
Predicting Knowledge Gain during Web
Search based on Eye-movement Patterns

Fakultät für Elektrotechnik und Informatik

Institut für Verteilte Systeme – Fachgebiet Visual Analytics

Leibniz Universität Hannover

Bachelorarbeit
submitted for the degree of

Bachelor of Science (B. Sc.)

by

Ahmad Khawatmi
Matriculation Number : 10006556

First Examiner: Prof. Dr. Ralph Ewerth

Second Examiner: Prof. Dr. Sören Auer

Supervised By: M. Sc. Wolfgang Gritz

October 10, 2022

Erklärung der Selbständigkeit

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst habe, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt wurden, alle Stellen der Arbeit, die wörtlich
oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht
sind, und die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt
habe.

Hannover, October 10, 2022

Ahmad Khawatmi

Abstract

The content on the internet is expanding exponentially, and the virtual space has become
a messy place. Therefore, acquiring information to fulfill the learning need is a difficult
task.Search as Learning (SAL) is a new domain that investigates the importance of the
learning process and supports individuals in acquiring information. Therefore, a solution
to make obtaining information easier for knowledge seekers from a web search. Prior work
in this field focused extensively on resource data (e.g., text and multimedia resources) and
behavioral data (e.g., search interactions) to make a knowledge gain (KG) prediction during
a web search. However, eye movement and reading pattern data are yet to be explored.
Thereby, in this work, we introduce a set of features related to eye movements that would
help us predict knowledge gain based on the reading pattern of the participants. For this
purpose, we relied on data from a prior work-study, in which 114 participants had to acquire
information about the foundation of lightning and thunder from a web search. We used a
cutting-edge approach for the evaluation. Moreover, we extended with a word-level mapping
to eye fixations of web pages, unlike prior work that attempted to rely on the eye’s central
vision to map the eye fixations. Experimental results demonstrate the ability to predict
knowledge gain based on the reading pattern and eye movements.

V

Contents

List of Tables XI

List of Figures XIII

Acronyms XV

1 Introduction 1

2 Related Work 3
2.1 Knowledge Gain . 3
2.2 Resource Data and Knowledge Gain . 4
2.3 Behavioral Data, Search Data and Knowledge Gain 5
2.4 Eye-tracking Data, Reading Pattern, and Knowledge Gain 7

3 Foundations 9
3.1 Eye Movements during Reading . 9

3.1.1 Fixations and Saccades . 9
3.1.2 Visual Acuity . 9
3.1.3 Saccade Latency . 9
3.1.4 Perceptual Span . 9
3.1.5 Regressions . 10
3.1.6 Where to Fixate Next . 11

3.2 E-Z Reading Model . 11
3.2.1 Word Identification . 11
3.2.2 Visual Processing . 11
3.2.3 Attention . 12
3.2.4 Oculomotor Control . 12

3.3 Reading Protocol Tool . 12
3.3.1 Data input . 12
3.3.2 Word-Eye-Fixation Computation . 13

3.4 Machine Learning Classifiers . 13
3.4.1 AdaBoost . 13

3.4.1.1 Terminology . 14
3.4.1.2 Ensemble Machine Learning Approach 14

VII

Contents

3.4.1.3 How does AdaBoost Algorithm Work? 14
3.4.2 K-Nearest Neighbour . 15

3.4.2.1 How does K-NN Work? . 15
3.4.2.2 How to Choose the K Value 15

3.4.3 Decision Tree . 16
3.4.3.1 Types of Decision Trees . 16
3.4.3.2 Terminology in Decision Trees 16
3.4.3.3 How Do Decision Trees Work? 17
3.4.3.4 Attribute Selection Measures 18

3.4.4 Random Forest . 18
3.4.4.1 How does RF Work? . 18

3.4.5 A Multilayer Perceptron . 19
3.4.5.1 Terms in MLP . 20
3.4.5.2 How MLP Works? . 20

3.4.6 Support-vector Machine . 21
3.4.6.1 How does SVM Algorithm Work? 21

3.5 Correlation Coefficient . 22
3.5.1 Pearson Correlation Coefficient . 22
3.5.2 Correlation Coefficient Interpretation 23

4 Methodology 25
4.1 Bhattacharya and Gwizdka and Words Level data pre-processing 26

4.1.1 Data Cleaning . 26
4.1.2 Filtering and Grouping . 26

4.1.2.1 Bhattacharya and Gwizdka Grouping and Filtering 27
4.1.2.2 Word-level Grouping and Filtering 27

4.2 Feature Extraction . 28
4.2.1 Reading Pattern and Eye-tracking Data Processing 29

4.2.1.1 Total Reading Fixations Count Calculation 29
4.2.1.2 Fixation Duration Calculation 29
4.2.1.3 Total Reading length Calculation 30
4.2.1.4 Total Eye Regression Count Calculation 31
4.2.1.5 Total Regression Length Calculation 32

4.2.2 Behavioral Data Processing . 33
4.2.2.1 Fixating Session Time Calculation 33
4.2.2.2 Dwell Time Calculation . 34

5 Experiments 35
5.1 Dataset . 35

5.1.1 Task Description . 35

VIII

Contents

5.1.2 Procedure and Knowledge Measurements 36
5.1.3 Technical Environment Setup . 36
5.1.4 Dataset Structure . 37
5.1.5 Eye-movement Features . 39

5.2 Correlation . 40
5.3 Knowledge Gain Prediction . 41

5.3.1 Knowledge Gain Definition . 42
5.3.2 Metrics . 42
5.3.3 Experimental Setup . 43
5.3.4 Hyper-parameter Optimization . 43
5.3.5 Classifiers . 43
5.3.6 Experimental Results . 43

6 Conclusion 45
6.1 Summary . 45
6.2 Future Work . 46

IX

List of Tables

5.1 Correlation between the features and pre-test, post-test scores and knowledge
gain results . 40

5.2 The Classifiers (clf) we used in our knowledge gain prediction to calculate
precision (p), recall (r), f1-score (f1) and accuracy (acc) are: Adaboost (ada),
Decision Tree (dt), K-Nearest Neighbor (knn), Multi-layer Perceptron (mlp),
Random Forest (rf), and Support Vector Machine (svm). 44

XI

List of Figures

3.1 Visualization of the perceptual span and its change based on different lan-
guages as Li et al. depicted [38] . 10

3.2 Visualization of the regression movement in the eyes in step 7 and 8 as Eck-
stein et al. [16] displayed . 10

3.3 Wang et al. [62] steps visualization of Adaboost algorithm 14
3.4 Figure shows the change in the K-value leads to a different classification for

the sample [66]. 16
3.5 Figure shows the decisions path of DT [63]. 17
3.6 Figure shows that RF classifier is made of multiple decision tree [49] 19
3.7 The figure shows FeedForward structure [47] 21
3.8 Support-vector Machine binary classification [58] 22

4.1 Pre-processing steps that are followed in our extended word-level work 25
4.2 Pre-processing steps that are used to replicate the implementation of Bhat-

tacharya and Gwizdka’s work . 26
4.3 Eye gaze data for participant with id equals to one (left) and the viewed web-

site during the session ("https://www.weltderphysik.de/thema/hinter-den-
dingen/gewitterblitze"). On the other hand, The data retrieved from the
reading protocol for the same participant and same website (right) 28

XIII

Acronyms

Adaboost Adaptive Boosting. 13, 43

CSV Comma Separated Values. 12, 39

DT Decision Tree. 13, 43

FN False Negative. 42

FP False Positive. 42

HTML Hypertext Markup Language. 12, 36

I-DT Dispersion-Threshold Identification. 13, 37

IR Information Retrieval. 1

JSON JavaScript Object Notation. 12, 27

K-NN K-Nearest Neighbour. 13, 43

KG Knowledge Gain. 1, 3, 5, 6, 8, 42, 44

KS Knowledge State. 1, 5

ML Machine Learning. 13

MLP Multi-layer Perceptron. 13, 43

OCR Optical Character Recognition. 12

PCC Pearson Correlation Coefficient. 22, 40

RF Random Forest. 13, 43

SAL Search as Learning. 1, 45

SERP Search Engine Result Page. 5, 6, 8

SI Search Interaction. 6

SMI SensoMotoric Instruments. 36

XV

Acronyms

SVM Support Vector Machines. 13, 43

TN True Negative. 42

TP True Positive. 42

TSV Tab Separated Values. 37

URL Uniform Resource Locators. 37

XVI

1 Introduction

With the quick technological advancement and the rapid growth of the worldwide web, our
life has become dependent on this virtual space and the information that it stores. The
internet enables us to find and access any information we need with only a few clicks. As
a result of this fast growth, it has become a messy place with an overloaded amount of
information [30]. Search engines, on the other hand, don’t make the process easier because
they rely on an Information Retrieval (IR) system with limited capabilities that only do
simple tasks by looking for topic relevance in the documents, and ignore others that require
complex search strategies, which are beyond simple lookups, such as learning [23]. Different
intents can be distinguished from searchers’ web search queries, and they are navigational,
transactional, and informational [7, 64]. Searchers’ goal in the navigational intent is finding a
specific website, whereas looking for something to buy on the web describes the transactional
intent of the searchers. Acquiring new information and learning a new skill represents the
informational intent and it is a process in which the state of the searcher’s knowledge gets
changed due to the seeking and engagement with information. A modern IR system is
required to fulfill the needs of web searchers with a learning purpose. The domain of Search
as Learning (SAL) investigates the importance of the learning process on the internet and
tries to detect the informational intent as it happens to facilitate acquiring information and
support individuals by learning. It also focuses on predicting Knowledge State (KS) and
Knowledge Gain (KG) of users after a web search and ranking web page results according
to learning goals [31].

Prior work [2, 42, 64] has explored information acquisition of participants by looking into
various aspects of learning to predict the knowledge gain during a web search. Gritz et al.
[27] focused on exploring the relationship between textual complexity and knowledge gain.
On the other hand, Otto et al. [42] investigated the influence of multimedia resources on
knowledge gain prediction. Behavioral and search interaction data were used extensively to
predict knowledge gain. Ran et al. [65] investigated the outcome of the search interaction
on knowledge gain, and Yu et al. [64] attempted to look into the browsing behavior of the
participants to measure knowledge gain prediction. Last but not least, Bhattacharya and
Gwizdka [2] have explored different aspects of knowledge gain prediction by looking into the
eye movements of the participants to see their influence on the prediction. However, this
domain is not explored broadly. Therefore, in our work, we attempt to look deeper into the
domain by trying to investigate not only the eye movements of the participants but also

1

1 Introduction

their reading patterns. We will analyze how knowledge is acquired based on the way the
eyes move while reading the textual content. We also present an accurate word-level method
to map the eye fixations on websites’ textual content that aims to understand better the
reading pattern of participants and their eye movements. Moreover, better prediction for
knowledge gain.

