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ON THE VERTEX DEGREE POLYNOMIAL OF GRAPHS

H. AHMED1∗, A. ALWARDI2, R. SALESTINA M.1, §

Abstract. A novel graph polynomial, termed as vertex degree polynomial, has been
conceptualized, and its discriminating power has been investigated regarding its coef-
ficients and the coefficients of its derivatives and their relations with the physical and
chemical properties of molecules. Correlation coefficients ranging from 95% to 98% were
obtained using the coefficients of the first and second derivatives of this new polynomial.
We also show the relations between this new graph polynomial, and two oldest Zagreb
indices, namely the first and second Zagreb indices. We calculate the vertex degree poly-
nomial along with its roots for some important families of graphs like tadpole graph,
windmill graph, firefly graph, Sierpinski sieve graph and Kragujevac trees. Finally, we
use the vertex degree polynomial to calculate the first and second Zagreb indices for the
Dyck-56 network and also for the chemical compound triangular benzenoid G[r].

Keywords: Vertex degree polynomial, Vertex degree roots, First Zagreb index, Second
Zagreb index, Kragujevac tree.
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1. Introduction

In this paper, all graphs are assumed to be simple and finite without isolated vertices.
A graph G = (V,E) is a nonempty set of objects called vertices together with a set of pairs
of distinct vertices of G called edges. The vertex set and the edge set of G are denoted
by V (G) and E(G) respectively. The edge e = {u, v} is said to join the vertices u and v.
We write e = uv and say that u and v are adjacent vertices, u and e are incident, as are
v and e. A vertex u is called a neighbor of v in G if uv is an edge of G. The set N(v) of
all neighbors of v is called the open neighborhood of v. Thus N(v) = {u ∈ V : uv ∈ E}.
The closed neighborhood of v in G is defined as N [v] = N(v) ∪ {v}. The degree of a
vertex v in a graph G is defined to be the number of edges incident with v and is de-
noted by dG(v) or d(v). In other words d(v) = |N(v)|. A graph G is connected if for
every two vertices u, v ∈ V, there exists a (u, v)-path in G. Otherwise, G is said to be
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disconnected. For more detailed information about the fundamental topics on graphs, see
[1, 2, 3, 4, 5, 6, 7, 14, 15, 16]. One of the oldest descriptors of molecular structure is
the Zagreb indices, as their properties have been extensively verified and have attracted
the attention and interest of researchers in mathematical chemistry. These indices were
defined in 1970s [10, 11]. The first and second Zagreb indices were defined as follows

M1(G) =
∑

v∈V (G)

d2(v) =
∑

uv∈E(G)

d(u) + d(v),

M2(G) =
∑

uv∈E(G)

d(u)d(v).

For properties of these indices see [8, 12, 13].

2. The Motivation

Graph polynomials are helpful in measuring the structural information of networks using
combinatorial graph invariants. Also, the graph polynomials are used for the characteri-
zation of graphs. Using graph polynomials, many problems in graph theory and discrete
mathematics can be solved efficiently. These polynomials have been found very useful in
disciplines related to engineering, information science, mathematical chemistry, etc. A
graph polynomial is used to represent a graph in an algebraic form. Also, topological
indices are based on the degree of vertices. These two factors have motivated us to define
a new graph polynomial which is used to calculate the first and second Zagreb indices and
we call this polynomial as vertex degree polynomial denoted as V D(G, x). In this paper,
the significant result, we have obtained is that the derivative of V D(G, x) at x = 1 is two
times the second Zagreb index M2(G) and the sum of coefficients of the vertex degree
polynomial is equal to first Zagreb index M1(G). This result opens a new gateway to the
study of the first and second Zagreb indices and their implications. We have also studied
using the vertex degree polynomial to model physicochemical properties such as entropy
(S), enthalpy of vaporization (HVAP), acentric factor (AcentFac), and standard enthalpy
of vaporization (DHVAP) of octane isomers. The values of the physical and chemical
properties of octane isomers (Table 1), are taken from www.moleculardescriptors.eu. In
Table 2, we calculate the vertex degree polynomial and its derivatives at x = 1 for the
chemical graphs of octane isomers. Table 3, shows that Dx(V D(G, x))|x=1 is strongly cor-
related with the acentric factor (|r| = 0.9864) and entropy (S) (|r| = 0.9417), (see Fig 1).
Also, Dx(V D(G, x))|x=1 is correlated with enthalpy of vaporization (HVAP) (|r| = 0.7281)
and standard enthalpy of vaporization (DHVAP) (|r| = 0.8118), (see Fig 2). Also Table 3,
shows that (V D(G, x))|x=1 is strongly correlated with the acentric factor (|r| = 0.9731) and
entropy (S) (|r| = 0.9543).And (V D(G, x))|x=1 is correlated with (HVAP) (|r| = 0.886)
and (DHVAP) (|r| = 0.9361). Table 3, shows that D2

