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Abstract 

Synchronization in neural system plays an important role in many brain functions. Synchronization 
in the gamma frequency band (30Hz-100Hz) is involved in a variety of cognitive phenomena; 
abnormalities of the gamma synchronization are found in schizophrenia and autism spectrum 
disorder. Frequently, the strength of synchronization is not very high and is intermittent even on 
short time scales (a few cycles of oscillations). That is, the network exhibits intervals of 
synchronization followed by intervals of desynchronization. Neural circuits dynamics may show 
different distributions of desynchronization durations even if the synchronization strength is fixed. 
In this study, we use a conductance-based neural network exhibiting pyramidal-interneuron 
(PING) gamma rhythm to study the temporal patterning of synchronized neural oscillations. We 
found that changes in the synaptic strength (as well as changes in the membrane kinetics) can alter 
the temporal patterning of synchrony. Moreover, we found that the changes in the temporal pattern 
of synchrony may be independent of the changes in the average synchrony strength. Even though 
the temporal patterning may vary, there is a tendency for dynamics with short (although potentially 
numerous) desynchronizations, similar to what was observed in experimental studies of neural 
activity synchronization in the brain. Recent studies suggested that the short desynchronizations 
dynamics may facilitate the formation and the break-up of transient neural assemblies. Thus, the 
results of this study suggest that changes of synaptic strength may alter the temporal patterning of 
the gamma synchronization as to make the neural networks more efficient in the formation of 
neural assemblies and the facilitation of cognitive phenomena. 

Synchronization of neural oscillations is a common neural phenomenon believed to be 
relevant to a large range of neural functions and dysfunctions. Neural synchrony at rest is 
rarely perfect and fluctuates in time. Few long desynchronizations and many short 
desynchronizations may lead to different functional consequences even if the average 
synchrony strength is not changed. This study explores the potential network mechanisms of 
different temporal patterns of neural synchrony in the model of synchronized neural gamma 
oscillations, which are related to cognitive function of the brain. The study shows how 
gamma rhythm can be partially synchronized with specific temporal patterning and how this 
temporal patterning of gamma synchronization is regulated by connectivity strength and 
other factors. Furthermore, the study shows how temporal patterning of neural 
synchronization can be varied independently of the synchrony strength. Understanding the 
mechanisms of temporal patterning of neural synchrony may help to understand its relation 
to neural function. 
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1. INTRODUCTION 
 
Synchronization in neural networks is a widespread phenomenon that is important for a variety of 
brain functions and dysfunctions. Through synchrony, collective behavior in neural networks can 
be established; thus, synchrony may play an important role in memory, cognition, perception (e.g., 
Buzsáki and Draguhn, 2004). Abnormal synchrony is found to be associated with different brain 
disorders such as Parkinson’s disease (Hammond, et al., 2007; Oswal et al., 2013; Rubchinsky et 
al, 2012), schizophrenia (Uhlhaas and Singer, 2010; Pittman-Poletta et al., 2015; Spellman and 
Gordon, 2015), and autism (Sun et al., 2012; Malaia et al., 2020). Synchronization in the gamma 
frequency band is a focus of many studies as it is believed to be responsible for the facilitation of 
interneuronal communication for cognition (Fries, 2015). 
 
Synchronization in the brain networks is not a perfect synchronization, at least not at the rest state. 
While this may be affected by many factors, when a network shows a moderate synchrony strength, 
it goes in and out of the synchronized state. Networks with similar synchrony strength can have 
completely different synchrony pattern. One can have many brief desynchronization events or a 
few long desynchronization events even if the synchrony strength is the same. Given the 
importance of synchrony in the brain for behavior, the temporal patterning of synchrony on short 
time scales should be important. 
 
Techniques to detect and analyze the temporal patterning of synchronous dynamics were recently 
developed (Park et al., 2010; Ahn et. al., 2011), using the first-return maps for the phases of 
oscillations. These techniques were applied to experimental data (e.g., Park et al., 2010; Ahn et 
al., 2013, 2014; Ratnadurai-Giridharan et al., 2016; Malaia et al., 2020; Dos Santos Lima et al., 
2020); it was found that the patterning of neural synchrony (even if the overall synchrony strength 
is not changed) may be correlated with behavior (Ahn et al., 2014, 2018; Malaia et al., 2020). One 
of the interesting observations of all these studies was that the temporal patterning of 
synchronization was very specific: oscillations go out of synchrony predominantly for very short 
amount of time (although they may do so rarely or frequently resulting in high or low overall 
synchrony). 
 
In the present study, we use these analysis techniques to investigate the temporal patterning of 
synchronization in the gamma frequency band. We consider a model of two connected circuits 
exhibiting pyramidal-interneuron gamma (PING) rhythm. The properties of gamma rhythm in 
these circuits rely upon synaptic time scales and synaptic strength of excitatory and inhibitory 
connections (e.g., Ementrout and Kopell, 1998; Buzsáki and Wang, 2012; Borgers, 2017). We 
hypothesize that inhibitory and excitatory synaptic connections do not only change gamma 
oscillations and their synchrony level but also alter the temporal pattern of synchrony. While the 
network we use may be viewed as a somewhat simplistic representation of gamma rhythm in the 
brain, our objective is to see if and how synaptic and cellular properties may potentially affect the 
temporal structure of synchrony as a proof of principle. We found that the temporal patterning of 
synchrony can be changed by the synaptic and cellular changes and can even be altered 
independently of the overall synchrony strength. We further conclude with the discussion of the 
modeling results in the context of available experimental analysis of the temporal patterning of 
neural synchronization. 
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2. METHODS 
 
Our network consists of two synaptically connected circuits, each of which generates gamma-band 
activity in isolation. Each circuit includes two excitatory neurons and two inhibitory neurons and 
is adapted from (Borgers, 2017). Figure 1A,B illustrates the schematic of the network. 
 