2

2 Related Work

Research has shown [2, 27, 42] that it is feasible to model and predict a user’s KG by
combining various features recorded during a search on the web. It has investigated the
relationship between Knowledge Gain prediction, and a set of features based on text, mul-
timedia, behavioral, search interaction, eye-tracking, and reading patterns. Our research
focuses on two domains of prior work: (1) The influence of various features on KG and (2)
Modeling and predicting KG based on eye-tracking data and reading patterns.

2.1 Knowledge Gain

Acquiring new information from web searches has been one of the most crucial tasks on the
internet. Researchers [2, 24, 64] have extensively explored different approaches to measure
the amount of gained information by using various means and analyzing multiple charac-
teristics during the search, and it is called Knowledge Gain. Every researcher has a slightly
different definition of Knowledge Gain. However, all of them share the same goal: evaluat-
ing the amount of new information the participant acquired during their web search while
learning about their task.

Gadiraju et al. [24], Ran et al. [65], and Yu et al. [64] defined Knowledge Gain as the
difference between the score of the post-session test and the calibration knowledge score
using Behavioral and Search characteristics.

Moraes et al. [40] followed the same measurement criteria for evaluating the participants’
vocabulary change by comparing the Knowledge Gain before and after the study experiment.

On the other hand, Gritz et al. [27] defined a range of values from -10 up to 10 that indi-
cates the learning outcome’s efficiency. The gain is calculated by subtracting the post-session
knowledge test score from the pre-session test score. They counted mainly on Resource data
to compute the prediction of the Knowledge Gain.

Kalyani and Gadiraju [36] measured Knowledge Gain change by giving participants a
pre and post-test, which consisted of the same questions that test the level of participants’
cognitive abilities during the web search task.

Furthermore, Bhattacharya and Gwizdka [2] decided on an assessment test without a
time limit to measure Knowledge Gain, in which participants could write in a free-recall
manner to estimate their knowledge. Participants took two tests, one before and one after

3

2 Related Work

the session, and the difference between the two scores was taken as the final value. The KG
prediction was primarily based on the participants’ reading patterns and gaze data.

2.2 Resource Data and Knowledge Gain

A wide range of resource data has been investigated to study its impact on KG, especially
Textual data.

Gritz et al. [27] investigated the influence of the textual features on measuring Knowledge
Gain during a web search and analyzed its impact based on the complexity of the text on
predicting KG. He extracted eight different types of features to assess the complexity of
the text. Textual complexity features types varied between Syntactical, Readability scores,
Part of speech (POS), Lexical richness, Group of Lexical variation, Group of Lexical sophis-
tication, Group of Syntactic constituents, and Group of Connectives. Multiple classifiers
were implemented to analyze the large set of text-based features. Results obtained from his
analysis of the textual complexity data of the visited website pages during the study showed
the importance of text complexity features on Knowledge Gain prediction. Moreover he
included that web pages with the lowest textual complexity are the most important for the
classification result.

Similarly, Eickhoff et al. [17] tried to predict Knowledge Gain by investigating the features
extracted from the visited pages that may lead to knowledge acquisition on the internet. He
extracted text length, sentence length, and term length features, coverage of query terms
in the title, distribution of the query terms, POS Distribution, page complexity, and page
complexity vs. query complexity features. a machine learning model was built based on
the mentioned features and it showed promising results by predicting precisely the gain in
knowledge from the pages on the internet.

Tang et al. [60] focused on the extraction of the textual information from the web pages
and entered queries by users, and introduced a classifier that aims to predict the KG of the
users during a web search. Resource features and User behavior features were the categories
based on the data extracted. Resource features included the complexity of the documents,
such as the average word number per sentence and Gunning Fog Grade, HTML structure,
and linguistic characteristics. On the other hand, User behavior features included session-
related features (e.g. duration of the session), queries (e.g. the average length of queries),
Search Engine Result Pages (SERP) (e.g. click ranks), browsing behavior features (e.g. vis-
ited pages ratio), and lastly, mouse movements (e.g. scroll distance amount). The classifier
proved the ability to predict KG using the extracted set of features and outperformed the
state-of-the-art baseline by 13.6

The influence of multimedia resource consumption on the knowledge gain of users was
studied by Otto et al. [42]. He extracted numerous multimedia features on document layout

4

2.3 Behavioral Data, Search Data and Knowledge Gain

by analyzing them and separating them into regions that represent page structure. As a
result, six area classes were discriminated between (Heading, Menu bar, Content list, Text,
Images/Frames, Background). In addition to that, image regions were examined regarding
their content in order to define their classification type, resulting in several image types
(infographics, indoor photo, naps, outdoor photo, technical drawings, and information visu-
alization). Furthermore, the study included a set of 110 features that represent the textual
information taking into consideration the complexity of the document, HTML structure,
and linguistic aspects. The results of the analysis show that none of the multimedia features
are listed at the bottom of the most crucial features, and emphasized the role multimedia
resources (images/videos) play to improve KG prediction.

Moraes et al. [40] had a different approach to measuring learning gain. He attempted to
measure Knowledge Gain by evaluating the change in the participants’ vocabulary knowl-
edge. Every participant was assigned a random specific condition for the learning task.
Among these conditions is users can either watch only lecture videos about the topic, look
in a single web search about the topic, or have both options to watch videos and use the
web search page. The experiment results showed that the learning gain increased by 24
percent when watching only videos and up to 41 percent when participants used videos to
learn alongside the search functionality.

2.3 Behavioral Data, Search Data and Knowledge Gain

Researchers did not stop exploring the influence of resource data on KG, but extended the
area to include participants’ behavioral and search data and study its impact on KG.

Various search session metrics were extracted for the studies. Ran et al.[65] extracted
features related to the queries, SERP activity, Browsing behavior, mouse movements, and
session. Query features contained its count, length (min, avg, total), complexity, and the
number of total/unique terms. Additionally, SERP activity features and mouse movement
features included a click count on SERP and logs of the clicking time between each click.
Documents count, visited pages’ count, SERP browsing time, and navigation source (pages
navigated through/non-through SERP) were listed under browsing features. Last but not
least, session duration was calculated in session features. The outcome of the study indicate
that the time the user spent during the session is critical for Knowledge Gain prediction,
and it affects it strongly. Moreover, features that are related to the content of the queries
and visited documents are important indicators for a better KS and thereby a better KG.

Likewise, Gadiraju et al. [24] studied the Knowledge Gain analysis of the recruited partic-
ipants after their search session on the internet to acquire information. The search sessions
were recorded, and it included all interactions of participants and their various needs with
their logs. User query and user clicks features were extracted. Other features such as search

5

2 Related Work

duration and browsing behavior features were extracted and arranged into 5 categories. the
first category is the length of the session, second is the count of web pages the participant
was forwarded to. Third, Domain and search engine result pages, fourth is the pay-level do-
mains across topics (PLD), the fifth is the formulation of the query (e.g. query complexity,
topic description overlapping, and finally, the evaluation of queries within search sessions.
The results showed participants with higher Knowledge Gain spent more active time on
pages, and it was also found that there is a correlation between the average complexity of
queries and their knowledge gain.

Similarly, Yu et al. [64] investigated ways to detect the learning process of acquiring infor-
mation when it occurs on the web and attempted to understand it to support the individuals’
informational goal. In addition to that, predicting the outcome of the informational session
by building a supervised classifier that takes 22 features and categorized them into three
types of features, which are query, session, and browsing features. Query features include
the count of query terms and the similarity between entered queries, on the other hand,
issued query count, duration of the session, and session break features were involved in the
session category of structured features. Finally, the features extracted out of the browsing
behavior category were the count of clicks, the similarity between clicked URL and query,
and revisited pages. In terms of Knowledge Gain, Yu’s work states that Browsing features
are among the most important categorized features. In the contrast, Session features come
last. Query features played also an effective role in predicting the KG.

Bhattacharya and Gwizdka [2] studied the differences in users’ Search Interaction (SI)
and their impact on KG. The behavior was captured by collecting many SI metrics such as
the number of visited Search Engine Result Pages (SERPs) and CONTENT pages. Dwell
time was also included among the metrics, alongside the type of query reformulations, and
commonality of used words in the queries. Results showed that the participants with low
KG typed fewer new queries than those with high KG. However, there was no difference
in the entered queries count, nor in the count of relevant pages that were found during the
search.

Kalyani and Gadiraju [36] explored predicting knowledge gain by testing the participant’s
cognitive abilities level during web search sessions based on their search behavior. The task
of the study consisted of test questions that would test his cognitive level by asking questions
that would require the participants to remember, understand, analyze, evaluate, and create.
Results of the study show that better cognitive abilities greatly affect the search behavior
of the participant and the knowledge gain.

With the focus on search behavior only, Ghosh et al. [25] explored the relationship between
information seeking, searching, and learning and the outcome of the process. They extracted
multiple features to trach the search behavior of the participant of the experiment, such as
the number of visited pages, the number of saved pages, query count, length, diversity, and

6

2.4 Eye-tracking Data, Reading Pattern, and Knowledge Gain

reformulations. Last but not least, they extracted the average dwell time for every task.
The reported findings show patterns for high-knowledge learners in their search, such as
differences in query length.

In a different approach, Zhang and Liu [67] attempted to measure Knowledge Gain by
looking into the change in the usage of participants’ vocabulary during their search activities.
They used multiple variables to model their strategy. Amongst these variables are the prior
knowledge vocabulary counts (Active PKV), the ratio between prior knowledge vocabulary
used in search activities and the total vocabulary of the prior knowledge (Active PKV ratio),
prior knowledge vocabulary ratio used in queries to total query terms (PKV dependency),
and last but not least, count of queries’ used vocabulary of prior knowledge that is on the
i-level in the pre-search mind map (Active PVK from level i). As anticipated, the findings
ensure the importance of prior knowledge vocabulary in shaping the queries and looking
for information in the first stage of the search. However, the reliance on prior knowledge
vocabulary reduces as the participants continue their query search due to attaining new
knowledge.

In this work, we attempt to study the participants’ behavior by calculating the time the
participants spend while reading and fixating on the words. On the other side, we want to
calculate the time they spent looking at regions unrelated to the textual contents. Therefore,
exploring if these behavioral characteristics can make an impact on Knowledge Gain and
the model ability to predict it.