x(V D(G, x))|x=1 is strongly corre-
lated with the acentric factor (|r| = 0.9798) and entropy (S) (|r| = 0.9522), (see Fig 3).
D2

x(V D(G, x))|x=1 is correlated with enthalpy of vaporization (HVAP) (|r| = 0.717) and
standard enthalpy of vaporization (DHVAP) (|r| = 0.8031), (see Fig 4).
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Figure 1. Scatter plot of Dx(V D(G, x))|x=1 and (a)AcentFac (b) entropy.

Figure 2. Scatter plot of Dx(V D(G, x))|x=1 and (a)HVAP (b) DHVAP.

Figure 3. Scatter plot of D2
x(V D(G, x))|x=1 and (a)AcentFac (b) entropy.

Figure 4. Scatter plot of D2
x(V D(G, x))|x=1 and (a)HVAP (b) DHVAP.

3. The Vertex degree polynomial of graphs

Definition 3.1. Let G = (V,E) be a simple graph without isolated vertex, the vertex
degree polynomial of a graph G is defined as

V D(G, x) =
∑

uv∈E(G)

d(u)xd(v),

where the summation is around both possibilities uv ∈ E(G) and vu ∈ E(G). The roots of
the vertex degree polynomial are called vertex degree roots.
The set of vertex degree roots of the vertex degree polynomial of graph G is denoted by
ZV D(V D(G, x)).
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Octanes Acent Fac. S HVAP DHVAP
1 n-octane 0.397898 111.67 73.19 9.915
2 2-methyl heptane 0.377916 109.84 70.3 9.484
3 3-methyl heptane 0.371002 111.26 71.3 9.521
4 4-methyl heptane 0.371504 109.32 70.91 9.483
5 3-ethyl hexane 0.362472 109.43 71.7 9.476
6 2,2-dimethyl hexane 0.339426 103.42 67.7 8.915
7 2,3-dimethyl hexane 0.348247 108.02 70.2 9.272
8 2,4-dimethyl hexane 0.344223 106.98 68.5 9.029
9 2,5-dimethyl hexane 0.356830 105.72 68.6 9.051
10 3,3-dimethyl hexane 0.322596 104.74 68.5 8.973
11 3,4-dimethyl hexane 0.340345 106.59 70.2 9.316
12 2-methyl-3-ethyl pentane 0.332433 106.06 69.7 9.209
13 3-methyl-3-ethyl pentane 0.306899 101.48 69.3 9.081
14 2,2,3-trimethyl pentane 0.300816 101.31 67.3 8.826
15 2,2,4-trimethyl pentane 0.30537 104.09 64.87 8.402
16 2,3,3-trimethyl pentane 0.293177 102.06 68.1 8.897
17 2,3,4-trimethyl pentane 0.317422 102.39 68.37 9.014
18 2,2,3,3-tetramethyl butane 0.255294 93.06 66.2 8.41

Table 1. Some physicochemical properties of octane isomers.

