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FUNCTIONAL VARIABLE METHOD TO THE CHIRAL NONLINEAR
SCHRODINGER EQUATION

A. NEIRAMEH!, §

ABSTRACT. In this paper, we study the different types of new soliton solutions to the
Chiral nonlinear Schrodinger equation with the aid of the functional variable method.
Then, we get some special soliton solutions for Chiral nonlinear Schrodinger equation.
The parameters of the soliton envelope are obtained as a function of the dependent model
coefficients.
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1. INTRODUCTION

The nonlinear equations are prevalently used as models to identify numerous physical
occurrences and have a very serious role in many natural sciences such as mathematics,
mechanics and other fields. Nonlinear evolution equations (NEEs) which describe many
physical phenomena are often illustrated by nonlinear partial differential equations. So,
the exact solutions of NLPDE are explored in detail in order to understand the physi-
cal structure of natural phenomena that are described by such equations. Searching for
explicit, exact solutions of NLPDE by many different methods is the main goal of this
active research area. Some of these methods, the Riccati Equation method [1], Hirota’s
bilinear operators [2], Hirota’s dependent variable transformation [3], the Jacobi elliptic
function expansion [4], the homogeneous balance method [5], the tanh-function expansion
[6], first integral method [7,8], the sub-equation method [9], the exp-function method [10],
the Backlund transformation, and similarity reduction [11-17] are used to obtain the exact
solutions of NLPDE.
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2. ANALYSIS OF THE METHOD

In order, we describe the functional variable method. Consider a given NLPDE for u (x,
t) in the form

H (u, g, ug, Uggy .....) = 0, (1)
here H is a polynomial of its arguments. Using the transformation
ulz, t)=U(E), E=xtct (2)
here c is the wave speed, then we get ordinary differential equation (ODE) like
Q (P, P¢, P, .....) =0, (3)

Now make a transformation in which the unknown function P is considered as a functional
variable in the form P; = G (P)and another derivatives of P are

Pee = % (&), (4)
Pege = % (¢?) Ve, (5)
Pegee = % [(G2)H ¢+ (Y (GQ)’} : (6)

Eq. (1) can be written with respect to P, G and its derivatives upon using the statement
of (2) into (1) gives

R(U,G,G",G",....) =0, (7)
by integrating of Eq. (7), Eq. (7) can be written with respect to G, and it is found the
appropriate solutions by using Eq. (3) for the investigated problem.

3. FVM 10 THE CHIRAL NONLINEAR SCHRODINGER EQUATION

The Chiral nonlinear Schrédinger equation is given by (see [1-3])

oV *v  9*V ov* ov ov* ov

j—— —+ =)+ o — U —— UV— — 0 —) | U =0 8
"ot +€(8m2+8x2)+2<61( Oz 8a:)+c2( y ay)> o ®)
here ¥ is the complex function of z,y and ¢, € is the coefficient of the dispersion terms.
Also, ¢1 and ¢ are the coeflicients of nonlinear coupling terms.

In this case for solving Eq. (8), it is assumed that the soliton solution to Eq. (8) is given

by

U(z,y,t) = @YD P(z,y, 1), (9)
where P(x,y,t)is the amplitude portion of the soliton, while the phase portion of the
soliton is given by

d(x,y,t) = K1 + Koy + wt + 6. (10)
by using of conformable fractional derivatives [4-17]. Here in Eq. (10), k1 and ko are

the frequencies in the z-and y-directions, w is the soliton frequency while 6 is the phase
constant. Thus, from Egs. (9) and (10),

i%‘f - <z%]; — wP) e®, (11)
0*v o*p 0P ;
W = <8x2 —+ 2@%1% — /Q%P) e ¢, (12)

O*v 9*pP opP ;
87y2 = <6y2 + 2Z./‘€27 — H%P) €Z¢, (13)
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ov* ov

(v e \If*a—x)\y = —2ik P3e™®. (14)
and ov* Ov
(U 5y qz*a—y)\p = —2iky P3e™?. (15)

By substituting Eqs. (11)—(15) into Eq. (8) and decomposing into real and imaginary
parts yields, respectively,