2.4 Eye-tracking Data, Reading Pattern, and Knowledge Gain

The research area in reading patterns and knowledge gain has not been studied extensively.
However, prior work [2, 10] shows the correlation between eye movement and knowledge.

J. Cole et al. [10], in their research, looked into eye movement patterns and the level
of user’s knowledge by distinguishing the types of Reading patterns the participants follow
when performing an informational task that requires knowledge acquisition. He found that
there is only one way to acquire the sought information by gazing at it repeatedly. Addition-
ally, the person’s attention is needed to perform and complete the acquisition. Eye-tracking
data enabled them to discover patterns in observing documents as well, such as the "F-
shape" reading pattern in which the user looks at the information in an F-shape way to read
search engine result page (SERP), and the E-Z Reader model, which describes the move-
ment pattern of the eye to identify the word, do the visual processing, the attention and
control the oculomotor system during the reading function. The results show a connection
between eye movements and the user’s domain knowledge in deriving the cognitive nature
of information interaction.

7

2 Related Work

Syed et al. [59] explored the signifying indications of low and high-learning participants
by examining their reading and gazing patterns and trying to uncover a connection with
processing information to support their learning and evaluate knowledge. They computed
participants’ total reading time, total fixation count/duration of regression, reading, and
scanning. In addition to that, they investigated the relationship between the time spent on
reading and post-test grades from one side and another side between the result of learning
and reading fixation behavior. Their study showed that the participants with low learning
knowledge had higher numbers of fixations from scanning and regression types, indicating
that they did not pay much attention to reading the text.

On the other hand, Bhattacharya and Gwizdka [2] researched the effect of eye-tracking
data on predicting Knowledge Gain by analyzing the eye tracker data of the participants
during their web search on the internet. This process was intended to look into the reading
pattern that the participants follow to acquire knowledge. Several features were extracted
to measure the influence, such as total reading duration and count of active fixations. Addi-
tionally, the total length of the reading sequence, number of eye regressions, and the length
of regressions were calculated on both SERPs and CONTENT pages that are relevant to
the task. The results of the paper showed that the group of participants who had spent
more reading fixations time and fixation duration per CONTENT page belonged to the
LO group, which represents participants with low Knowledge Gain. Similarly, the LO group
committed more eye regressions in reading. Therefore, longer overall reading sequences than
the participants in HI group with high KG.

Bhattacharya and Gwizdka’s paper is the foundation of our work for multiple reasons: (A)
They studied the effect and influence of eye-tracking features on KG. (B) They considered
behavioral features on the KG prediction. (C) They built a machine learning model to
predict KG. Furthermore, we extend the features area by looking extensively at Eye-tracking
features and Reading pattern features to measure and predict KG.

This work expands the work prior researchers did in two manners. First, as shown in this
section most studies focused on textual, multimedia, search interactions, and behavioral fea-
tures. However, eye-tracking and reading patterns features weren’t explored appropriately.
Therefore, we want to measure the outcome of their influence on KG. Second, several stud-
ies introduced machine learning models to predict KG based on resource (text, multimedia)
and behavioral features. In this work. We want to build and train a supervised model that
predicts Knowledge Gain based on eye-tracking features and the reading patterns of the
users.

8

3 Foundations

3.1 Eye Movements during Reading

To understand the various reading models, we need to briefly understand the terms that
describe the movement of the eyes.

3.1.1 Fixations and Saccades

During the reading process, the reader doesn’t move their eyes simply from left to right in
a straight line across the page. Instead, however, their eyes move back and forth. Fixations
are the stops during reading, in which the eye stop on a word to identify. Many factors define
the duration of the fixation but it can be less than 100 ms and more than 400 ms depending
on the complexity of text [51]. On the other hand, saccades are the jerky movement of the
eyes to shift the attention to the next word to identify. Saccades can skip, repeat or fixate
on words as well.

3.1.2 Visual Acuity

It is the amount of visual information the eye can process during reading. It is limited,
which is why the eyes continuously move during reading because we need to identify the
words by fixating on them. The visual acuity is minimal in the periphery and maximal in
the retina center [51].

3.1.3 Saccade Latency

The eyes read about 300 words per minute approximately as Reichle et al. [51] stated. For
the eyes to achieve reading that amount of words, there is a race between the process of
recognizing the words and planning for the next saccade, and this is called saccade latency
[51].

3.1.4 Perceptual Span

Ryner [50] defines it as, in a given fixation, how much visual information is processed. In
other words, how much visual information can be encoded in one area, and usually, the

9

3 Foundations

readers proceed at a normal rate when the window contains between 14-15 character spaces
to the right and 3-4 characters to the left. Language can be a factor for the area of the
span to increase or decrease, such as in Hebrew, the perceptual span area decreases as we
can see in figure 3.1. Moreover, the difficulty of a word can also cause the perceptual span
to decrease. On the other hand, when the coming word can be predictable, the perceptual
span increases, and obtain more information to the right.

Figure 3.1: Visualization of the perceptual span and its change based on different languages
as Li et al. depicted [38]

3.1.5 Regressions

Regression is the eyes’ movements backward when reading, such as to the left when reading
English or German content. It can be a measure of either the complexity of reading a word
which is a linguistic processing issue, or oculomotor error [51]. The regression of the eyes
can be seen in the figure 3.2 in the steps 7 and 8.

Figure 3.2: Visualization of the regression movement in the eyes in step 7 and 8 as Eckstein
et al. [16] displayed

10

3.2 E-Z Reading Model

3.1.6 Where to Fixate Next

Low-level visual cues in the text can determine where the next fixation will be. The gap
between the words or the length of the words. Studies [51] defined several types of conditions
to determine where to fixate next. First, the length of the fixated word can influence the
saccade length. Second, Saccade length drops when reading does not have information about
where gaps are between coming words. Third, the first fixation is usually made between the
first word and the middle between the start and middle of the word.

3.2 E-Z Reading Model

E-Z Reader Model is an eye movement method and a process for human reading that explains
the chain sequence of reading steps, in which the reader looks at a word (fixation) at a time
and transitions to the next word (saccade). This method describes the relationship between
the low-level side of language processing and vision. It includes four crucial steps that tell
where and when the eyes should jump while reading, and they are word identification (also
called familiarity check), visual processing, attention, and oculomotor control [51].

3.2.1 Word Identification

It is also called a familiarity check and consists of two phases. The identification starts once
the attention is allocated to a word to read. The first phase is word form identification. In
this stage, only the lexical aspect is essential. The other aspects, such as the semantic or the
phonological form of the words, are not. In the second phase, the semantic and phonological
forms of the word are identified to enable linguistic processing. The mean time for word
identification can vary depending on the word and the language itself, and some languages
take more time and some less. Moreover, it depends on the predictability of the word as
well [51].

3.2.2 Visual Processing

The visual features of the displayed text on the screen are transmitted to the visual cortex
through the retina so words can be recognized. The transmission takes time to be processed,
up to 90 milliseconds. Visual processing helps to acquire the frame of the word, which helps
to plan saccades to the following words during reading. Furthermore, it helps allocate
attention to words in the higher-level visual regions to recognize them [51].

11

3 Foundations

3.2.3 Attention

One of the most crucial steps of the E-Z Reader model. Attention allocation allows the
word to be identified. Therefore, proceeding to the next word. The process happens serially
because the eye moves from one word to the other in a straight order. Attention allocation
moves to the next word after finishing the second phase of word identification [51].

3.2.4 Oculomotor Control

The coordination of eye movements is one of the tasks of oculomotor control. That includes
the eyes’ quick and steady movement and fixations on targets such as words for reading [32].

3.3 Reading Protocol Tool

The Reading Protocol Tool [29] is an eye movement tracking Software that can map the
data points of gaze information down to the word level. Therefore, giving more flexibility to
interpret the eye gaze data, insights, and many possibilities to analyze those interpretations.
Unlike other eye-tracking software that relies on generating a plot or heat-map of the gaze
points, which makes the process of analyzing those data costly because of the need for
a manual observation to analyze the image or video-based data. The Reading Protocol
Software is capable of mapping the subject’s eye gaze points to their corresponding stimuli
pages down to the word level. Moreover, It gives the power to manipulate the data quickly
and filter them instantly based on some filtering options such as filtering by a specific subject,
stimulus, and areas of interest. The Reading Protocol Software also allows the export of
fixations time for the entire eye data to continue processing using other tools to get more
information about the users and to understand their behavior from their data information.

We summarize Hienert et al. [29] work in the following two subsections which describe
the software inputs and the computation methods.

3.3.1 Data input

For the software to start processing and mapping the words, it must be fed with two dataset
types of files. First, the software needs a file of the raw gaze data of users from the eye-
tracking software. The file can be exported as a CSV file. Second, it needs the HTML
content of the visited stimulus. The website HTML content can be acquired in various ways,
either by plugins that record the website in new experiments or can be used from another
experiment if recorded or from existing images of the stimuli by using Optical Character
Recognition (OCR). After providing the software with the needed data, it starts mapping
the eye-gaze data points down to the text-level of the words of every stimulus page the users
looked at while searching. As a result, a JSON structure is built that contains the mapped

12

3.4 Machine Learning Classifiers

information. Every word in the JSON structure contains the word position on the x and y
axis on the page. In addition, the word’s width and height alongside the fixation time and
its timestamp for the first and last time the user looked at the word.

3.3.2 Word-Eye-Fixation Computation

The algorithm of the Reading Protocol software looks for the original website layout and
opens it up in a browser. After that, the coordinates of the eye gaze data points are fetched
from the database. Then the algorithm uses the Dispersion-Threshold Identification (I-
DT) [53] algorithm to divide the data points between fixations and saccades. A particular
method is called in the browser to find the word on which the eye data point is located, and
this process is done for every fixation. The algorithm returns timestamps, text position,
word position, fixation times, and stimulus if a word is found. The returned word is saved
alongside all the other found words and stored in the database.

3.4 Machine Learning Classifiers

Machine Learning is becoming more involved in nearly every scientific domain. It facilitates
research because it enables us to unlock and observe patterns that are not easy for humans to
discover without its help. To understand how machine learning algorithms work, we need to
look into the diverse classifiers to comprehend how they perform the calculations. We relied
on multiple classifiers in this work, which led to our results. Amongst these classifiers are
Adaptive Boosting (Adaboost), K-Nearest Neighbour (K-NN), Decision Tree (DT), Random
Forest (RF), Multi-layer Perceptron (MLP), and last but not least, Support Vector Machines
(SVM). In this section, we will look closely at these classifiers, their definition, and the way
their algorithms do the computations.