Octanes V D(G, x) Dx(V D(G, x))|x=1 V D(G, x)|x=1 D2
x(V D(G, x))|x=1

1 22x2 + 4x 48 26 44
2 4x3 + 16x2 + 8x 52 28 56
3 5x3 + 16x2 + 7x 54 28 62
4 5x3 + 16x2 + 7x 54 28 62
5 6x3 + 16x2 + 6x 56 28 68
6 5x4 + 13x2 + 14x 60 32 86
7 11x3 + 8x2 + 11x 60 30 82
8 9x3 + 10x2 + 11x 58 30 74
9 8x3 + 10x2 + 12x 56 30 68
10 6x4 + 14x2 + 12x 64 32 100
11 12x3 + 8x2 + 10x 62 30 88
12 12x3 + 8x2 + 10x 62 30 88
13 7x4 + 15x2 + 10x 68 32 114
14 6x4 + 7x3 + 4x2 + 17x 70 34 122
15 5x4 + 4x3 + 7x2 + 18x 64 34 98
16 7x4 + 6x3 + 5x2 + 16x 72 34 130
17 17x3 + 15x 66 32 102
18 14x4 + 24x 80 38 168

Table 2. Vertex degree polynomials of octane isomers and its derivatives
at x = 1.
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|r| Acent Fac. S HVAP DHVAP
V D(G, x)|x=1 0.9731 0.9543 0.886 0.9361

Dx(V D(G, x))|x=1 0.9864 0.9417 0.7281 0.8118
D2

x(V D(G, x))|x=1 0.9798 0.9522 0.717 0.8031
Table 3. The correlation coefficient of V D(G, x)|x=1, Dx(V D(G, x))|x=1

and D2
x(V D(G, x))|x=1 with acentric factor (AcentFac), entropy (S), en-

thalpy of vaporization (HVAP), and standard enthalpy of vaporization
(DHVAP).

Example 3.1. Let G be a graph in Fig 5.

Figure 5. The Graph G

VD(G, x) =
∑

uv∈E(G)

d(u)xd(v)

= d(v1)x
d(v2) + d(v2)x

d(v1) + d(v2)x
d(v3) + d(v3)x

d(v2)

+ d(v3)x
d(v4) + d(v4)x

d(v3) + d(v2)x
d(v4) + d(v4)x

d(v2)

= 5x3 + 10x2 + 3x.

Hence, the set of vertex degree roots is

ZV D(G) = {0,−1 +
1

5

√
10,−1− 1

5

√
10}.

Theorem 3.1. Let G be a graph with vertex degree polynomial V D(G, x). Then

Dx(V D(G, x))|x=1 = 2M2(G),

V D(G, x)|x=1 = M1(G).

Proposition 3.1. (1) For any positive integers n, k such that nk is even and k ≤ n−1,
V D(G, x) = nk2xk if and only if G is a k−regular connected graph of n−vertices.

(2) For any path Pn, V D(Pn, x) = 4x + (4n − 10)x2. Further, ZV D(V D(Pn, x)) ={
0, −22n−5

}
.

(3) Let G be the complete bipartite graph Kr,s with r < s. Then
V D(G, x) = s2rxr + r2sxs.

Further, ZV D(V D(G, x)) =
{

0, s−r

√
−s
r

}
.
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(4) For any wheel graph G ∼= Wn with n ≥ 5 vertices,

V D(Wn, x) = (n2+4n−5)x3+(3n−3)xn−1, ZV D(V D(Wn, x)) =
{

0, n−4

√
5−n2−4n
3n−3

}
.

Corollary 3.1.
(1) V D(G, x) = n(n− 1)2xn−1 if and only if G is the complete graph Kn.
(2) V D(G, x) = 4nx2 if and only if G be the cycle graph Cn.
(3) If G is the star graph K1,s, then V D(K1,s, x) = s2x+ sxs.

Further, ZV D(V D(K1,s, x)) =
{

0, s−1
√
−s
}
.

Observation 3.1. ZV D(V D(G, x)) = {0}, if and only if the graph G is a k−regular graph.

Theorem 3.2. Let G1, G2, ..., Gm be components of G. Then the vertex degree polynomial
of G is given as

V D(G, x) = V D(G1, x) + V D(G2, x) + ...+ V D(Gm, x).

Proof. Let G1, G2, ..., Gm be components of G. Then G =
⋃m

i=1Gi. Note that if v ∈
Gi, u ∈ Gj for i 6= j ⇒ uv /∈ E(G) and uv ∈ E(G)⇔ uv belongs to the same component.
Hence,

V D(G, x) = V D(

m⋃
i=1

Gi, x)

=
∑

u1iv1i∈E(G1)

d(u1i)x
d(v1i) + ...+

∑
umivmi∈E(Gm)

d(umi)x
d(vmi)

= V D(G1, x) + ...+ V D(Gm, x).