9*pP d*P
wP —¢ { <81‘2 — K%P) + <8y2 — R%P)} — 2(/‘0161 + /{202)]33 = O, (16)
oP oP opP
E + 20,(1{1% + Iizaiy) =0. (17)

This pair of equations will be analyzed further depending on the type of soliton solution
which is fetched. Under the traveling wave transformation

P(l’,y,t) = U(f), é': B1m+32y_vt (18)
we have
2 2 d*U 2 2 3
e (B} + B3) € (e(kT + K3) + w) U + (2(k1¢1 + Koc2)) U? =0, (19)
dU
(—’U + 26(:%131 + /QQBQ)) 0. (20)

de
from Eq. (20), we get
v = 26(/‘%131 + /{232).

d*U
e (B} + B3) @ (e(k] + K3) + w) U + (2(k1c1 + Koc2)) U =0, (21)
Substituting (4) into Eq. (21) leads to the following equation
2,2
ap) = p — [ * ) ng) pr o (F1G K)oy (22)
e (B} + B3) e (B} + B3)

here hg is an integration constant. We have solutions of Eq. (22) as following:

(s+r3)+
Case 1: For hg = 0, (E'Sl({lefB%;J)

triangular soliton solutions as following

2 2 i e(k2 + K2) + T
P(z,t) =+ elr+ry) tw (s 2“2)2“}) (Biz + Bay — vt)
(k101 + Kac2) 5(]_'31 +BQ)

< 0, and % > 0, we know that Eq. (21) have

And

2 2 [ 2 2 T
P(z,t) ==+ wcsc _(5(/{14;52) ;Lw) (Bix + By — vt)
(chl + HQCQ) IS (Bl + BQ)

> 0, and "10HR2%) () o know that Eq. (21) have

(K2 +rK32) 4w
Case 2: For hy =0, (et tr)+0) (874 53)

E(B%+B§)
triangular soliton solutions as following

P(x,t) = i\/W} sec h [\/(g(ﬂ% + ) +) (B1z + Bay — vt)

(k1c1 + Kaco) e (B} + B3)
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And

P (z,t) = :I:\/
(E(n%—l—n%)—l—w)

Case 3: For hg # 0, (571 52)

triangular soliton solutions as following

:t\/
And

P(x,t)= :I:\/
(e(nf-i—n%)—i-w)

Case 4: For hg # 0, (574 52)
triangular soliton solutions as following

P (z,t) ::t\/—

And

P(a:,t):i\/

e(k?+ K3) +w
(k1c1 + Kaco)

ek 4+ k%) +w

P(x,t
(SU, ) 2(/{101 + KQCQ)

tanh

e(k? +K3) +w

coth
2(/@101 + KQCQ)

e(k?+ K3) +w
2(/46101 + KZQCQ)

_E(fi% + Kk3) +w
2(/%101 + :‘iQCQ)

< 0, and

(e(k? + K3) + w)

e (B} + B3)

(B +53)
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-

(k1c1+K2C2)
€

(Bix + Bay — vt)

> 0, we know that Eq. (21) have

15

(e(rf + K3) +w)

2¢ (B} + B3)

(Biz + Bay — vt)

tan

cot

k1c1+K2c2)

> 0, and ¢

(E(FL% + K3) + w)

2¢ (B? + B3)

(mree) O

V

(5(/4% + K3) + w)

2¢ (B} + B3)

(S(Fé% + Kk3) + w)

i

2¢ (B? + B3)

(Bix + Bay — vt)

know that Eq. (21) have

(Byz + Bay — vt)

(B1z + Bay — vt)

4. GRAPHICAL BEHAVIOR:

The graphical behavior of the solutions for different values are represented below in the
following figures by using computation software Maple (see Figs. 1-3).
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Figure 1:

Figure 2:
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Figure 3:

5. CONCLUSIONS

This paper derived new exact soliton solutions of nonlinear Schrodinger equations,
namely,the Chiral nonlinear Schrodinger equation which describe the propagation of ultra
short pulses in nonlinear optical fibers by using the Functional variable method. We boldly
say that the work here is valuable and may be beneficial for studying in other nonlinear
science. The exact solutions obtained from the model equations provide important insight
into the dynamics of solitary waves. The solutions obtained in this paper have not been
reported in the old research.
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