3.4.1 AdaBoost

AdaBoost, an abbreviation for Adaptive Boosting, was proposed by [22] Yoav Freund and
Robert Schapire in 1996 and is one of the iterative Ensemble boosting classifiers. In Ad-
aBoost, multiple classifiers are combined in order to increase the accuracy of the classifier,
and in each iteration, the weights of the trained sample of data and classifiers are set [21].
Thereby, the prediction accuracy is guaranteed in case of uncommon observations. In order
for AdaBoost to work correctly, some conditions have to be met, such that the classifier
has to be on multiple weighed training instances trained in an interactive way. Moreover, it
attempts to look for a perfect fit by making training error reduction. [15]

13

3 Foundations

3.4.1.1 Terminology

• Bagging: reducing the variance of estimates by fusing multiple models.

• Boosting: fusing multiple low-performing classifiers to build one with better accuracy

• Stacking: also called blending, a combination of many base prediction models into a
new data-set the output of the fused base prediction models is treated as an input for
another classifier.

3.4.1.2 Ensemble Machine Learning Approach

It is the process of harnessing multiple low-performing machine learning algorithms in order
to fuse them and produce one with a better performance [15]. Therefore, it delivers better
accuracy than the base or individual classifiers. Bagging is used in the Ensemble approach
to reduce the variance. Boosting is also used to decrease the bias, and Stacking to increase
the prediction.

3.4.1.3 How does AdaBoost Algorithm Work?

In the beginning, AdaBoost Algorithm randomly picks a subset from the training data.
After that, the model gets trained iteratively, and in every iteration [28], the training set
with the highest prediction accuracy gets chosen for the next iteration. In the next step,
The classifications with low observations will be set with a higher weight. Thereby, in the
following iteration, these observations will get an increased probability for observations.
Additionally, the weight of the trained classifier is set according to the accuracy of the
classifier, and the classifier with the highest accuracy will be considered by voting as depicted
in the figure 3.3. The iteration cycles will keep happening till the max number of estimators
is reached, or all training data is fit without errors.

Figure 3.3: Wang et al. [62] steps visualization of Adaboost algorithm

14

3.4 Machine Learning Classifiers

3.4.2 K-Nearest Neighbour

K-Nearest Neighbor, also known as K-NN, created by Joseph Hodges and Evelyn Fix in
1951 [45], is a supervised non-parametric learning classifier. It uses data points grouping to
predict the outcome. K-NN’s algorithm is also applicable to Classification and Regression
tasks but is mainly used for solving Classification problems.

3.4.2.1 How does K-NN Work?

In order to make the class prediction for the test data, K-Nearest Neighbor computes the
distance between the available training points and the test data. After that, The K value
of points is chosen to make the model consider the exact amount of points most proximate
to the test data. Finally, It selects the class with the highest probability by computing the
probability of the test data, which belongs to the classes of K training data. On the other
hand, in the case of a Regression task, the mean of the chosen K training points is the
value. Nevertheless, there are multiple methods of computing the distance between the data
points depending on the type of the problem. Some of these methods [9] are the Straight
line distance, also called Euclidean distance:.

d =
√

(x1− x2)2 + (y1− y2)2.

In addition to that, there are Manhattan Distance (also called City Block Distance):

dst = (
n∑

j=1

|xsj − ytj |) (3.1)

and Hamming Distance as well:

dst = (
#(xsj 6= ytj)

n
) (3.2)

3.4.2.2 How to Choose the K Value

In order to get the best K value for our data, we need to execute the K-NN algorithm several
times, but with different values for K. The K value with the lowest error count and good
predictability ratio for the test data that have not been seen will be used. Moreover, we
must be careful about choosing the K value because the lower the value, the less stable
the algorithm becomes. In contrast, the higher the K value, the more stable, but up to a
certain limit because the number of errors will start to increase once the limit is passed.
Figure 3.4 shows how the K-value affect the sample as depicted by [66]. The stability of the
algorithm is due to the Averaging or Majority voting that gives the algorithm the ability to

15

3 Foundations

predict accurately. In the case of majority voting, it is best to choose K as an odd number
to eliminate a tie if it occurs.

Figure 3.4: Figure shows the change in the K-value leads to a different classification for the
sample [66].

3.4.3 Decision Tree

Decision Tree classifier is also one of the supervised learning algorithms [61]. It makes
decisions based on a set of rules that mimic how humans make decisions, and it is a tree-like
structure that models the potential outcomes and displays it as a path of decisions with
conditional statements [8]. Branches get created along the way during the decision-making
steps, which lead to the final result.

3.4.3.1 Types of Decision Trees

There are two main kinds of Decision Trees depending on the target. First, Categorical
Variable Decision Tree (Target divided into categories, for instance, the categories can be
either yes or no), and Second, Continuous Variable Decision Tree (Continuous target with
unknown variable limit, such as score points) [14].

3.4.3.2 Terminology in Decision Trees

There are a group of concepts related to Decision Trees to understand how they function.

• Splitting means dividing the node into more or multiple sub-nodes.

• Pruning: The process of removing sub-nodes from the decision tree. It is the opposite
of Splitting.

• Root Node: It is the first root in the tree and represents the whole sample. In later
steps, it gets divided into two or more sets.

16

3.4 Machine Learning Classifiers

• Decision Node: The sub-nodes are called decision nodes when they are split into more
sub-nodes.

• Terminal Nodes: They are the nodes that can not be further split into sub-nodes.
They are also called Leaf.

• Branch: It is a tree sub-section. It is also called a sub-tree.

• Parent Node: The Node, which is split into two sub-nodes, is called Parent Node
concerning its Child Nodes.

• Child Nodes are the sub-nodes of the split Parent Node.

3.4.3.3 How Do Decision Trees Work?

The idea behind the Decision Tree algorithm is to continually split the data-set features
based on YES/NO questions until all data points are separated and belong to a specific
class [35]. With each question asked, we create a new node from the parent node, and the
data-set is split based on the question’s answer depending on the feature’s value, resulting in
new sub-nodes. The first node in the structure is called the root node, and the last nodes in
this process are called leaf nodes or child nodes. As a result, the outcome of this procedure
is a tree-based structure. As long splitting keeps occurring, new branches get created to
separate feature regions. One region would hold all yes-answered data points to questions
while the other would hold the remaining data points. The feature space gets narrowed
down with every split making the data points belong to one region only. The purpose of this
process is to keep splitting and applying the set of rules till we do not have more data points
to use or no more rules to apply. Once the splitting ends, a new process starts, in which
all data points in leaf nodes get assigned to a single class, and these nodes are called pure
leaf nodes [33]. Sometimes we get mixed leaf nodes because not all data points get assigned
with the same class. Therefore, the algorithm assigns the most common class among the
node’s data points.

Figure 3.5: Figure shows the decisions path of DT [63].

17

3 Foundations

3.4.3.4 Attribute Selection Measures

Picking the root attribute might not be a trivial task because choosing a random attribute
as the root node for the splitting might lead to bad results and low accuracy. Charbuty et
al. [8] explained multiple criteria to select the attribute to solve this complicated task by
calculating the values of each attribute, such as:

1. Entropy: It is a randomness measure, and the higher the entropy is, the more difficult
it is to make any decisions from the information. The maximum value of entropy that
indicates perfect randomness in the data is 0.5.

2. Information Gain (IG): It is a measure to decide how efficiently the data-set was split
based on a specific attribute to return the best Information Gain and least Entropy.
It is calculated by subtracting the entropy before the split from the average entropy
after the split, depending on a given attribute.

3. Gini Index: It evaluates splits based on the cost of function and is computed by
subtracting the squared probabilities of each class’s sum from one. Gini Index serves
binary splits.

4. Gain Ratio: It favors an attribute over another for the splits due to its extensive
number of different values.

3.4.4 Random Forest

Random Forest classifier, proposed by L. Breiman in 2001, is a supervised machine learning
algorithm that can efficiently solve Classification and Regression problems [3].

3.4.4.1 How does RF Work?

Biau et al. [3] describe how the classifier works as randomized splits of multiple built decision
trees with averaged predictions to deliver better performance.

Sruthi [57] adds that the algorithm of Random Forest consists of two main steps for the
classification: Data bagging and Feature Randomness when creating every tree to avoid
correlation between them.

Data bagging: also called bootstrap aggregation, is an Ensemble technique that combines
multiple models and therefore utilizes the models to train the data. In this technique,
different base models are built and provided with a random sample dataset. This step is
called Row Sampling with Replacement because the row of data chosen for a model is put
back into the data. When the training ends, the generated prediction outputs get based
on either majority voting or averaging, and all the outcomes of the models get aggregated.
This step guarantees that we are not using the exact data for every tree.

18

3.4 Machine Learning Classifiers

On the other hand, Feature Randomness picks a random subset of features for each tree
and uses them exclusively for training. This step helps to reduce the correlation between
the trees and avoids having an identical decision node for every tree. Therefore, they will
act similarly. Moreover, it is a good indicator of the importance of features, especially when
some trees get trained on less essential features. As a result, the prediction score will be
low.

After having the data and feature subset, the trees are ready to be built. As a result, all
trees look different from each other.

Random Forest Hyper-parameters The classifier has the ability to improve its performance
even further by using its hyper-parameters. Some of these hyper-parameters increase the
computational speed of the classifier, and some increase the predictive ability. The following
hyper-parameters n-estimators (trees number that is built before averaging the prediction),
mini-sample-leaf (the leaves’ minimum number that is needed to split a node), and max-
features (the maximum number of features that are regarded for the split) can be adjusted to
make the model predict better. On the other hand, adjusting n-jobs (number of processors
that are allowed to be used), oob-score (out of the bag, one-third of the sample is not used
to train the data, and this method is called the cross-validation method, and it is used to
evaluate its performance), and random-state (it defines the randomness of the sample)

Figure 3.6: Figure shows that RF classifier is made of multiple decision tree [49]

3.4.5 A Multilayer Perceptron

A Multilayer Perceptron (MLP) is one of the deep learning algorithms proposed by Frank
Rosenblatt in 1950 [48]. It is made of an input layer, an output layer, and one or more
hidden layers in between. The input layer takes the information to process, and the output

19

3 Foundations

layer throws the result according to the information entered in the input layer. The hidden
layers consist of neurons that are piled together.

3.4.5.1 Terms in MLP

Several terms need to be understood in MLP, and they are described below by Murtagh
[41].

• Backpropagation: updating weights in multilayer by a learning algorithm

• Epoch: also called a training cycle, and it is training the MLP by the whole data set,
in other words, when each training instance has been seen once by the neural network.