�

The tadpole graph Tr,s is the graph created by joining a cycle graph Cr to a path graph
Ps with a bridge.

Theorem 3.3. For any tadpole graph Tr,s

V D(Tr,s, x) =

{
5x3 + (4r − 2)x2 + 3x, if s = 1;
6x3 + (4s+ 4r − 6)x2 + 2x, if s ≥ 2.

Further,

ZV D(V D(Tr,s, x)) =


{

0,
−(4r−2)±

√
(4r−2)2−60

10

}
, if s = 1;{

0,
−(4s+4r−6)±

√
(4s+4r−6)2−48

12

}
, if s ≥ 2.

Proof. Case (1) For s = 1 and r ≥ 3, it is clear that the difference between any two

consecutive terms V D(Tr,1, x), and V D(Tr+1,1, x) is 4x2......(∗)
In this case the proof is by induction on r.

(1) For r = 3 the result is true.
(2) Assume that the result is true for r = k i.e, V D(Tk,1, x) = 5x3 + (4k − 2)x2 + 3x.
(3) For r = k + 1, we have

V D(Tk+1,1, x) = 5x3 + (4(k + 1)− 2)x2 + 3x

= 5x3 + (4k − 2)x2 + 3x+ 4x2

= V D(Tk,1, x) + 4x2
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and the result is true by (∗).
Case (2) For a given r ≥ 3, and any s ≥ 2, it is clear that the difference between any

two consecutive terms V D(Tr,s, x) and V D(Tr,s+1, x) is 4x2......(∗∗)
In this case the proof is by induction on s.

(1) The result is true for s = 2.
(2) Assume that the result is true for s = k i.e, V D(Tr,k, x) = 6x3+(4k+4r−6)x2+2x.
(3) For s = k + 1

V D(Tr,k+1, x) = 6x3 + (4(k + 1) + 4r − 6)x2 + 2x

= 6x3 + (4k + 4r − 6)x2 + 2x+ 4x2

= V D(Tr,k, x) + 4x2

the result is true by (∗∗).

By solving the equations V D(Tr,s, x) =

{
5x3 + (4r − 2)x2 + 3x, if s = 1;
6x3 + (4s+ 4r − 6)x2 + 2x, if s ≥ 2.

we get,

ZV D(Tr,s) =


{

0,
−(4r−2)±

√
(4r−2)2−60

10

}
, if s = 1;{

0,
−(4s+4r−6)±

√
(4s+4r−6)2−48

12

}
, if s ≥ 2.

�

The windmill graph is the graph obtained by taking s copies of the complete graph Kn

with a vertex in common. It is denoted by Wd(n, s) and consists of s copies of Kn.

Theorem 3.4. The vertex degree polynomial of windmill graph Wd(n, s) is given by

V D(Wd(n, s), x) = [ns(ns+ n2 − 4n− 2s+ 5) + s(s− 2)]xn−1 + s(n− 1)2xs(n−1).

Further, ZV D(V D(Wd(n, s), x)) = {0, (−ns(ns+n2−4n−2s+5)+s(s−2)
s(n−1) )

1
(s−1)(n−1) }.

Proof. Let E1 be the set of all edges which is incident with the center vertex, and E2 be
the set of edges in Kn−1. Then

V D(Wd(n, s), x) =
∑

uv∈E(Wd(n,s))

d(u)xd(v)

=
∑

uv∈E1

s(n− 1)xn−1 + (n− 1)xs(n−1) +
∑

uv∈E2

2(n− 1)xn−1

= s2(n− 1)2xn−1 + s(n− 1)2xs(n−1) + s(n− 1)2(n− 2)xn−1

= [ns(ns+ n2 − 4n− 2s+ 5) + s(s− 2)]xn−1 + s(n− 1)2xs(n−1).

By solving the equation [ns(ns+n2− 4n− 2s+ 5) + s(s− 2)]xn−1 + s(n− 1)2xs(n−1) = 0,
we get

ZV D(V D(Wd(n, s), x)) = {0, (−ns(ns+n2−4n−2s+5)+s(s−2)
s(n−1) )

1
(s−1)(n−1) }. �

Corollary 3.2. Let Wd(3, s) be the dutch windmill or n-fan. Then V D(Wd(3, s), x) =
[3s(s+ 2) + s(s− 2)]x2 + 4sx2s.