 
2.1. Model neurons and synapses 
 
Each model neuron is represented by a single compartment conductance-based model (see, e.g., 
Izhikevich, 2007; Ermentrout and Terman, 2010). Transmembrane voltage is given by: 
 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐾𝐾 − 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 (1) 

 
 
with the membrane currents described below. 𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚3ℎ(𝑑𝑑 − 𝑣𝑣𝑁𝑁𝑁𝑁) is the transient sodium 
current. The activation is considered to be instantaneous and 𝑚𝑚 is taken as 𝑚𝑚 =
𝛼𝛼𝑚𝑚(𝑑𝑑)

(𝛼𝛼𝑚𝑚(𝑑𝑑) + 𝛽𝛽𝑚𝑚(𝑑𝑑))� . The inactivation function ℎ obeys first-order kinetics: 
 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝛼𝛼ℎ(𝑑𝑑)(1− ℎ) − 𝛽𝛽ℎ(𝑑𝑑)ℎ (2) 

 
 
𝐼𝐼𝐾𝐾 = 𝑔𝑔𝐾𝐾𝑛𝑛4(𝑑𝑑 − 𝑣𝑣𝐾𝐾) is the persistent potassium current, and the activation function 𝑛𝑛 obeys first-
order kinetics: 
 

𝑑𝑑𝑛𝑛
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑠𝑠(𝑑𝑑)(1− 𝑛𝑛) − 𝛽𝛽𝑠𝑠(𝑑𝑑)ℎ (3) 

 
 
Here, 𝛼𝛼∗ and 𝛽𝛽∗ are probabilities of opening and closing of the corresponding channel, respectively. 
Finally, 𝐼𝐼𝐿𝐿 = 𝑔𝑔𝐿𝐿(𝑑𝑑 − 𝑣𝑣𝐿𝐿) is the leak current, and 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 is a constant applied current. 
 
Excitatory neurons and inhibitory neurons have different set of parameters and 𝛼𝛼∗ and 𝛽𝛽∗ functions. 
Excitatory neurons follow reduced Traub and Miles model (Traub and Miles, 1991) with 𝐶𝐶𝑚𝑚 =
1 𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2, 𝑣𝑣𝑁𝑁𝑁𝑁 = 50 𝑚𝑚𝑑𝑑, 𝑣𝑣𝐾𝐾 = −100𝑚𝑚𝑑𝑑, 𝑣𝑣𝐿𝐿 = −67𝑚𝑚𝑑𝑑,𝑔𝑔𝑁𝑁𝑁𝑁 = 100 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2,𝑔𝑔𝐾𝐾 = 80 𝑚𝑚𝑚𝑚/
𝑐𝑐𝑚𝑚2,𝑎𝑎𝑛𝑛𝑑𝑑 𝑔𝑔𝐿𝐿 = 0.1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2. The 𝛼𝛼∗(𝑑𝑑) and 𝛽𝛽∗(𝑑𝑑) functions are given below: 
 

𝛼𝛼𝑚𝑚(𝑑𝑑) =
0.32(𝑑𝑑 + 54)

1 − exp �−𝑑𝑑 + 54
4 �

          𝛽𝛽𝑚𝑚(𝑑𝑑) =
0.28(𝑑𝑑 + 27)

exp �𝑑𝑑 + 27
5 � − 1

(4) 
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𝛼𝛼ℎ(𝑑𝑑) = 0.128 exp �−
𝑑𝑑 + 50

18
�            𝛽𝛽ℎ(𝑑𝑑) =

4

1 + exp �−𝑑𝑑 + 27
5 �

(5) 

 

𝛼𝛼𝑠𝑠(𝑑𝑑) =
0.032(𝑑𝑑 + 52)

1 − exp �−𝑑𝑑 + 52
5 �

           𝛽𝛽𝑠𝑠(𝑑𝑑) = 0.5ex p �−
𝑑𝑑 + 57

40
� (6) 

Inhibitory neurons follow Wang-Buzsáki model (Wang and Buzsáki, 1996) with 𝐶𝐶𝑚𝑚 =
1 𝜇𝜇𝜇𝜇/𝑐𝑐𝑚𝑚2, 𝑣𝑣𝑁𝑁𝑁𝑁 = 55 𝑚𝑚𝑑𝑑, 𝑣𝑣𝐾𝐾 = −90 𝑚𝑚𝑑𝑑, 𝑣𝑣𝐿𝐿 = −65 𝑚𝑚𝑑𝑑,𝑔𝑔𝑁𝑁𝑁𝑁 = 35 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2,𝑔𝑔𝐾𝐾 = 9 𝑚𝑚𝑚𝑚/
𝑐𝑐𝑚𝑚2,𝑎𝑎𝑛𝑛𝑑𝑑 𝑔𝑔𝐿𝐿 = 0.1 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2. The 𝛼𝛼∗(𝑑𝑑) and 𝛽𝛽∗(𝑑𝑑) functions are given below: 
 

𝛼𝛼𝑚𝑚(𝑑𝑑) =
0.1(𝑑𝑑 + 35)

1 − exp �−𝑑𝑑 + 35
10 �

          𝛽𝛽𝑚𝑚(𝑑𝑑) = 4ex p �−
𝑑𝑑 + 60

18
� (7) 

 

𝛼𝛼ℎ(𝑑𝑑) = 0.35ex p �−
𝑑𝑑 + 58

20
�           𝛽𝛽ℎ(𝑑𝑑) =

5

1 + exp �−𝑑𝑑 + 28
10 �

(8) 

 

𝛼𝛼𝑠𝑠(𝑑𝑑) =
0.05(𝑑𝑑 + 34)

1 − exp �−𝑑𝑑 + 34
10 �

           𝛽𝛽𝑠𝑠(𝑑𝑑) = 0.625ex p �−
𝑑𝑑 + 44

80
� (9) 

  
 
The synaptic current is given as  𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠(𝑑𝑑) (𝑑𝑑𝑎𝑎𝑝𝑝𝑠𝑠𝑝𝑝 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠). Here, 𝑑𝑑𝑎𝑎𝑝𝑝𝑠𝑠𝑝𝑝 is the potential of 
the postsynaptic cell, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 is the reverse synaptic potential, and 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 is the synaptic strength. 
Synaptic gating variable 𝑠𝑠(𝑑𝑑) follows first order kinetics equation (Izhikevich, 2007; Ermentrout 
and Terman, 2010): 
 

𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝐻𝐻�𝑑𝑑𝑎𝑎𝑝𝑝𝑝𝑝�
1 − 𝑠𝑠
𝜏𝜏𝑝𝑝

−
𝑠𝑠
𝜏𝜏𝑑𝑑

(10) 

 
where 𝐻𝐻(𝑑𝑑𝑎𝑎𝑝𝑝𝑝𝑝) = (1 + 𝑑𝑑𝑎𝑎𝑛𝑛ℎ(𝑑𝑑𝑎𝑎𝑝𝑝𝑝𝑝/4))/2 is a sigmoidal function of the presynaptic neuron 
potential 𝑑𝑑𝑎𝑎𝑝𝑝𝑝𝑝, and 𝜏𝜏𝑝𝑝 , 𝜏𝜏𝑑𝑑 are synaptic rise and synaptic decay time constants, respectively. AMPA-
receptor-mediated excitatory synapse has 𝜏𝜏𝑝𝑝 = 0.1 𝑚𝑚𝑠𝑠, 𝜏𝜏𝑑𝑑 =  3 𝑚𝑚𝑠𝑠, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 = 0 𝑚𝑚𝑑𝑑. GABA-
receptor-mediated inhibitory synapse has 𝜏𝜏𝑝𝑝 = 0.3 𝑚𝑚𝑠𝑠, 𝜏𝜏𝑑𝑑 =  9 𝑚𝑚𝑠𝑠, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 = −80 𝑚𝑚𝑑𝑑. These 
parameters are taken from (Borgers et al., 2012; Borgers, 2017).  
 