• FeedForward: updating weights from lower to higher layers, from the input layer to
the output.

• Hidden units: The layers between the input and output layers.

• Multilayer Perceptron: a fully connected neural network trained by a backpropagation
algorithm.

3.4.5.2 How MLP Works?

The inputs in Multilayer Perceptron have initial weights in a weighted sum, which is why the
algorithm is considered a Feedforward algorithm and is subjected to an activation function,
which means how much weight to give to the incoming input and has a threshold that must
be reached to have a specific effect. Every layer’s input is the output from the previous layer’s
computations, and the data flow from the input layers, through the hidden layers, and finally
to the output layer. It is described as feeding the successive layers with information. This
whole process is categorized among the Feedforward algorithms [47], the structure can be
seen in figure 3.7, and it is an iterative process that computes multiple times to reduce the
cost function by learning the weights through Backpropagation. There would be no learning
if this process were only executed once. The mean squared error is calculated in all output
and input pairs in every iteration when the weighted sums are forwarded through all layers.
After that, the first hidden layer’s weight is updated with the new value of the gradients,
which is how it is propagated back.

20

3.4 Machine Learning Classifiers

Figure 3.7: The figure shows FeedForward structure [47]

In contrast, as a disadvantage, adding more layers above the limits for a task will make
our convergence slow due to the high variance.

3.4.6 Support-vector Machine

SVM (Support Vector Machine) is an ML algorithm proposed by Boser, Guyon, and Vapnik
in 1992. It consists of a set of supervised machine learning algorithms, and it is applied
for both Regression and Classification tasks. The algorithms type is from generalized linear
classifiers and prevents overfitting while increasing its prediction accuracy. SVM can also be
used in different domains, such as face and handwriting analysis and pattern classification
[34].

3.4.6.1 How does SVM Algorithm Work?

The algorithm can be applied for many kinds of classification, such as binary and non-binary
classification.

• Binary classification: The algorithm tries to draw a hyperplane, a line that separates
the data points plotted in a 2-dimensional space [37]. The hyperplane is a decision
edge itself, meaning any data that fall on one side of the hyperplane will be classified
based on the class of the side. Finally, the algorithm chooses the best hyperplane,
which is the one that increases the margin of data points on both sides of the divided
plot. The hyperplane can be seen in the figure 3.7.

• Multi-class classification: In real-world applications, most data sets can not be sepa-
rated by a linear hyperplane. Therefore we need a method that can divide classes in

21

3 Foundations

a non-linear way. The Kernel Trick method in SVM allows us to separate the data
sets without worrying about the number of dimensions by mapping the data input to
a high-dimensional space, resulting in linear dividable mapping [34].

Figure 3.8: Support-vector Machine binary classification [58]

3.5 Correlation Coefficient

The correlation Coefficient is a measure that finds the statistical relationship strength be-
tween two continuous variables. The relationship is linear and falls in the interval between
-1 and 1, meaning two variables can have a positive or negative correlation. Correlation
Coefficients rely on multiple approaches to estimate the statistical connection, such as Rank
Correlation, Re-sampling, and Pearson Correlation Coefficient [46]. In our work, we apply
Pearson Correlation Coefficient to measure the relationship between our eye-movements fea-
tures and pre, post-test, and knowledge gain scores. Therefore, we will focus on it in this
section.

3.5.1 Pearson Correlation Coefficient

Pearson Correlation Coefficient (PCC), also called Pearson Product-moment Correlation
Coefficient, belongs to the linear relationship measurement strategies to find the connection
strength between two continuous variables [46] by applying the formula 3.3.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.3)

Where:

• xi: x-variable values in a sample

• yi: y-variable values in a sample

• x̄: sample mean of xi

• ȳ: sample mean of yi

22

3.5 Correlation Coefficient

PCC Assumptions: There are several assumptions that have to be followed in order
to get a proper indicator of the strength of the relationship between the variables as defined
by Schober et al. [56]. Among these assumptions are the following:

• There has to be an assumption that the variables have a linear relationship and form
a straight line on a scatter diagram.

• Variables have to be continuous. Ordinal variables have to be calculated in a different
correlation method.

• Outliers in the variables are to be avoided because they will affect the correlation
results by dragging the correlation line in one’s direction.

• Variable pairs are to be measured individually from the other pairs.

3.5.2 Correlation Coefficient Interpretation

There are multiple levels of connections between the variables. Therefore different degrees
to classify, such as Perfect, strong, moderate, weak, and no correlation. If the class is perfect
(close to ± 1), it means the increase of one variable will increase the other variable as well,
and in both directions, negative and positive. a Strong degree means the value is between
±1 and ±0.50. A moderate degree is between ±0.30 and ±0.49, whereas a weak degree
falls between ±0.29 and below. Finally, when the value is zero, then it is classified as no
correlation [56].

23

4 Methodology

In this chapter, we will look into the implementation part of Bhattacharya and Gwizdka’s
[2] replication and our extended word-level implementation in detail. We will start by
describing the pre-processing steps for both implementations in section (4.1), as depicted
in the figures (4.1 and 4.2). The pre-processing section consists of cleaning data (4.1.1)
and grouping fixations (4.1.2). After the pre-processing phase, we will present features’
extraction methods in section (4.2). In section (4.2.1), we will talk about extracting the eye
movement and reading pattern features. Finally, in section (4.2.2), we will talk about the
extraction of the behavioral features of the participants.

Figure 4.1: Pre-processing steps that are followed in our extended word-level work

25

4 Methodology

Figure 4.2: Pre-processing steps that are used to replicate the implementation of Bhat-
tacharya and Gwizdka’s work

4.1 Bhattacharya and Gwizdka and Words Level data
pre-processing

Our main objective for the implementation part of the work is to predict Knowledge Gain
based on reading patterns and eye movement on text. Therefore, we had to clean our
data-set first and then filter it further, to achieve the goal.

4.1.1 Data Cleaning

During the web search task in the laboratory, the participants were encouraged and asked to
look freely on the internet for learning materials about the topic to acquire knowledge. The
search resulted in a vast collection of websites containing text and multimedia resources,
including images and videos. In our work, we want to concentrate on reading patterns
in text. Therefore, we excluded all websites that only contain multimedia resources, such
as YouTube, because the eyes move in a different pattern when looking at a multimedia
resource, unlike in reading. We also excluded all search engine pages, such as Google and
Ecosia. Prior studies found that the movement of the eyes takes a different looking shape in
search engine results, such as an F-shaped pattern [26]. This pattern aims to find the best
result most efficiently. However, it follows a different eye-movement style, in which the eyes
move more horizontally, and the person is not interested to read every word.

4.1.2 Filtering and Grouping

In this section, we will discuss two pre-processing methods we used in our work. First,
to re-implement Bhattacharya and Gwizdka’s work [2], and second, to extend their work

26

4.1 Bhattacharya and Gwizdka and Words Level data pre-processing

even further to calculate the features down to the word level with the help of the Reading
Protocol software data [29].

4.1.2.1 Bhattacharya and Gwizdka Grouping and Filtering

In Bhattacharya and Gwzdka’s work [2], they relied on eye-gaze data points, meaning they
only had access to the data regarding the coordinates of the eyes on the screen and the
timestamp of the eye data points. So to translate that to the data set we have, we used
the locations of the eye fixations (left eye and right eye) on the screen on both the x
and y-axis, the active website the participant was surfing, and the timestamp. The eye
tracking software used in the experiment registered a new fixation every seven milliseconds.
Therefore, it created the challenge to identify the same eye fixations. To tackle this challenge,
we introduced a method that identifies the same eye fixations and groups and fuses them
as they should be. The grouping happens based on the central vision, which is the size
of the foveal region radius. J. Cole et al. define it [11] as 35 pixels. Next, We check the
distance between the current fixation (the mean value of the left eye and the right eye on
the x and y axis) and the mean value of the previous fixations. If the distance between the
two coordinates is less or equal to the size of the foveal region radius, then the new fixation
belongs to the previous ones. If not, we group the previous fixations and start identifying
the next ones. To calculate the distance, we used the Distance Formula that is defined by

d =
√

(x1− x2)2 + (y1− y2)2. (4.1)

The formula calculates the distance between two given points, taking into account both the
x-axis and y-axis. This fits perfectly with the nature of the eye movement on both axes
on the screen. Therefore accurate distance results. We are only interested in the reading
fixations. Therefore, after fusing the eye fixations, we check if the fused fixation is from a
reading type. To know if fixation is from a reading type, we must check its duration by
iterating over all grouped fixations and calculating their duration. Based on J. Cole et al.
[10], the minimum reading fixation duration is 113 milliseconds. Accordingly, we filtered the
fixations that do not add to the required duration. As a result of this phase, we ended up
having a list of reading fixations ready to be further processed based on Bhattacharya and
Gwizdka’s implementation.

4.1.2.2 Word-level Grouping and Filtering

Our data-set contains ungrouped and unfiltered fixations. Therefore, we need to start the
pre-processing phase by grouping the fixations first. Grouping eye fixations take another
path here due to the text and word-level JSON structure data received from the Reading
Protocol Software after providing it with our data to help us precisely to map the eye data

27

4 Methodology

(a) Visualization of the eye fixations on a web
page

(b) Visualization of the words coordinates of
the same web page by using the reading
protocol

Figure 4.3: Eye gaze data for participant with id equals to one (left) and the viewed
website during the session ("https://www.weltderphysik.de/thema/hinter-den-
dingen/gewitterblitze"). On the other hand, The data retrieved from the reading
protocol for the same participant and same website (right)

points. The JSON structure contains text-level information of the words the user looked at
during the web search task, we plotted the word level information to see to see the details
of information about the website we get when we filter using it as we can see in figure
4.3. The information contains the word’s position on the screen on the x and y-axis, the
width, the height, and the stimulus. In our work, There is no need to use the foveal region
radius to group fixations because we can use this information from the Reading Protocol
Software to check if the eye fixation is inside the word-box bounds. If yes, we check if the
next fixation falls inside the previous box. If not, then we have another fixation for another
word. After grouping, we need to filter fixations that do not belong to the reading type. as
mentioned in Bhattacharya and Gwizdka’s part, the filtering happens based on the minimum
fixation duration of the grouped fixations. If the duration is below 113 milliseconds, then we
ignore the fixations. On the other side, using Reading Protocol data creates a new challenge
because, at the end of the pre-processing phase, we will not be able to determine if these
grouped and filtered fixations are considered consecutive reading fixations. To tackle this
challenge, we marked the previous reading fixation as the ’last in reading sequence’ when
the current fixation is out of text bounds. As a result of this phase, we ended up having a
list of marked reading fixations ready to be further processed based on our implementation
that extends Bhattacharya and Gwizdka’s work.