Further, ZV D(V D(Wd(3, s), x)) = {0, (−3s(S+2)−s(s−2)
4s )

1
2s−2 }.

A firefly graph Fr,s,t is a graph which consists of r triangles, t pendant paths of length
2 and s pendant edges, sharing a common vertex.

Theorem 3.5. V D(Fr,s,t, x) = (4r + 2t + s)x2r+t+s + (4r2 + t2 + 4tr + 2sr + st + t +
4r)x2 + (2t+ 2rs+ ts+ s2)x.
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Proof. Let E1 be the set of all edges which are incident with the center vertex, |E1| =
2r + t+ s. Let E2 be the set of all edges uv such that one vertex of degree two and other
vertex of degree one, |E2| = t. Let E3 be the set of all edges which are incident with
pendant vertex, |E3| = s. Let E4 be the set of all edges uv such that u and v of degree
two, |E4| = r.

V D(Fr,s,t, x) =
∑

uv∈E(Fr,s,t)

d(u)xd(v)

=
∑

uv∈(E1−E3)

(2x|E1| + |E1|x2) +
∑

uv∈E2

(2x+ x2) +
∑

uv∈E3

(|E1|x+ x|E1|) +
∑

uv∈E4

(2x2 + 2x2)

= (2x|E1| + |E1|x2)(|E1| − s) + t(2x+ x2) + s(|E1|x+ x|E1|) + 4rx2

= (2x2r+t+s + (2r + t+ s)x2)((2r + t+ s)− s) + t(2x+ x2)

+ s((2r + t+ s)x+ x2r+t+s) + 4rx2

= (4r + 2t+ s)x2r+t+s + (4r2 + t2 + 4tr + 2sr + st+ t+ 4r)x2 + (2t+ 2rs+ ts+ s2)x.

�

Definition 3.2. Let P3 be the 3−vertex tree, rooted at one of its terminal vertices. For
k = 2, 3, 4, ... construct the rooted tree Bk by identifying the roots of k copies of P3. The
vertex obtained by identifying the roots of P3−trees is the root of Bk [9].

Definition 3.3. Let d ≥ 2 be an integer. Let β1, β2, ..., βd specified in Definition 3.2, i.e.
β1, β2, ..., βd ∈ {B2, B3, ...}. A Kragujevac tree T is a tree possessing a vertex of degree
d, adjacent to the roots of β1, β2, ..., βd. This vertex is said to be the central vertex of T ,
whereas d is the degree of T . The subgraphs β1, β2, ..., βd are the branches of T . Recall
that some (or all) branches of T may be mutually isomorphic [9].

The branch Bk has 2k + 1 vertices. Therefore, if in the Kragujevac tree T , specified in

Definition 3.3, βi ∼= Bki, i = 1, 2, ..., d then its order is n(T ) = 1 +
∑d

i=1(2ki+ 1).

Theorem 3.6. Let T be the Kragujevac tree, and s, r, t, ..., k, i, j, ..., h be an integers. Then

(1) If β1 = β2 = ... = βd = Bk, we have

V D(T, x) = d(k + 1)xd + (d2 + 2k|Bk|)xk+1 + k(k + 2)|Bk|x2 + 2k|Bk|x.
(2) If β1 ∼= Bs, β2 ∼= Br , ..., βd ∼= Bk, and |Bs| = |Br| = ... = |Bk| = 1, we have

V D(T, x) = (dxs+1 + (s+ 1)xd) + (dxr+1 + (r + 1)xd) + ...+ (dxk+1 + (k + 1)xd)

+ s((s+ 1)x2 + 2xs+1) + r((r + 1)x2 + 2xr+1) + ...+ (s+ r + ...+ k)(x2 + 2x).