 
2.2. Network connectivity 
 
The model is comprised of two circuits with two excitatory neurons (E neurons) and two inhibitory 
neurons (I neurons) in each circuit. Synaptic connection strength within circuit is denoted as 
𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔∗, and 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐∗ is connection between circuit, see Figure 1. Synaptic connection 
strength is measured in 𝑚𝑚𝑚𝑚/𝑐𝑐𝑚𝑚2; for the brevity we will not use the units of measurements when 
we refer to synaptic strength. It has been pointed out that EE connection should not play a 
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significant role in gamma oscillation (Borgers, 2017; Ermentrout and Kopell, 1998); thus, we set 
𝑔𝑔𝐸𝐸𝐸𝐸 = 𝑐𝑐𝐸𝐸𝐸𝐸 = 0. All other connections between neurons are included in the model, and there are 
no recurrent connections. 
 
Within each circuit, there are inhibitory synapses between I neurons as well as from I to E neurons, 
and excitatory synapses from E to I neurons. In the full network (two connected circuits), each E 
neuron receives inhibitory inputs from two I neurons of the same circuit (𝑔𝑔𝐼𝐼𝐸𝐸) and two I neurons 
of the other circuit (𝑐𝑐𝐼𝐼𝐸𝐸). Each I cell receives excitatory inputs from two E neurons of the same 
circuit (𝑔𝑔𝐸𝐸𝐼𝐼) and two E neurons of the other circuit (𝑐𝑐𝐸𝐸𝐼𝐼), inhibitory inputs from the other I neuron 
of the same circuit (𝑔𝑔𝐼𝐼𝐼𝐼) and two I neurons of the other circuit (𝑐𝑐𝐼𝐼𝐼𝐼). The schematic of the model is 
summarized in Fig. 1A,B. The default values for synaptic connections between neurons are 𝑔𝑔𝐼𝐼𝐸𝐸 =
0.7,  𝑔𝑔𝐸𝐸𝐼𝐼 = 0.1,  𝑔𝑔𝐼𝐼𝐼𝐼 = 0.3, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑐𝑐𝐼𝐼𝐸𝐸 =  𝑐𝑐𝐸𝐸𝐼𝐼 = 𝑐𝑐𝐼𝐼𝐼𝐼 = 0.02. 
 
Neurons from each circuit have slightly different values of constant 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎, so that circuits have 
slightly different frequencies. In the slower circuit, E neurons have 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 = 4.5 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2 and 
4 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2, while I neurons have 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 = 0.1 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2 and 0.09 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2. In the faster circuit, E 
neurons have 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 = 5 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2 and 4.5 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2, while I neurons have 𝐼𝐼𝑁𝑁𝑎𝑎𝑎𝑎 = 0.08 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2 
and 0.07 𝑚𝑚𝐴𝐴/𝑐𝑐𝑚𝑚2. The slower circuit has 44.4 Hz average firing rate and the faster circuit fires 
has 46.8 Hz average firing rate.  
 
We vary the strength of different synapses as described below. Some current kinetics parameters 
are also varied in some numerical simulations as described below. Otherwise, parameters are kept 
at their default values. The system is solved using adaptive Runge-Kutta (4,5) method (MATLAB 
ode45 solver) for 25 𝑠𝑠. 
 
 
2.3. Time-series analysis 
 
To analyze the dynamics of synchronization between two circuits, we look at the relationship 
between the phases of oscillators on short time scales (one cycle of oscillations), employing the 
time-series analysis approach used in earlier experimental studies (Park et al., 2010; Ahn and 
Rubchinsky, 2013; Ahn et al., 2014) and computational studies (Ahn and Rubchinsky, 2017) of 
neural synchrony. We consider the time-series of total synaptic current into a neuron. In each 
circuit, we choose the excitatory neuron that has higher firing rate. First, we use Hilbert transform 
to compute the phase of each time-series, denoted as 𝜑𝜑1(𝑑𝑑) and 𝜑𝜑2(𝑑𝑑). Then, the average 
synchronization index (e.g., Pikovsky et al., 2004; Hurtado et al., 2004) is computed as: 
 

𝛾𝛾 = �
1
𝑁𝑁
�𝑒𝑒𝑖𝑖�𝜑𝜑1�𝑝𝑝𝑗𝑗�−𝜑𝜑2�𝑝𝑝𝑗𝑗��
𝑁𝑁

𝑗𝑗=1

� (11) 

 
where 𝜑𝜑1�𝑑𝑑𝑗𝑗� and 𝜑𝜑2�𝑑𝑑𝑗𝑗� are the phases of a neuron from circuit 1 (slower circuit) and a neuron 
from circuit 2 (faster circuit), respectively, at time 𝑑𝑑𝑗𝑗, N is the number of timepoints, and ||.|| denotes 
the magnitude of a complex number. The average synchronization index 𝛾𝛾 varies between 0 (no 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B2
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synchrony) and 1 (full synchrony). For intermediate values of 𝛾𝛾, the system is partially 
synchronized.  
 
We then proceed to characterize the temporal pattern of synchronization. The idea of this approach 
is first to find the presence of a synchronized state (which requires analysis of long time-series, as 
synchronization is not an instantaneous phenomenon) and then to track the oscillations on each 
cycle by checking if they are close to the synchronized state or not. The method for it has been 
described earlier in (Park et al., 2010; Ahn and Rubchinsky, 2013, 2017; Ahn et al., 2014). Briefly, 
a discrete set of phase difference values {𝜙𝜙𝑖𝑖} is obtained by recording the value of 𝜑𝜑2�𝑑𝑑𝑗𝑗� whenever 
𝜑𝜑1�𝑑𝑑𝑗𝑗� goes from negative to positive values. For partially synchronized dynamics, these values 
will cluster around some mean. Note that the mean is not necessarily zero and thus this analysis 
detects not only zero lag synchronization. If {𝜙𝜙𝑖𝑖} is more than 𝜋𝜋/2 away from its mean value, the 
signals are considered to be in the desynchronized state during the cycle 𝑖𝑖; otherwise, the signals 
are considered to be in the synchronized state. The number of consecutive cycles in which the 
signals are desynchronized is called the duration of desynchronization. 
 
