on the graphs generated by our SGM algorithm lead to more accurate estimates of the daily 

streamflow time series than the donor gauges selected from the conventional distance-based (Dist) 

method and the pair-wise correlation-based (Corr) method. In addition, we have illustrated that the 

graph with 47 edges selected based on the SGM algorithm has a good trade-off/balance between 

the network sparsity and the estimation error for the Ohio River basin. The graphs obtained also 

shed lights on why different gauges are conditionally dependent. For the record extension/gap-

filling application, the inferred daily streamflow at the target gauges based on the selected donor 

gauges from our SGM algorithm are compared with those from the other two methods. The 

comparisons are carried out for three cases which correspond to using 1-, 2-, and 3-donors. In all 

of these three cases, the inferred streamflow based on our new donor gauge selection method 
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outperforms the others as shown in Figure 2 (b). It is worth pointing out that once the donor gauges 

are identified, one may apply any inference method, including the advanced machine learning 

methods, to estimate the streamflow for the target gauges. In this study, we applied a regression-

based inference method described in Section 2 because of its simplicity and convenience.  

 

By applying our RG algorithm, we have also demonstrated (e.g. Figure 4 (f) and Figure 5 (c)) that 

eight out of 34 (24%) gauges can potentially be removed (NSE ≥ 0.70), from which a group of six 

gauges (18%) can be inferred with relatively high accuracy (NSE ≥ 0.8) using the donor gauges 

identified by the SGM algorithm. In contrast, only seven gauges (21%) can be removed with NSE 

≥  0.70 for either the least distance (Dist) method or maximum pair-wise correlation (Corr) 

methods, in the two donor gauge cases. Furthermore, the averaged graph score (i.e., equation (34)) 

for Dist and Corr methods for the two donor gauge cases are much lower than that from our new 

method as observed in Figure 5 (a), indicating that the sum of the NSEs are much lower if the same 

number of gauges are removed. In the gauge removal comparison study, we again used the same 

regression-based inference method for all three different methods. Depending on the number of 

gauges needed for removal, a balance between the inference accuracy and the gauge removal 

numbers can be achieved as demonstrated. In general, the sparser the graphs are, the more gauges 

can be removed.  

 

Our study also demonstrates that the complete graph (i.e., with 561 edges) is not included in the 

set of non-dominated solutions of our graphical modeling, indicating that having more donor 

gauges does not achieve optimum results due to significantly more noises, and therefore, 

inconsistency, introduced by the data and the inclusion of redundant information. Therefore, not 
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only can a suitable sparse graph identify more desirable donor gauges and thus achieve better 

inferring results, through finding the most essential correlations from a global point of view, but 

also it is more practical because the sparse graph gives a small but most relevant number of donor 

gauges for inferring the streamflow for the target gauges and requires a fewer observations to 

establish the relationship through the data training process. Furthermore, a graph with a fewer 

edges can reduce overfitting.  

 

Sensitivity regarding the length of daily data required for achieving a stable SGM graph was 

investigated. Our results (see Figure 2 (c)) show that a length of about 2-year daily data is needed. 

Such a short data length requirement has a good implication for potential applications to ungauged 

basins. For example, one can install a temporary streamflow gauge to collect data for about two 

years and then use the collected data in combination with data from other existing gauges in the 

network to obtain the SGM graph. Then, daily streamflow time series for the ungauged basin can 

be inferred using the methodology described in this study as long as there is no dramatic 

environment change over the study region. This potential application will be tested and its results 

will be compared to other methods for inferring the daily streamflow data at the ungauged basins 

in the future.  

 

There are some requirements that have to be met in applying our method. First, a historical record 

of two years or more is required to characterize the relationships between the target and donor 

gauges. Second, the probability distribution of the daily streamflow should be well approximated 

by a log-normal distribution.  This, however, is not an issue even if the log-normal assumption 

does not hold as it can readily be amended using a common distribution transformation method. It 
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is also to be noted that even though the streamflow inference was performed in this study using an 

ordinary least squares MLR approach because of its simplicity and convenience, other inference 

approaches can also be used once the sets of donor gauges for each target gauge are identified by 

our new SGM algorithm. 

 

The most computationally intensive part in our new method lies at the execution of the SGM 

algorithm, for it calls the Graphical Lasso method multiple times to find the optimal combination 

of the regularization parameter 𝜆 and truncation parameter 𝜏. Even so, in our Ohio River Basin 

network application, it only took 18 minutes to finish identifying the donor gauge selection (e.g., 

Figure 2 (a)) using a 2016 MacBook Pro. It is possible to further cutting down the computational 

efforts. In this work, we performed a thorough search for the regularization parameter between 0 

and 1, but it was later found that its best range was between 0.01 and 0.1, which means that 

significant speedup could be achieved if one just search within this bound instead of values over a 

wider bound. Also, we performed in this study using an almost exhaustive search for the truncation 

parameter by going from a very sparse graph with only 10 edges to a full graph with 561 edges 

(for a graph of 34 nodes) as shown in Figure 2 (a). In fact, sparser graphs may achieve better 

overall results as discussed above; so, in the future, the computational time can be reduced.  

 

In this work, only contemporaneous daily streamflow records are considered. The methods 

explained here can be adapted to include lagged records for a finite set of days. However, for the 

sake of simplicity such approach was not followed. Related work (Farmer, 2016; Skøien & 

Blöschl, 2007) found only marginal improvements when considering streamflow travel times in 

geostatistical analysis.  
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