4.2 Feature Extraction

At the end of the pre-processing phase, We are ready to calculate and extract our planned
features. We calculate a list of features that we think are necessary for predicting the

28

4.2 Feature Extraction

Knowledge Gain based on the reading pattern and the movement of the eyes. Some features
are derived from Bhattacharya and Gwizdka’s paper [2], and the others were chosen because
they describe the participant’s behavior.

4.2.1 Reading Pattern and Eye-tracking Data Processing

The first list of features was designed to explore how the participants read the text and un-
cover patterns that are more efficient for learning based on eye movement. These features are
fixations count, fixations duration, reading length, regression count, and regression length.
We relied on Bhattacharya and Gwizdka’s paper [2] to extract these features. However, as
mentioned in the pre-processing section, we have two implementations for them, one that
replicates the implementation of their paper, and the other is our own extended approach
that goes down to the word level of the pages.

4.2.1.1 Total Reading Fixations Count Calculation

A big part of calculating the total reading fixation count is done during the pre-processing
phase because we get all reading fixations after cleaning, and grouping them at the end.
This applies to both Bhattacharya and Gwizdka’s replication of their implementation and
our extended work based on the word level calculation. We extract the total reading count
by returning the fixations count from the pre-processing phase’s output. It is essential to
mention that the result of the total reading fixation count from Bhattacharya and Gwiz-
dka’s implementation is different from our extended work. That is because we separate the
fixations based on the bounds of the word itself that is looked at, unlinke in Bhattacharya
and Gwizdka, where they use the foveal region radius defined by 35 pixels [11]. This means
our extended work returns a more accurate result.

4.2.1.2 Fixation Duration Calculation

Similarly to the Total Reading fixation count calculation, we get the reading fixations from
the output of the pre-processing phase. However, we cannot extract the total reading fixa-
tions duration just yet, because the output contains grouped fixations. Therefore, we still
need to fuse every list of the same fixations inside the grouped fixations, calculate their
time and then iterate over the fused reading fixations to calculate the total reading fixa-
tions time. Every list of the same fixations contains one fixation at least. Based on the
pre-processing, those fixations belong to either the same foveal region radius or the same
word. Each fixation contains a timestamp, which is used to compute the duration by sub-
tracting the last fixation’s timestamp of the list from the first fixation’s timestamp. The list
of the same fixations will be fused, and the result will be stored. After fusing all the same
fixations and storing all their duration, we iterate once again over the fused fixations, but

29

4 Methodology

this time to calculate the total reading fixations time. The result is stored in milliseconds.
Therefore, we convert the duration from milliseconds to minutes and return the value. It is
worth mentioning that this applies to both Bhattacharya and Gwizdka’s replication of their
implementation and our extended work based on the word level calculation.

4.2.1.3 Total Reading length Calculation

Bhattacharya and Gwizdka’s implementation: The input of calculating the reading
length feature is the output from the pre-processing phase, which is a list of cleaned and
grouped reading fixations. However, we must first identify the reading sequences among
these reading fixations to calculate the total reading length feature. The reading sequence
in Bhattacharya and Gwizdka’s implementation is defined as the sequence of consecutive
words. The count of words must be above four that construct a meaningful sentence, mean-
ing the reading sequence that consists of fewer than four words is to be ignored because, in
the definition, they do not help to acquire any information. With that in mind, we start
identifying the reading sequence by iterating over the list of the grouped fixations. The list
of grouped fixations contains a list of fixations within the same foveal region. Each fixation
inside the foveal region contains the location of the point where the eyes (left and right eye)
were looking at the screen on the x and y-axis, timestamp, and page. So, in the iteration
over the list of the grouped fixations, we calculate the center point of the foveal region by
computing the mean value of the left and right eyes in both axes, the x and y. After that, we
compute the mean value of the same list of fixations in the x and y-axis to get the coordinates
of the foveal region. As we move to the following list of fixations in the next foveal region and
do the previous calculation, we ensure two conditions to add to the reading sequence. First,
we ensure that the following foveal region coordinate is after the previous one by checking
its location on the x-axis and comparing it. This is because the following foveal region has
to have a greater x value to be considered that it comes after the first foveal region in line.
Second, we make they are on the same line by checking the y value of the two foveal regions
with 35 pixels margin to the top and bottom, which means it is within the same y bounds
for the same line if the two checks are fulfilled we increment the reading sequence count.
However, we do not just calculate the length directly because we need to construct the se-
quence of words, considering the word threshold, which is four. If one of the conditions fails,
we reach the end of the reading sequence. When we reach the end of the reading sequence,
we first check if the count of reading words surpasses the threshold. If it does not pass,
we ignore the reading sequence, start over, and move to the next reading sequence. If it
surpasses the threshold, we iterate over these foveal regions, calculate the distances between
the points of the foveal regions, add them up, and store the result. Moreover, we proceed
again, start over, and move to the next reading sequence. After iterating over all foveal
regions, we add all stored values of the reading sequences and return the result in pixels.
Word-level implementation: In our extended work, we also have the same initial proce-

30

4.2 Feature Extraction

dures. We both take the output of the pre-processing phase as the input to start the total
reading length calculation. After that, identifying the words of the reading sequences take
place. In our implementation, we count on the reading protocol that enables us to map the
eye fixations down to the word level of the web page. Therefore, we do not need to look
for the foveal region because we could use that information to decide if fixations are in a
different word precisely. We iterate over the list of the grouped fixations, and while were are
doing so, we use the reading protocol data to find the word in which the fixation falls and
get its width, height, and coordinates on the x and y-axis. Then, if the next fixation is inside
the previous box bounds, we append it to a temporary list that contains all fixations within
the word box bound. If not, we calculate the mean x and mean y of the fixations inside the
word, proceed to the next fixation, and find its new word bounds. At the end of this process,
we get a list of fixations grouped based on the word they fall in. a new stage starts in which
we look at and verify the reading sequences in the new list of grouped fixations. Unlike
Bhattacharya and Gwizdka’s implementation, we have three criteria to include a word in-
side a reading sequence in our word-level implementation. First, The new word should be
located after the previous word on the x-axis. Second, the new word falls on the same line
as the previous one. Finally, we verify that the fixation is not the end of a reading sequence.
We tick the first criteria by checking if the new word has a greater x value by accessing its
box coordinates and, specifically, its x-axis and width from the reading protocol. Similarly,
for checking the second criteria, if the new and previous words have the same y and height
values, they are on the same line. The reading protocol gives us the power to map the
fixations to their words, which is done in the pre-processing phase. However, one limitation
is to know if the participants looked outside a text frame mid-reading and then continued
reading. To overcome this limitation, we marked the fixations in which the participant’s eye
jumped outside a text bound in the next fixation as the last in the reading sequence. This is
because we wanted to ensure that the participant’s eyes were on text reading, and by doing
that, we can verify the third criteria. The reading sequence is interrupted if any of these
criteria do not match. At this point, we check the word threshold. Suppose we have four
consecutive words or more in our temporary list. In that case, we calculate the distance
between the fixations by adding their mean x and y values, and then we store it and start
over to identify a new reading sequence. When we finish the iteration phase, we add up all
stored values and return the result in pixels, which is our value for the total reading length.

4.2.1.4 Total Eye Regression Count Calculation

Bhattacharya and Gwizdka’s implementation: Regression Count feature calculation
has many similarities with calculating total reading length feature. In replicating Bhat-
tacharya and Gwizdka’s implementation, the total reading length was subjected to two
criteria. First, the new foveal region has a greater mean x value. Second, it is on the same
line as the reading fixations sequence. However, to calculate regression count, we need to

31

4 Methodology

reverse the criteria to detect the regression because regression is defined as the eyes moving
to the left during the reading, so we need to adjust our criteria to detect when the eyes
go back to the left. Like the initial steps of the previous feature implementation (total
reading length calculation), we start from the output of the pre-processing phase and start
identifying regression sequences. Bhattacharya and Gwizdka considered only regressions
after fulfilling a valid reading sequence of at least four words of reading sequences. which
means we need to identify a reading sequence in the beginning and then detect a regres-
sion. We identify a reading sequence by iterating over the list of the grouped fixations.
The list of grouped fixations contains a list of fixations within the same foveal region. We
calculate the center point of the foveal region, move to the following list of fixations in the
next foveal region, and do the previous calculation. We ensure that the two conditions
are fulfilled to add to the reading sequence. After we pass the threshold for a meaningful
reading sequence, we change our criteria to meet regression’s criteria to detect regression
in the eyes during reading. So if the next foveal region is to the left side of the previous
foveal region, then that means a regression has happened, and we increment the regression
counter. Once we finish iterating over all fixations, we return the incremented variable.
Word-level implementation: On the other hand, the total reading length was subjected
to three criteria in our word-level extended work:

1. The new word is on the right side of the previous word.

2. It is on the same line as the reading fixations sequence.

3. The fixation is not marked as last in the reading sequence, which means the following
fixation is outside a text frame.

As before, we need to reverse the criteria to detect eye movement to the left during the
reading to calculate the regression count. We start from the output of the pre-processing
phase by identifying reading sequences. to identify reading sequences, we start with iterating
over the list of the grouped fixations. We calculate the word’s center point from the fixations
inside the word’s bound after retrieving its coordinate from the reading protocol. Then, we
guarantee that the three requirements are fulfilled to add to the reading sequence. Finally,
after we pass the threshold for a meaningful reading sequence of four words, we change our
criteria to satisfy regression’s criteria to detect regression in the eyes during reading. So if
the next word bound is to the left side of the previous word, then that means a regression
has happened, and we increment the regression counter. Once we finish iterating over all
fixations, we return the incremented variable.