The distribution of desynchronization durations provides a statistical description of the temporal 
patterning of synchronized dynamics. Examples of desynchronization durations distributions are 
shown in panels E, F, and G of Figures 2-10, where the horizontal axis in histograms measures the 
duration of desynchronizations in the number of cycles of oscillations. The number of 
desynchronization durations in each histogram usually varies around 300-600. Following earlier 
studies of these temporal patterns, we will use mode and a desynchronization ratio, as well as the 
average desynchronization duration. The mode tells us the most common desynchronization 
duration, and 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝 measures how frequent the modal value is. The value of 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  describes how 
much the system favors the most typical synchronizations; values closer to 1 show that most of the 
desynchronizations last as long as their mode. Desynchronization ratio is defined as the ratio of 
the relative frequency of desynchronized episodes lasting for 1 cycle of oscillations to the relative 
frequency of desynchronized episodes longer than 4 cycles (similar to how it was used in 
experimental studies by Ahn et al., 2014, 2018; Malaia et al., 2020). Thus, larger value of 
desynchronization ratio points to larger number of short desynchronizations.  
 
 
 
3. RESULTS 
 
In each network, we choose an excitatory neuron that has a higher firing rate and study the 
synchronized dynamics between them (although, to reflect the network dynamics, we report the 
average firing frequency in the network; both faster and slower neurons’ frequencies are close to 
each other). With weak to moderate connections between circuits, the network exhibits partially 
synchronized activity (see Fig. 1C for time-series for an example of voltage and raster plots of 
spiking in all neurons). This section presents the results of numerical simulations of how synaptic 
excitation and inhibition and kinetics of ionic channels affect the temporal patterning of this 
partially synchronized neural oscillations.  
 
 
3.1. Synaptic effects on the temporal pattern of synchronization 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B16
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447717/#B3
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The effect of excitation. 
 
We consider variation of both within-circuit excitatory connections 𝑔𝑔𝐸𝐸𝐼𝐼 and cross-circuit excitatory 
connections 𝑐𝑐𝐸𝐸𝐼𝐼. We vary 𝑔𝑔𝐸𝐸𝐼𝐼 from 0.08 to 0.21. In this range, the average firing frequency of the 
network stays in 44-48 Hz range (Fig. 2A). The synchronization index is in 0.3-0.36 range (Fig. 
2B). There is a pronounced change in the mode of the distribution of the desynchronization 
durations; it changes from 3 to 1 as synaptic strength 𝑔𝑔𝐸𝐸𝐼𝐼 increases (Fig. 2C). Mode 1 is observed 
in a relatively large range of 𝑔𝑔𝐸𝐸𝐼𝐼 (and is typical for various experimental observations). Average 
desynchronization duration is generally decreasing from about 4 cycles to about 2 cycles (Fig. 2D). 
Desynchronization ratio (see Methods) shows substantial variation. It increases from about 1 to 
about 3 with one isolated case of almost 12 (driven by very small value of the relative frequency 
of long desynchronizations); then it fluctuates in between 2 and 4 (Fig. 2D). We would like to note 
that a very high value of desynchronization ratio may not necessarily carry a high precision, 
nevertheless its points to the fact that long desynchronizations are really rare. 
 
Panels E, F, and G show examples of distributions of desynchronization durations for three 
different values of 𝑔𝑔𝐸𝐸𝐼𝐼 . Example E shows desynchronization distribution with mode 3; the average 
desynchronization duration is relatively large, and the desynchronization ratio is relatively small. 
Examples F and G show desynchronization durations distribution with mode 1. While F and G 
have the same mode, example F has a much higher value of desynchronization ratio because it has 
a much smaller number of long desynchronizations (lasting 5 and more cycles). The average values 
of desynchronization durations in both cases are roughly similar. Nevertheless, these examples 
show a general trend of desynchronizations becoming shorter. These examples corroborate the 
weak trend described in the previous paragraph: as we increase excitatory synapse strength 𝑔𝑔𝐸𝐸𝐼𝐼, 
the desynchronizations become progressively shorter. 
 
Note that mode and average (mean) may have substantially different values. This is probably not 
surprising (especially given that experimental studies report the mode equal to one, so the average 
must be larger). It is not clear which particular characteristic of the distribution is of a most 
biological importance, so mode, desynchronization ratio (as reported in experiments cited in the 
Introduction) and the average value are presented to better illustrate the dynamics. 
 
Next, we examine the effect of cross-circuit excitatory to inhibitory connection 𝑐𝑐𝐸𝐸𝐼𝐼 by varying its 
value from 0 to 0.04. The average firing rate mildly increases from 45 to 47 Hz (Fig. 3A) while 
the synchronization index stays within 0.3-0.35 range (Fig. 3B). The distribution of 
desynchronization duration shows substantial changes with different values of 𝑐𝑐𝐸𝐸𝐼𝐼, see Figure 3C. 
For smaller values of 𝑐𝑐𝐸𝐸𝐼𝐼, the mode of the distribution is mostly 1. However, for larger values of 
𝑐𝑐𝐸𝐸𝐼𝐼, the desynchronization durations distribution has predominantly mode 3 (although mode 1 and 
2 are also present).  
 
Figure 3D shows how the desynchronization ratio and the average desynchronization duration are 
changing with 𝑐𝑐𝐸𝐸𝐼𝐼. They vary around 2 and 3 respectively in the 𝑐𝑐𝐸𝐸𝐼𝐼 range that produces mostly 
distributions with mode 1. However, the distribution shows more prominent changes as can be 
seen in panels E, F, and G: smaller values of 𝑐𝑐𝐸𝐸𝐼𝐼 (example E) yield a sharper and more prominent 
mode 1 (more similar to those observed in experiments) than larger values of 𝑐𝑐𝐸𝐸𝐼𝐼 (example F). 
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Example G exhibits distribution with the mode 3. Note that even though desynchronization ratio 
is high for the distribution in G, the mode is not 1. Thus, as we mentioned above, the 
desynchronization ratio alone is not sufficient to distinguish between short and long 
desynchronization dynamics. 
 