(3) If β1 ∼= Bs, β2 ∼= Br , ...,, βd−1 ∼= Bz, βd ∼= Bk, and |Bs| = i, |Br| = j,..., |Bz| = g,
|Bk| = h, we have

V D(T, x) = i(dxs+1 + (s+ 1)xd) + j(dxr+1 + (r + 1)xd) + ...+ h(dxk+1 + (k + 1)xd)

+ s|Bs|((s+ 1)x2 + 2xs+1) + r|Br|((r + 1)x2 + 2xr+1) + ...+ k|Bk|((k + 1)x2 + 2xk+1)

+ [s|Bs|+ r|Br|+ ...+ k|Bk|](x2 + 2x).

Proof. Case (1) If β1 = β2 = ... = βd = Bk.

Let E1 be the set of all edges which are incident with the center vertex, |E1| = d. Let E2

be the set of all edges which are incident with the root of Bk which has degree k + 1 and
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the vertex of degree two, |E2| = k|Bk|. Let E3 be the set of all edges which are incident
with the vertex of degree two and vertex of degree one, |E3| = k|Bk|.

V D(T, x) =
∑

uv∈E(T )

d(u)xd(v)

=
∑

uv∈E1

(dxk+1 + (k + 1)xd) +
∑

uv∈E2

((k + 1)x2 + 2xk+1) +
∑

uv∈E3

(x2 + 2x)

= d(dxk+1 + (k + 1)xd) + k|Bk|((k + 1)x2 + 2xk+1) + k|Bk|(x2 + 2x)

= d(k + 1)xd + (d2 + 2k|Bk|)xk+1 + k(k + 2)|Bk|x2 + 2k|Bk|x.

Case (2) If β1 ∼= Bs, β2 ∼= Br , ..., βd ∼= Bk, and |Bs| = |Br| = ... = |Bk| = 1

Let E1 be the set of all edges which are incident with the center vertex, |E1| = d. Let E2

be the set of all edges which are incident with the root of Bs which has degree s+ 1 and
the vertex of degree two, |E2| = s. Let E3 be the set of all edges which are incident with
the root of Br which has degree r + 1 and the vertex of degree two, |E3| = r.
...
Ek be the set of all edges which are incident with the root of Bk which has degree k + 1
and the vertex of degree two, |Ek| = k. Let Ep be the set of all edges which are incident
with the vertex of degree two and vertex of degree one, |Ep| = s+ r + ...+ k.

V D(T, x) =
∑

uv∈E(T )

d(u)xd(v)

=
∑

uv∈E1−(d−1)

(dxs+1 + (s+ 1)xd) +
∑

uv∈E1−(d−1)

(dxr+1 + (r + 1)xd) + ...

+
∑

uv∈E1−(d−1)

(dxk+1 + (k + 1)xd) +
∑

uv∈E2

((s+ 1)x2 + 2xs+1) +
∑

uv∈E3

((r + 1)x2 + 2xr+1)

+ ...+
∑

uv∈Ek

((k + 1)x2 + 2xk+1) +
∑

uv∈Ep

(x2 + 2x)

= (dxs+1 + (s+ 1)xd) + (dxr+1 + (r + 1)xd) + ...+ (dxk+1 + (k + 1)xd)

+ s((s+ 1)x2 + 2xs+1) + r((r + 1)x2 + 2xr+1) + ...+ (s+ r + ...+ k)(x2 + 2x).

Case (3) If β1 ∼= Bs, β2 ∼= Br , ...,, βd−1 ∼= Bz, βd ∼= Bk, and |Bs| = i, |Br| = j,...,

|Bz| = g, |Bk| = h.
Let E1 = d = i + j + ... + h be the set of all edges which are adjacent with the center
vertex. E2 = s|Bs| be the set of all edges which are adjacent with the root of Bs which
has degree s + 1 and the vertex of degree two. E3 = r|Br| be the set of all edges which
are adjacent with the root of Br which has degree r + 1 and the vertex of degree two.
...
Ek = k|Bk| be the set of all edges which are adjacent with the root of Bk which has degree
k+ 1 and the vertex of degree two. Ep = s|Bs|+ r|Br|+ ...+ k|Bk| be the set of all edges
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which are adjacent with the vertex of degree two and vertex of degree one.