4.2.1.5 Total Regression Length Calculation

Calculating the regression count feature is much like calculating the regression length feature.
However, there is a different logic at the last stage of the computations in both Bhattacharya
and Gwizdka’s and our word-level extended implementation. In Bhattacharya and Gwizdka

32

4.2 Feature Extraction

replicating their implementation, we feed the method with the pre-processing output. We
iterate over the list of grouped fixations from the pre-processing phase, and we apply the
same two criteria to the grouped fixations before incrementing the count variable of the
regression. If the fixations are consecutive, meaning the foveal region of the next fixation is
on the right side of the previous one and in the same line on the y-axis, then we add it to the
reading sequence. When the reading sequence gets stopped by a new fixation from a different
reading sequence, we carry on with a new reading sequence because no regression happens.
However, detecting a fixation on the left side of the previous fixation means the participant’s
eyes did regression. Therefore, we increment the regression counter after ensuring that the
current reading sequence fulfills the condition of having at least four foveal region fixations,
which make the sequence a meaningful reading sequence. Otherwise, we ignore and look for
the following reading sequence. Once we finish iterating over all grouped fixations, we return
the regression counter. Similarly, for our word-level implementation, detecting that the new
word is on the left side of the previous word means a regression happened. However, before
incrementing the regression counter, we ensure that the reading sequence has at least four
meaningful fixations, or we ignore it. Then, we start looking for a new reading sequence and
try to detect regression in it.

4.2.2 Behavioral Data Processing

The second list of features was designed to explore participants’ behavior during their read-
ing and knowledge acquisition. We attempted to discover if there is a particular behavior
participants do to enhance their chances of acquiring information faster. To be more precise,
we were interested in knowing if the total reading time and dwell time during the learning
session affect the Knowledge Gain. In this part, we have one implementation, but what
is different is the passed data to the features calculation methods. Passed data can vary
between Bhattacharya and Gwizdka’s [2] and our word-level implementation depending on
the pre-processing step applied to the data-set.

4.2.2.1 Fixating Session Time Calculation

We wanted to calculate the time the participants spent when they were fixating on textual
and non-textual content during their web search. To identify the text in web pages, we
rely on the reading protocol data to receive all information regarding the website’s text’s
coordinates, width, and height. Based on this information, we will filter the fixations that
fall into the exact coordinates. Then, we will start iterating over the fixations to calculate
the time between those fixations. It is worth mentioning that after filtering, many fixations
are not consecutive. This creates a challenge to calculate precisely the time spent. To
tackle this issue, we iterated over the fixations and grouped the consecutive fixations in the
data. We calculate the duration of every grouped consecutive fixation by subtracting the

33

4 Methodology

time of the last grouped fixation from the first. Then, we store the value, proceed to the
next grouped fixations, and compute its duration. At the end of the cycle, we sum up the
stored values and return the result. It is crucial to note that the duration is dealt with
in milliseconds, but in our feature calculation, we convert the result from milliseconds to
minutes and return it.

4.2.2.2 Dwell Time Calculation

We wanted to calculate the time the participants spent when they were not looking at text
during their web search. To identify these regions in the websites, we rely on the reading
protocol data to receive all information regarding the text’s coordinates, width, and height.
Based on the retrieved information, we will ignore fixations on words and take fixations
outside the text frame. Similar to the previous feature (fixating session time feature), this
will make it harder to calculate the dwell time accurately because the filtering creates gaps
between the data. We used the same method to group the consecutive data. After that,
we iterated over the data, calculated the dwell time for every grouped data, and stored the
value to sum it up later at the end of the iteration with the other values. It is essential to
mention that the duration is dealt with in milliseconds, but in our feature calculation, we
convert the result from milliseconds to minutes and return it.

34

5 Experiments

In the Experiments chapter, we will talk first in section (5.1) about the Dataset, which
includes detailed information about the executed task (5.1.1) and how it was evaluated
(5.1.2). Furthermore, Its technical setup (5.1.3), the data that was collected from the study
(5.1.4), and finally, a brief explanation of the features we extracted from the collected data
to predict knowledge gain based on eye movements and reading patterns (5.1.5). Then, in
section (5.2), we will dive deeper into the correlation between the eye-movement features
and the pre, and post-test scores and knowledge gain results and analyze and interpret the
outcomes. Last but not least, in section (5.3), we will look into knowledge gain prediction,
its definition (5.3.1), and the metrics used to evaluate its results (5.3.2), alongside the setup
of the experiment (5.3.3) and its final results (5.3.6).

5.1 Dataset

5.1.1 Task Description

The task of the experiment was to learn about the principles of thunderstorms and lightning,
and the participants had to solve practical learning tasks that required an understanding of
the topic. The experiment were all native German speakers (N= 114, Female = 95, Male =
19, and the average age = 22.88), and all participants were university students. It is worth
to mention that, we removed one of the participants from the data-set due to the browsing
behaviour. This participant log contained only results from search engines and a multimedia
resource website, and to be more precise, the participant’s logs were only from Google
and YouTube websites, in our work we only want to concentrate on websites that contain
textual information. We originally had 114 participants in total. However, we removed six
participants due to some technical issues regarding extracting their mapped data from the
reading protocol, in addition to that one participant mentioned above due to the searching
and learning behavior. Therefore we ended up with data from 107 participants at the end of
the cleaning phase. The topic chosen for the experiment is already used in multiple studies
related to Knowledge Gain. The first was to study multimedia learning [42], the other was
to study search, and eye gaze learning [43], and the last was to study ML features’ and
classifiers’ impact on learning [27]. The topic was chosen because the participants must
learn to solve the tasks and understand them, which means they must learn about different

35

5 Experiments

metrological and physical concepts to gain knowledge. Moreover, gaining comprehensive
knowledge by acquiring procedural and declarative knowledge. Studying is the way to
acquire the information to solve the casual task. This helps us achieve our final goal of
getting a general idea about eye movement in learning and reading patterns in reading,
specifically in Search as Learning domain scenarios.

5.1.2 Procedure and Knowledge Measurements

The experiment was divided into two parts, the first part had to be taken online, and the
other had to be done in the laboratory. The participants started with the first part of the
experiment, the online part. First, it had a test that consisted of a 10-item multiple-choice
and 4-item transfer knowledge test based on prior work [54]. Then, in addition to that,
a questionnaire about achievement motivation [18] and web justification beliefs [4]. The
participants had to complete it one week before the laboratory appointment. No additional
tasks were further asked in the online part. In the laboratory, The participants started the
lab appointment by taking assessment tests regarding their working memory capacity [12]
and reading comprehension [55]. Then, they were told to write an essay about the formation
of thunders and lightning, which is the main topic of the study. The lab part consisted of
two phases: the first phase, the learning phase, and the later phase, the After the learning
phase. In the learning phase, the participants were instructed to start learning about the
study topic (formation of thunders and lightning) by looking on the web for content to learn,
and there were no constraints on the type of content they should look for. Moreover, they
were told to use any content they preferred to learn. In addition, the participants knew
about the rules, which included 30 minutes maximum learning duration, and that they
could finish learning whenever they wanted. In the second phase, after the learning, The
participants were told to write in a free form everything they knew now about the topic in
an essay format. Then, they were told to answer the multiple-choice questionnaires again
and take another assessment task for their cognitive reflection [20] and engagement [39].

5.1.3 Technical Environment Setup

The environment of the technical setup consisted of two layers to track learn and search
activities of the participants: SMI (SensoMotoric Instruments) ExperimentCenter, the first
layer of the experiment, is software that lets us follow the movements of the participants’
eyes on the screen through screen recordings and navigation log files. The second layer is
plugins to track the browser. Those plugins help us to get and save all saved website files,
such as the HTML content, track the navigated URLs and interaction data, such as mouse
movement, and save them in local log files. Additionally, "ScrapBook" Plugin was used to
give us the chance to save all surfed HTML pages by the participants.

36

5.1 Dataset

5.1.4 Dataset Structure

The web search learning session helped to generate data about the participants’ learning
behavior. These Data are divided between, Resource, Behavioral and Knowledge data. They
are described by Otto et al. [43] as follows:.

1. Resource Data

• Screen Recordings: The web search session was recorded, and the recording
started when the learning task started. Therefore, all recordings are not longer
than 30 minutes due to the task’s maximum duration. The video resolution is
1920x1080, 30 frames per second, and in MP4 format. Furthermore, additional
multimedia features [42] were provided about the document layout and the image
type classification result.

• HTML Files: There were limitations in saving all online content due to its avail-
ability on the web. Therefore, the content of each visited website was recorded.
However, due to technical issues, not all pages were successfully stored.

2. Behavioral Data

• Browsing Timeline: a TSV (Tab Separated Value) file contains all visited web-
sites, with their timestamps since the beginning of the learning session and in
seconds, the path to its corresponding HTML file, and the acquisition date.
Table: (p-id, timestamp, url, html-files, date-of-acquisition)

• Gaze Data: In the study, the eye movements of the participants were recorded
using an eye-tracker.The eye-tracking software is exported from the device and
stored as raw data. The I-DT algorithm [53] separated the saccades and fixa-
tions by setting the entries via fixation ∈ {0, 1}. In the gaze data, it is pos-
sible to see values larger than 1080 for the y-coordinates, and that’s because
the entries are relative to the entire website, not the viewport. However, data
may include incorrect entries due to tracking errors, such as negative values.
Information is stored in a TSV file, and each participant has their TSV file.
The file contains coordinates information of the right and left eye pupils in mil-
lisecond precision. It also contains the visible URL at the moment of gazing.
Table: (p-id, timestamp, left-x, left-y, right-x, right-y, fixation)

• Browsing Events: Different types of user interactions were recorded, such as.

– focus: website came into focus.

– blur: website is not in focus anymore.

– beforeunload: the website is about to be closed.

– resize: browser’s window resizing, and new window size capturing.

37

5 Experiments

– scroll: triggered even to log when scrolling happens alongside the scrolling
distance, and it can be in both direction horizontal and vertical.

– mousemove: logging the x and y coordinates of the mouse when they move.

– Click: tracks click in the location in which the click happened. The clicked
HTML element path is logged as well.

Table: (p-id, timestamp, track-id, type, value, x, y, target, url)

• Browsing Tracks: Tracks: an event that tracks the website the user is on until
they move to a different website inside the same browser. The timestamp of
the track exists in the TSV file, url, website title, and the viewport dimensions
too. Staying time on the track and active time on the track is also included.
Table: (p-id, timestamp, track-id, url, title, viewport width, viewport height,
time stay, time active)

3. Knowledge Data and Questionnaire The state of knowledge of participants was mea-
sured several times at specific points as described in "Procedure and Knowledge Mea-
surements’. Furthermore, the cognitive abilities and participants’ assessments were
taken through tests and questionnaires. as a result, multiple data-sets were generated:

• demo-knowledge-sum.csv: It includes demographic details and a summary of
knowledge scores, such as essays and multiple-choice questions. Since all partic-
ipants are native German speaking, German screening instruments were used to
measure their reading comprehension, and for measuring their working capacity,
a reading span task was used. Pardi et al. [44] described more information regard-
ing the span task.
Table: (p-id, d-sex, d-age, d-field, d-no-sem, d-lang, k-mc-sum-t1, k-mc-sum-
t2, kg-mc, essay-C1, essay-C2, kg-essay, LGVT-sped, LGTV-core, WMC-Recalls,
WMC-Sentence, CRT-sum)

• mc-data.csv: This TSV file consists of the scores from the laboratory phase for
the multiple choices items before and after the web search task. It also has the
confidence question scores, indicating whether participants were guessing their
questions or not.