The effect of inhibition. 
 
There are two kinds of inhibitory connections in the model: inhibitory to excitatory neurons and 
inhibitory to inhibitory neurons connections. We examine the impact of both kinds of inhibitory 
connections on the temporal patterning of synchronization, looking at within-circuit connections 
(𝑔𝑔𝐼𝐼𝐸𝐸 and 𝑔𝑔𝐼𝐼𝐼𝐼) as well as cross-circuit connections (𝑐𝑐𝐼𝐼𝐸𝐸 and 𝑐𝑐𝐼𝐼𝐼𝐼).  
 
Local inhibitory to excitatory connection 𝑔𝑔𝐼𝐼𝐸𝐸  is varied from 0.6 to 1.36. Within this range, the 
average frequency decreases significantly from 49 Hz to 36 Hz (Fig. 4A). This is expected; larger 
𝑔𝑔𝐼𝐼𝐸𝐸 results in more inhibition input for excitatory cells and thus reduces the firing rate. The 
synchronization index varies from 0.3 to about 0.43 (Fig. 4B). The mode of desynchronization 
durations distribution is mostly 1 (Fig. 4C). There is only one isolated case in which 
desynchronization duration has higher mode. Furthermore, as 𝑔𝑔𝐼𝐼𝐸𝐸 increases, the desynch ratio 
(although variable) shows a generally increasing trend and almost triples from 2 to 6, see Fig. 4D. 
The average desynchronization duration mildly varies between 2 and 3, see Fig. 4D. Examples of 
desynchronization durations distribution are shown in panels E, F, and G. Example E shows 
histogram for the case of small 𝑔𝑔𝐼𝐼𝐸𝐸 value. While the mode is 1, the likelihood of a 
desynchronization duration lasting 1 cycle is similar to the likelihood of longer durations. Thus, 
the desynchronization ratio is low. Examples F and G illustrate histograms for the cases of larger 
𝑔𝑔𝐼𝐼𝐸𝐸 values, and the mode (which is 1) is more prominent in both cases. While desynchronization 
distributions in F and G have similar average durations, desynchronization ratio in G is noticeably 
bigger. Thus, in general, larger values of 𝑔𝑔𝐼𝐼𝐸𝐸 tend to promote shorter desynchronization. 
 
Similarly, we examine the effect of cross-circuit inhibitory to excitatory connection 𝑐𝑐𝐼𝐼𝐸𝐸. When 𝑐𝑐𝐼𝐼𝐸𝐸 
goes from 0 to 0.08, the average firing rate decreases from 47 Hz to 41 Hz (Fig. 5A), and the 
synchronization index shows a mild increase from 0.31 to 0.37 (Fig. 5B). The mode of 
desynchronization durations is mostly 1, and there are a couple isolated cases of mode 2 (Fig. 5C). 
Further, the average mode increases, and desynchronization ratio decreases (Fig. 5D). Thus, the 
desynchronizations have a weak tendency of becoming longer as the cross-circuit inhibitory 
coupling goes up. Examples in panels F and G both show distribution with mode 1; however, mode 
1 in example F is more prominent than mode 1 in example G.  
 
Within-circuit inhibitory to inhibitory connection 𝑔𝑔𝐼𝐼𝐼𝐼 is varied from 0.14 to 1. The average 
frequency varies minimally in between 44 Hz and 46.5 Hz, see Fig. 6A. The synchronization index 
first increases and then decreases, but stays in between 0.29 and 0.33, see Fig. 6B. 
Desynchronization durations distribution shows some substantial variations, see Fig. 6C. The 
higher mode cases all occur for higher values of 𝑔𝑔𝐼𝐼𝐼𝐼. Desynchronization ratio decreases sharply 
from 12 to 2, and then it stays around 1 to 2; the average desynchronization duration increases 
slowly from 2 to 4, see Fig. 6D. Example in panel E portrays distribution with a prominent mode 
1 and a small probability of any duration lasting 5 cycles or more; thus, the desynchronization ratio 
is large. Examples F and G shows distributions for larger values 𝑔𝑔𝐼𝐼𝐼𝐼. In this region, the distribution 
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can either have a higher mode (mode 3 in example F) or a lower mode 1 (example G). Either way, 
the distribution is flatter and thus, larger values of 𝑔𝑔𝐼𝐼𝐼𝐼 tend to produce longer desynchronization 
durations.  
 
Between-circuit inhibitory to inhibitory connection 𝑐𝑐𝐼𝐼𝐼𝐼 is varied from 0 to 0.11. The average 
frequency decreases from 46 to 43 Hz, see Fig. 7A. The synchronization index varies in the range 
of 0.32 and 0.26, see Fig. 7B. The distribution of desynchronization durations has mode 1 in all 
cases, see Fig. 7C. The average values of desynchronization durations appear to have a very weak 
decreasing trend while the desynchronization ratio has a weak increasing trend, see Fig. 7D. Panels 
E, F, and G portray examples of desynchronization durations distributions for small and large 
values of 𝑐𝑐𝐼𝐼𝐼𝐼. In the first example E, probability of desynch duration lasting 1 cycle is close to the 
probability of longer cycles. In panels F and G, the likelihood of desynchronization duration lasting 
1 cycle is larger than that of longer durations. Also, mode 1 in panel G is more prominent than 
mode 1 in panel F. Overall, larger 𝑐𝑐𝐼𝐼𝐼𝐼 shows a weak tendency for shorter desynchronizations.  
 
 
Changes in the desynchronization durations can be independent of the frequency and of the 
average synchronization strength.  
 