V D(T, x) =
∑

uv∈E(T )

d(u)xd(v)

=
∑

uv∈E1−(j+l+...+h)

((dxs+1 + (s+ 1)xd)) +
∑

uv∈E1−(i+l+...+h)

((dxr+1 + (r + 1)xd))

+ ...+
∑

uv∈E1−(i+j+l+...+g)

((dxk+1 + (k + 1)xd)) +
∑

uv∈E2

((s+ 1)x2 + 2xs+1)

+
∑

uv∈E3

((r + 1)x2 + 2xr+1) + ...+
∑

uv∈Ek

((k + 1)x2 + 2xk+1) +
∑

uv∈Ep

(x2 + 2x)

= |d− (j + l + ...+ h)|(dxs+1 + (s+ 1)xd) + |d− (i+ l + ...+ h)|(dxr+1 + (r + 1)xd) + ...

+ |d− (i+ j + ...+ g)|(dxk+1 + (k + 1)xd) + s|Bs|((s+ 1)x2 + 2xs+1)

+ r|Br|((r + 1)x2 + 2xr+1) + ...+ k|Bk|((k + 1)x2 + 2xk+1)

+ [s|Bs|+ r|Br|+ ...+ k|Bk|](x2 + 2x)

= i(dxs+1 + (s+ 1)xd) + j(dxr+1 + (r + 1)xd) + ...+ h(dxk+1 + (k + 1)xd)

+ s|Bs|((s+ 1)x2 + 2xs+1) + r|Br|((r + 1)x2 + 2xr+1) + ...+ k|Bk|((k + 1)x2 + 2xk+1)

+ [s|Bs|+ r|Br|+ ...+ k|Bk|](x2 + 2x).

�

Lemma 3.1. Let N(v) be the set of all neighborhood of the vertex v in G = (V,E). The

vertex degree polynomial of G is given by V D(G, x) =
∑

v∈V (G) dN (v)xd(v), where

dN (v) =
∑

u∈N(v) d(u)

The Sierpiński triangle Sj is a fixed set with the overall shape of an equilateral triangle,
subdivided recursively into smaller equilateral triangles. The graph Sj has 3

2(3j−1 + 1)

vertices and 3j edges.

Proposition 3.2. The vertex degree polynomial of the Sierpinski sieve graph Sj is given
by V D(Sj , x) = 24x2 + ((3j)8− 36)x4. Further,

ZV D(V D(Sj , x)) = {0,

√
−24

(3j)8− 36
}.

Proof. The proof is produced directly from Lemma 3.1. �

Definition 3.4. A polynomial P (x) is called graphical vertex degree polynomial if there
exists at least one simple graph G such that V D(G, x) = P (x).

Definition 3.5. Two graphs G1 and G2 are called equal vertex degree polynomial if and
only if V D(G1, x) = V D(G2, x).

Observation 3.2.
(1) There is no vertex degree polynomial in which all the coefficients are 1.
(2) The summation of all the coefficients of the vertex degree polynomial is even.

Proof. (1) There is no graph with all vertices are of degree one except P2 and in P2

the vertex degree polynomial is 2x. So, there is no vertex degree polynomial in
which all the coefficients are 1.
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(2) The summation of the coefficients of vertex degree polynomial is two times the
summation of the degree of the vertices which is 4m.

�

Observation 3.3.
If G1 and G2 are any two graphs such that G1

∼= G2, then

V D(G1, x) = V D(G2, x).

The converse is not true because sometimes G1, G2, ..., Gs are not isomorphic, but they
have the same vertex degree polynomial, i.e if V D(G1, x) = V D(G2, x), then it does not
mean that G1

∼= G2.

This is explained in the following example:

Example 3.2. Let G1 and G2 be two non isomorphic graphs as in Fig 6, so clearly G1

and G2 are non isomorphic graphs, but V D(G1, x) = V D(G2, x) = 6x3 + 18x2 + 2x.

Figure 6. Plotting of (a) Graph G1 and (b) Graph G2

Theorem 3.7. Let G be a connected graph with n vertices. Then

(1) There is no vertex degree polynomial of the form xn.
(2) Zero is a vertex degree root of V D(G, x).
(3) V D(G, x) has no constant term.
(4) V D(G, x) is strictly increasing function on [0,∞).

Proof. (1) As the maximum degree for any graph of n vertices is n-1.
(2) As each term in the polynomial contains at least x of the power one.
(3) For any connected graph G, δ(G) ≥ 1.
(4) The derivative is always greater than zero .