In previous sections, we see that changes in the desynchronization durations are often accompanied 
by the changes in the frequency of oscillations and the average synchronization strength. Here, we 
consider situations, where synchrony and frequency are not changing while desynchronization 
durations are. We would like to note that since the time-series analysis method used here measures 
desynchronization durations in relative units (cycles of oscillations), it is interesting to see what 
happens when frequency is fixed (otherwise, changes in the desynchronization durations as 
measured in cycles may not necessarily translate into the same changes in desynchronization 
duration measured in the absolute time units). To keep frequency and synchronization index 
relatively constant, yet to alter the temporal pattern of synchrony, we co-vary multiple synaptic 
strengths. Specifically, we increase within-circuit connections (𝑔𝑔𝐼𝐼𝐸𝐸 and 𝑔𝑔𝐸𝐸𝐼𝐼) and decrease 
between-circuit connections (𝑐𝑐𝐼𝐼𝐸𝐸 and 𝑐𝑐𝐸𝐸𝐼𝐼) at the same time, parametrizing all of them as a linear 
function of parameter 𝑘𝑘: 

𝑔𝑔𝐸𝐸𝐼𝐼 = 0.0012𝑘𝑘 + 0.096     𝑔𝑔𝐼𝐼𝐸𝐸 = 0.0041𝑘𝑘 + 0.8205   𝑓𝑓𝑓𝑓𝑓𝑓   𝑘𝑘 = 1,2, … 31 (12) 
 

𝑐𝑐𝐸𝐸𝐼𝐼 = −0.0004𝑘𝑘 + 0.038     𝑐𝑐𝐼𝐼𝐸𝐸 = −0.0008𝑘𝑘 + 0.076   𝑓𝑓𝑓𝑓𝑓𝑓   𝑘𝑘 = 1,2, … 31 (13) 
 
Within this range of parameters, the average frequency is relatively constant around 40 Hz (Fig. 
8A); synchronization index is near 0.37 and does not show substantial variation either (Fig. 8B). 
When 𝑘𝑘 is small (weak local connections and strong cross-circuit connections), desynchronization 
durations distribution has mode equal to 3 (Fig. 8C). When 𝑘𝑘 is larger (strong local connections 
and weak cross-circuit connections), desynchronization durations distribution has mode equal to 
1 (Fig. 8C). The average desynchronization duration goes down while the desynchronization ratio 
shows a prominent increase, pointing to desynchronizations getting shorter (Fig. 8D). This trend 
is further illustrated in panels E, F, and G with examples of desynchronization durations 
distributions. Example E has mode 3. Examples F and G have mode 1, and mode 1 is more 
prominent in example G than in example F. We see that the temporal patterning of synchronized 
activity may show very substantial changes while average synchrony and frequency are relatively 
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constant. In other words, average synchronization and temporal patterning can be independent of 
each other. 
 
 
3.2. The effect of membrane current kinetics on the temporal pattern of synchronization   
 
An earlier modeling study in a simple network of two mutually excitatory coupled simplified 
Hodgkin-Huxley - like model neurons (Ahn and Rubchinsky, 2017) showed that temporal 
patterning of synchronization is sensitive to the parameters defining the time scale of the delayed 
rectifier potassium current (responsible for a relaxational character of spiking oscillations in that 
model). Hence, we want to explore if the model used here (a more complicated network structure 
with excitation and inhibition and more adequate models of individual neurons) shows a similar 
dependence of desynchronization durations on the membrane current kinetics.  
 
Similar to (Ahn and Rubchinsky, 2017), we will look at the effect of the peak value of the voltage-
dependent activation time-constant and the width of voltage-dependence of the activation time-
constant of potassium current (both parameters effectively make this current faster or slower to 
activate, either directly or indirectly) on the temporal patterning of synchronization. The activation 
time constant of potassium channel is given by  
 

𝜏𝜏𝑠𝑠(𝑑𝑑) =
1

𝛼𝛼𝑠𝑠(𝑑𝑑) + 𝛽𝛽𝑠𝑠(𝑑𝑑)
(14) 

 
where 𝛼𝛼𝑠𝑠(𝑑𝑑) and 𝛽𝛽𝑠𝑠(𝑑𝑑) are the opening and closing function of potassium channel (see Equations 
(6) and (9) in Methods). We parametrize 𝛼𝛼𝑠𝑠(𝑑𝑑) and 𝛽𝛽𝑠𝑠(𝑑𝑑) as follows. 
 

𝛼𝛼𝑠𝑠(𝑑𝑑) =
𝜀𝜀 𝛼𝛼1(𝑑𝑑 + 52)

1 − exp �−𝑑𝑑 + 52
𝛿𝛿 𝛼𝛼2

�
        𝛽𝛽𝑠𝑠(𝑑𝑑) = 𝜀𝜀 𝛽𝛽1exp �−

𝑑𝑑 + 57
𝛿𝛿 𝛽𝛽2

� (15) 

 
Here,  𝛼𝛼1, 𝛼𝛼2,𝛽𝛽1,𝛽𝛽2 are default values of the opening and closing functions (see Method). Provided 
that everything else is fixed, varying parameter 𝜀𝜀 leads to change of the amplitude of the activation 
time-constant 𝜏𝜏𝑠𝑠(𝑑𝑑). Larger values of 𝜀𝜀 lead to faster activation of potassium delayed rectifier 
current and thus less spiky (closer to sinusoidal waveform) profile of voltage. On the other hand, 
changing parameter 𝛿𝛿 results in change of the width of the activation time-constant 𝜏𝜏𝑠𝑠(𝑑𝑑). Larger 
values of 𝛿𝛿 also lead to sinusoidal waveform of voltage trace.   
 
The value of 𝜀𝜀 is varied from 0.4 to 3 for all neurons in both circuits. Naturally, this change of the 
time scale affects the firing rate of the neurons (it moves up from 42 Hz to 51 Hz), see Fig. 9A. 
The synchronization index stays in the range of 0.3 to 0.35, see Fig. 9B. The shape of the spike is 
affected too). When 𝜀𝜀 is small, the mode of desynch distribution is 1. For larger values of 𝜀𝜀, the 
mode of the desynchronization durations distribution may be 2 or 3; if the mode is 1 in this region, 
it is not as prominent as mode 1 from small values of 𝜀𝜀 (Fig. 9C). Average desynchronization 
duration is increasing while the desynchronization ratio is decreasing as 𝜀𝜀 becomes bigger (Fig. 
9D). Examples of the desynchronization durations distributions (shown in panels E, F, and G) 
illustrate this trend. Thus, slow activation of potassium current (as in the original model, i.e. 



11 
 

physiologically realistic and slower) leads to dynamics with shorter desynchronizations. This is 
consistent with prior study (Ahn and Rubchinsky, 2017). 
  
The value of 𝛿𝛿 is varied between 0.4 and 1.25 for all neurons in both circuits. The average 
frequency is barely affected by this change, staying in between 45-46 Hz (Fig. 10A). The 
synchronization index decreases from 0.47 to 0.33 (Fig. 10B). While the mode of 
desynchronization durations distribution is always 1, the prominence of the mode consistently 
decreases (Fig. 10C). Fitting the same trend, the average desynchronization duration decreases, 
and the desynchronization ratio increases (Fig. 10D). Three examples of desynchronization 
durations distributions shown in panels E, F, and G further illustrate this. Mode 1 is more 
prominent when 𝛿𝛿 is small (example E) as compared to when 𝛿𝛿 is large (examples F and G). The 
distribution in panel G has a smaller mode 1 than the distribution in panel F. Thus, smaller 𝛿𝛿 and 
resulting slower activation of the delayed-rectifier potassium current produces shorter 
desynchronizations. This is also in agreement with prior study (Ahn and Rubchinsky, 2017). 
 
 
 
4. DISCUSSION 
 
4.1. Summary and significance of findings: connectivity strength affects temporal patterning 
of network synchronization 
 
We studied the properties of synchronized dynamics of a neural network consisting of two circuits 
exhibiting PING gamma rhythm. For moderate connectivity strength, gamma oscillations are only 
partially synchronized, and thus the intervals of highly synchronous activity are interspersed with 
intervals of low synchrony activity. We found that the temporal patterning of this synchronized 
activity depends on the strength of connections in the network. Thus, changing synaptic strength 
affects the distribution of desynchronization events duration (affects the relative duration of the 
intervals during which the activity is not synchronized). 
 
More specifically, local connections and cross-circuit connections have opposite effects on the 
temporal pattern of synchronization/desynchronization. Stronger local connections between 
inhibitory and excitatory neurons (both E to I and I to E synapses within circuits) and weaker cross-
circuit connections between inhibitory and excitatory neurons (both E to I and I to E synapses 
between circuits) promote dynamics with predominantly short desynchronizations. These trends 
are observed for both independent and simultaneous variation of these synapses. The situation is 
inversed for connections between inhibitory interneurons. Weaker local connections between 
inhibitory cells (I to I connections within circuits) and stronger cross-circuit connections between 
inhibitory cells (I to I connections between circuits) promote dynamics with predominantly short 
desynchronizations.  
 
We also considered the effect of membrane current kinetics on the temporal patterning of 
synchronization. While the current kinetics may be harder to change in experiment than synaptic 
strength, prior modeling studies with minimal neural circuits indicated that it may affect fine 
temporal structure of neural synchronization (Ahn and Rubchinsky, 2017). We found that different 
ways of slowing the kinetics of delayed rectifier potassium current (which make a neuron a more 
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relaxational oscillator and lead to more spiky profile of neural voltage) facilitate short 
desynchronizations. 
 
Furthermore, we showed that temporal pattern of synchronization can vary independently of the 
average synchronization strength. At the same time, the firing frequency can be kept almost 
constant so that changes of the desynchronization durations are apparent not only in relative time 
units (cycles of oscillations), but also in absolute time units (milliseconds). Thus, even though 
average synchronization strength and temporal pattern of synchrony can co-vary together, they can 
also vary independently of each other and are independent characteristics of synchronized 
phenomena in neural networks. 
 
 
4.2. Computational results in the context of experimental studies: prevalence of short 
desynchronization dynamics and the role of synaptic coupling 
 
Even though the distribution of durations of desynchronization events was found to depend on the 
properties of neurons and synapses, a review of all the numerical results of this study suggests that 
partially synchronized dynamics in the PING gamma network has predominantly short 
desynchronizations. These short desynchronized intervals may be numerous so that the average 
synchrony level may be low. This is not necessarily true for a generic oscillatory network; the 
same level of synchrony may be reached with many short desynchronizations and a few long 
desynchronizations (Ahn et al., 2011, Ahn and Rubchinsky 2017). 
 
However, in the realistic (in the dynamics of neurons and synapses) network studied here, there is 
a tendency for short desynchronization dynamics. Importantly, the application of the same time-
series analysis techniques as used here to various recordings of the electric activity of the brain 
indicates that it is essentially always dominated by short desynchronizations regardless of the brain 
area, type of recording, disease status, and brain rhythm. That was observed in the beta band 
spiking units, LFP, and EEG in Parkinson’s disease and its animal model in the basal ganglia and 
motor cortex (Park et al., 2010; Ratnadurai-Giridharan et al., 2016; Ahn et al., 2018; Dos Santos 
Lima et al., 2020), alpha and beta band in EEG in healthy subjects (Ahn et al., 2013), theta band 
in prefrontal cortex and hippocampus in normal and drug-sensitized rodents (Ahn et al., 2014), 
theta, beta, and low frequency gamma in EEG in subjects with and without autism spectrum 
disorder (Malaia et al., 2020). The results of the present study provide an additional support for 
the hypothesis that short desynchronizations dynamics may be common in the synchronization of 
the oscillations of the neural activity of the brain. 
 
The experimental studies discussed above also found that the changes in the temporal pattern of 
neural synchrony may be related to behavioral changes, and this may be true even if the average 
synchronization strength is not changed (Ahn et al., 2014, 2018; Malaia et al., 2020). Even though 
most of these studies did not consider gamma rhythm, what we found out in the present study of 
neural network with PING gamma may fit with this general framework of importance of the fine 
temporal structure of synchronized dynamics. We found that the synchrony pattern may vary if the 
synaptic strength is varied (and it may vary independently of the synchronization strength). PING 
gamma is known to depend on the synaptic strength of different types of synapses involved (e.g. 
Buszaki and Wang, 2012; Salkoff et. al., 2015; Borgers, 2017). A disease with marked 
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abnormalities in the gamma rhythm synchronization, schizophrenia, is known to have alterations 
in the synaptic strength, in particular, abnormalities in inhibition and in excitatory/inhibitory 
balance (e.g., Lewis et al., 2005; Vierling-Claassen, et al., 2008; Lisman, 2012; Murray et al., 
2014; Grent-'t-Jong et al., 2018). Our study shows these abnormalities may not only affect the 
average synchronization strength, but may also affect the temporal patterning of synchrony, which, 
in turn, may affect how neural circuits process information (Ahn and Rubchinsky, 2013, 2017). 
 