�

4. Applications

In this section, we apply Theorem 3.1 to calculate the second Zagreb index for Dyck-56
network and also for the chemical compound triangular benzenoid G[r].

Example 4.1. Let G be the molecule graph of Dyck − 56s×s(A) as in Fig 7. Then
V D(G, x) = (108s− 44)sx3 + 40sx2, and ZV D(G, x) = {0, −40

108s−44}.
The edge sets of Dyck − 56s×s(A) can be divided into three types as follows:

E1(G) = {uv ∈ E(G) : d(u) = 2 and d(v) = 2},
E2(G) = {uv ∈ E(G) : d(u) = 2 and d(v) = 3},
E3(G) = {uv ∈ E(G) : d(u) = 3 and d(v) = 3}.
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Note that |E1(G)| = 4s, |E2(G)| = 8s and |E3(G)| = 2s(9s− 5).
By using Theorem 3.1, we get

M1(G) = (108s− 4)s,

M2(G) = 3s(54s− 22) + 40s,

D2
x(V D(G, x))|x=1 = 648s2 − 184s.

Figure 7. Dyck − 562×2(A)

Example 4.2. Suppose G be the molecule graph of Dyck − 56s×s(B) as in Fig 8, then
V D(G, x) = 36s(s− 1)x4 + (120s2 − 32s+ 16)x3 + 24(s+ 1)x2, and

ZV D(G, x) = {0, −(15s2 − 4s+ 2)±
√

225s4 − 174s3 + 76s2 + 38s+ 4

9s(s− 1)
}.

Also, the edge sets of Dyck − 56s×s(B) can be divided into three types as follows:

E1(G) = {uv ∈ E(G) : d(u) = 2 and d(v) = 3},

E2(G) = {uv ∈ E(G) : d(u) = 3 and d(v) = 3},

E3(G) = {uv ∈ E(G) : d(u) = 3 and d(v) = 4}.

Note that |E1(G)| = 8(s+ 1), |E2(G)| = 12s2 and |E3(G)| = 12s(s− 1).
Using Theorem 3.1, we get

M1(G) = (156s− 44)s+ 40,

M2(G) = 72s(s− 1) + 12(15s2 − 4s+ 2) + 24(s+ 1),

D2
x(V D(G, x))|x=1 = 1152s2 − 576s+ 144.

Figure 8. Dyck − 56s×s(B)
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Example 4.3. Let G[r] be the molecule structure of triangular benzenoid as Fig 9. Then
V D(G[r], x) = (r − 1)(12 + 9r)x3 + 6(3r + 1)x2, and

ZV D(G[r], x) = {0, −6(3r+1)
(r−1)(12+9r)}. The edge sets of G[r] can be divided into three types as

follows:

E1(G[r]) = {uv ∈ E(G[r]) : d(u) = 2 and d(v) = 2},
E2(G[r]) = {uv ∈ E(G[r]) : d(u) = 2 and d(v) = 3},
E3(G[r]) = {uv ∈ E(G[r]) : d(u) = 3 and d(v) = 3}.

Note that |E1(G[r])| = 6, |E2(G[r])| = 6(r − 1) and |E3(G[r])| = 3r
2 (r − 1).

Using Theorem 3.1, we get

M1(G[r]) = 9r2 + 21r − 6,

M2(G[r]) =
3(r − 1)(12 + 9r) + 12(3r + 1)

2
,

D2
x(V D(G[r], x))|x=1 = 54r2 + 54r − 60.

Figure 9. G[4]

5. Conclusions

In this paper, new graph polynomial, called vertex degree polynomial is introduced and
its chemical importance is presented by studying the relations between the coefficients of
the polynomial and its derivatives with the topological indices and studying the correlation
of the summation of the coefficients of second derivative of the vertex degree polynomial
for the isomers of octanes with some chemical properties. We have calculated the vertex
degree polynomial along with its roots for some important families of graphs. Finally, using
the vertex degree polynomial, similarly, the first and second Zagreb indices for Dyck-56
network and also for the chemical compound triangular benzenoid are calculated. It would
be of great interest if we can identify a graph on the basis of a given polynomial. This
will further give rise to many more interesting results.
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