 
4.3. Some limitations of the study  
 
There are several limitations of our modeling analysis that we would like to mention here. The 
model network is quite simple. Of course, no model is perfect, but it is important to remember that 
our model is a relatively small network while biologically realistic gamma probably requires large 
networks (Borgers et al., 2012). Also, our model does not consider conduction delays, which may 
both promote and weaken synchronization (e.g., Woodman and Canavier, 2011). The signals we 
use here as a proxy for local field potentials are (necessarily) formed by a small number of neurons, 
which may be an issue both from the modeling perspective and from the time-series analysis 
perspective. The intermittent synchronized dynamics studied here naturally occurs in the network 
of oscillating units because the coupling strength is not very high. However, there may be other 
factors, which may contribute to the temporal variability of synchrony, such as the noise of 
different nature and synaptic plasticity (the latter is known to potentially affect temporal synchrony 
patterns, Zirkle and Rubchinsky, 2020). Nevertheless, given that the network expresses PING 
gamma, the results of the study are likely to be applicable to the gamma synchronization due to 
the pyramidal-interneuron gamma mechanism captured by this simple network. 
 
 
4.4. Conclusion 
 
We showed that synaptic changes may alter the temporal patterning of synchronization (and may 
do so independently of the synchronization strength) in the neural network exhibiting PING 
gamma rhythm. It was conjectured that this temporal patterning is physiologically important and 
that the dynamics with short desynchronizations may facilitate formation and break-up of transient 
neural assemblies (Ahn and Rubchinsky, 2013, 2017). Given the importance of gamma 
synchronization in facilitation of cognition and the short time scales associated with these 
phenomena, it is quite plausible that short desynchronization dynamics we observed in the PING 
gamma network is important for formation of transient neural assemblies and for cognitive 
phenomena. Stronger local connections and weaker cross-circuit connections between inhibitory 
and excitatory neurons as well as weaker local and stronger cross-circuit connections between 
inhibitory and inhibitory neurons (which we found to promote short desynchronizations) may thus 
play facilitatory role for these phenomena.  
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Figure 1. Schematic of the model circuitry. A: an individual circuit consists of two excitatory and two inhibitory 
neurons with excitatory connections 𝑔𝑔𝐸𝐸𝐼𝐼  (dashed gray with arrow at the end) and inhibitory connections 𝑔𝑔𝐼𝐼𝐼𝐼 and 𝑔𝑔𝐼𝐼𝐸𝐸 
(solid black with circle at the end). B: Full model circuitry has two individual circuits. Two circuits are connected by 
inhibitory synapses 𝑐𝑐𝐼𝐼𝐸𝐸 and 𝑐𝑐𝐼𝐼𝐼𝐼 (solid black) and excitatory synapses 𝑐𝑐𝐸𝐸𝐼𝐼(dotted gray). There are no mutual connections 
between excitatory neurons. C: voltage traces of an excitatory neuron from two circuits (grey and black lines) and the 
raster plot of all the neurons in both networks. The two excitatory neurons with voltage traces above are in black, and 
the rest of the neurons are in gray.  
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Figure 2. Effect of within-circuit excitatory to inhibitory neurons synaptic connection 𝑔𝑔𝐸𝐸𝐼𝐼  on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  

 



19 
 

 

Figure 3. Effect of between-circuit excitatory to inhibitory neurons synaptic connection 𝑐𝑐𝐸𝐸𝐼𝐼 on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  
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Figure 4. Effect of within-circuit inhibitory to excitatory neurons synaptic connection 𝑔𝑔𝐼𝐼𝐸𝐸  on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  
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Figure 5. Effect of between-circuit inhibitory to excitatory neurons synaptic connection 𝑐𝑐𝐼𝐼𝐸𝐸  on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  
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Figure 6. Effect of within-circuit inhibitory to inhibitory neurons synaptic connection 𝑔𝑔𝐼𝐼𝐼𝐼 on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  

 

 



23 
 

 

Figure 7. Effect of between-circuit inhibitory to inhibitory neurons synaptic connection 𝑐𝑐𝐼𝐼𝐼𝐼 on the temporal patterning 
of synchronized dynamics. A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) 
of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: 
Average desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in 
solid gray line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; 
horizontal axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of 
desynchronization distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the 
cases that correspond to the histograms shown in panels E, F, and G.  
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Figure 8. Changes in the desynchronization durations can be independent of the frequency and of the average 
synchronization strength. Local connections between excitatory and inhibitory units 𝑔𝑔𝐼𝐼𝐸𝐸 and 𝑔𝑔𝐸𝐸𝐼𝐼  are increased while 
cross-circuit connections between excitatory and inhibitory cells 𝑐𝑐𝐼𝐼𝐸𝐸 and 𝑐𝑐𝐸𝐸𝐼𝐼  are decreased as linear functions of 𝑘𝑘,see 
Equations (12) and (13) . A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) of 
desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: Average 
desynchronization duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in solid gray 
line with circles. Examples of distribution of desynchronization durations are shown in panels E, F, and G; horizontal 
axis is the duration of desynchronizations as measured in the cycles of oscillations. The mode of desynchronization 
distribution is highlighted as a black bar in each histogram. The arrows in panel D indicate the cases that correspond 
to the histograms shown in panels E, F, and G.  
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Figure 9. Effect of the peak value of activation time constant of potassium channel on the temporal patterning of 
synchronized dynamics. The peak value of activation time constant is written as function of 𝜀𝜀,see Equations (14) and 
(15)). A: Average firing frequency in Hz. B: Synchronization index. C: The mode (# of cycles) of desynchronization 
durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black curve). D: Average desynchronization 
duration (# of cycles) in dashed black line with diamonds and desynchronization ratio in solid gray line with circles. 
Examples of distribution of desynchronization durations are shown in panels E, F, and G; horizontal axis is the 
duration of desynchronizations as measured in the cycles of oscillations. The mode of desynchronization distribution 
is highlighted as a black bar in each histogram. The arrows in panel D indicate the cases that correspond to the 
histograms shown in panels E, F, and G.  
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Figure 10. Effect of the width of voltage-dependence of the activation time constant of potassium channel on the 
temporal patterning of synchronized dynamics. The width of voltage-dependence of the activation time constant is 
parametrized by δ, see Equations (14) and (15). A: Average firing frequency in Hz. B: Synchronization index. C: The 
mode (# of cycles) of desynchronization durations distribution (black dots) and the frequency of the mode 𝑓𝑓𝑚𝑚𝑝𝑝𝑑𝑑𝑝𝑝  (black 
curve). D: Average desynchronization duration (# of cycles) in dashed black line with diamonds and 
desynchronization ratio in solid gray line with circles. Examples of distribution of desynchronization durations are 
shown in panels E, F, and G; horizontal axis is the duration of desynchronizations as measured in the cycles of 
oscillations. The mode of desynchronization distribution is highlighted as a black bar in each histogram. The arrows 
in panel D indicate the cases that correspond to the histograms shown in panels E, F, and G.  

 