• essay-data.csv: All written essays before and after the web search are stored in
this file.

• internet-specific-epistimic-justification.csv: The measurement of web specific epis-
temic justification [4] is contained in this TSV file.

• selfassessment-data.csv: This file contains the number of correct answers estima-
tion, which is called global self-assessment. It also contains the confidence score
of participants of their correct answers and is called a local on-item confidence

38

5.1 Dataset

rating. Having both a global self-assessment score and a Local on-item score gives
us insights into the knowledge of participants’ self-assessed performance.

• CRT-data.csv: It contains participants’ scores of their cognitive reflection task
(CRT [20]) tendency. It was calculated by solving five items of cognitive tasks,
and solving more of these tasks means a higher response time.

• achievment-data.csv: This file contains the measures of Hope of Success (HS:
range of variables which are useful in learning success) and Fear of Failure (FF)
by using a scale that contains ten items and rated from 1 to 4, called achievement
motives [18], the scale asses the mentioned (HS, and FF) measurements. to
extract the tendency to success or fail in evaluative circumstances.

• dssq-data.csv: The Dundee Stress State Questionnaire [39] was taken by partic-
ipants. The individual’s mean score on these questionnaire items reveals how
engaged participants’ were during the learning process. In addition, the score
can indicate their performance based on task engagement.

4. Reading Protocol Data: The Reading Protocol software [29] was utilized to acquire
text-level information about the used gaze data from the experiment. We provided
the software with the data set in a CSV (Comma Separated Values) file that in-
cluded the eye gaze data of the experiment participants, in addition to that the
corresponding HTML content of the visited pages, which was recorded using plu-
gins. The Reading Protocol software’s outcome was a file containing all text-level
information of the pages and mapped with all the eye fixation points of the par-
ticipants from the gaze data set. It also provided us with the coordinates of the
words, width, and height, moreover, the timestamp, participant id, and the stimulus.
Table: (participant-id, stimulus, texts-map, words-map, timestamp)

The study delivered a vast amount of data to predict knowledge gain. In our work, we
have relied on the visited websites’ HTML files and Gaze data files of the participants eye
movements. Furthermore, the word-level data files from the reading protocol, and finally,
the files containing the participants’ pre and post-test results and knowledge gain scores.

5.1.5 Eye-movement Features

To assess the efficiency of the eye movement and reading patterns, we extracted seven
different features that belong to the eye movements and reading patterns of the participants
and their reading behavior:

1. Fixating session time in minutes: is the time the participants spent focusing on
textual or non-textual content. It is important to clarify here that the purpose of the
eye fixations is for the reading purpose. We calculated it by adding up the duration
of all reading fixations in a web page .

39

5 Experiments

Table 5.1: Correlation between the features and pre-test, post-test scores and knowledge
gain results

Features pre post kg

fixating_session_time_m 0.271 0.162 -0.123
fixation_count 0.173 0.076 -0.102
fixation_duration_m 0.092 0.061 -0.037
regression_count 0.138 0.081 -0.064
regression_length_pixels 0.109 0.051 -0.062
reading_length_pixels 0.151 0.112 -0.048
dwell_time_m 0.140 0.098 -0.050

2. Fixation count: is the number of fixations from the reading type on the textual
content of a web page, in which the minimum duration of the fixation is at least 113
ms [10].

3. Fixation duration in minutes: is the time the participants spent only during their
eye fixation on the textual content. It is essential to mention that the fixation is from
a reading type.

4. Regression count: the number of times the participants’ eyes moved back to the
left while reading the text. In more precise words, they are the reading fixations that
are located on the left side of the previous reading fixation and, after at least four
consecutive reading fixations, that form a meaningful sentence.

5. Regression length in pixels: is the distance the participants’ eyes traveled back
to the left during their reading. It is in pixels because participants were reading text
on the screen. At least four reading fixations must be consecutive in calculating the
feature before detecting the regression in the eyes [11]. The distance will be computed
by using the Euclidean formula 4.1.

6. Reading length in pixels: is the distance the participants’ eyes traveled during their
reading. In calculating the feature, at least four reading fixations must be consecutive
to calculate the distance the eye traveled between two eye fixations. The distance
between the reading fixation in which the regression happened and the previous reading
fixation will be calculated by using the Euclidean distance formula 4.1.

7. Dwell time in minutes: is the time the participant spends fixating their eyes on
non-textual content on a web page during the web session.

5.2 Correlation

We relied on the Pearson Correlation Coefficient to interpret our correlation results between
our set of features, pre, post-test, and knowledge gain, which we explained in the Foundation

40

5.3 Knowledge Gain Prediction

chapter. Our main finding that we can interpret from the correlation table states that the
participants who fixated their eyes more on textual and non-textual content had the highest
correlation to the pre-test score, meaning they were familiar with the topic. Therefore,
it had the highest correlation with the post-test score, resulting in the highest correlation
in our table to knowledge gain, with 0.123 in the negative direction. Nevertheless, in the
degrees of the Pearson correlation coefficient, it is classified as a weak correlation. Analyzing
these results indicates that the participants with higher knowledge gain results were keen
to focus more on the web page. Therefore, consuming longer time fixating their eyes on a
reading purpose to acquire the information, not necessarily focusing on textual content, but
indeed allocating attention for longer fixating. This result also aligns with Pardi et al. [44],
which found a negative correlation between the learning outcome and the time spent on
text-dominated websites and multimedia resources. The following important finding in our
correlation table is the count of the reading fixations. As we can see from the correlation with
the pre-test score, participants who were familiar with the topic had a higher reading fixation
count, leading to a negative correlation with knowledge gain of -0.102. Therefore, we can
interpret that the participants who attempted to read more during the web search session
got better results because it can be that they consumed the most textual information due to
their eye movements and reading patterns. More fixations more a better reading technique
that involves a quick consecutive eye movement to the right and less backward movement to
the left, which indicates a regression. One of the surprising discoveries is that the reading
length correlates the least with knowledge gain. However, one of the interpretations that can
be seen is that participants who were familiar with the topic did not need to read everything
closely to acquire knowledge and that they were scanning more in rapid eye movements to
learn about the topic. Regression count and regression length have a low correlation with
knowledge gain as well. We think the case is similar to our previous interpretation of reading
length, which is that the participants who were familiar with the task topic had a better
reading technique. Their eyes did not have to go back to re-read the word or sentence and
were moving faster to scan the textual content.

5.3 Knowledge Gain Prediction

In this section, we will report our findings for predicting knowledge gain based on eye
movement and reading pattern features. The same evaluation settings were used in order
to get a fair comparison. Furthermore, the same hyperparameter optimization was used
for all experiments. Finally, those settings were applied for our replication of Bhattacharya
and Gwizdka’s [2] implementation and our word-level implementation with our evaluation
procedure. It is essential to mention that in this work, we followed similar steps to what
Gritz et al. [27] did due to their clear chapter structuring.

41

5 Experiments

5.3.1 Knowledge Gain Definition

For the Knowledge Gain definition we follow the approach of Gritz et al. [27]. They described
the procedure as follows. We relied on the typical procedure of measuring knowledge gain
[24, 42] to classify the participants’ web search sessions. The classification contains 3 classes
C= Low, Moderate, High. The participants were classified based on the Standard Deviation
Classification approach. The knowledge gain Xi of participants (i) is z-normalized (X̂i) as
follows in the equation 5.1

X̂i =
Xi − µ
σ

(5.1)

• σ: Standard deviation of all knowledge gain measures X

• µ: Mean of all knowledge gain measures X

For every z-normalized knowledge gain X̂i the class is given as follows:

C(Xi) :=

Low, if X̂i < −1

2

Moderate, if −1
2 ≤ X̂i ≤ 1

2

High, if X̂i >
1
2

The class distribution is yielded by: |XHigh| = 25, |XModerate| = 41, |XLow| = 41

5.3.2 Metrics

The classification outcome was evaluated using recall, accuracy, precision, and F1 score, and
they are defined as follows:

recall =
TP

TP + FN
(5.2)

accuracy =
TP + TN

TP + TN + FP + FN
(5.3)

precision =
TP

TP + FP
(5.4)

F1score =
precision ∗ recall
precision+ recall

(5.5)

• TP (True Positive): positive values that are classified correctly

• TN (True Negative): negative values that are classified correctly

• FP (False Positive): positive values that are classified incorrectly

• FN (False Negative): false values that are classified incorrectly

42

5.3 Knowledge Gain Prediction

5.3.3 Experimental Setup

To assess the efficiency of the classification outcome, we used Cross-validation because each
feature vector behaves as a test sample in every single fold. Therefore, we chose 10-fold cross-
validation with a 10% test and 90% train and validation set split. Taking this approach,
each test set in the cross-validation consists of 10 elements per class. To normalize every
feature of the 90%, we use min-max normalization to the interval [0, 1]. Some classifiers,
such as Support Vector Machine, require this step. The rest of the set, the 10% test set, is
normalized by using the maximum and minimum of 90% for evaluation. Some of the values
can fall outside of the [0, 1] limit of the interval. To not lose any information because of
normalization, we decided not to clip those values.

5.3.4 Hyper-parameter Optimization

The chosen hyper-parameters influence the performance of the classification algorithm. In
our case, we have changeable validation and test data in every iteration due to cross-
validation. Therefore the training can not be decided only once and used for the whole
evaluation. We executed hyper-parameters optimization in each of the ten iterations to get
proper outcomes. To find a good configuration efficiently, we relied on Optuna [1] for the
Bayesian search. Moreover, limit the number of runs to 500 to decrease the computing cost.
Another split is performed on 90% of the split data. It is split that 90% is the training
data and the 10% is validation data. Maximizing the F1 score weight as the optimization
objective. This is to avoid the imbalance in class from making the underrepresented class
High less influential, as it would be, such as with the overall accuracy.

5.3.5 Classifiers

We counted on several classifiers, which are described in the Foundation chapter, to pre-
dict knowledge gain. Therefore, exploring the best configurations and most efficient set
of features with the best performing classifier for this task. We used Adaptive Boosting
(Adaboost) [21], Decision Tree [6], Random Forest [5], K-Nearest Neighbour [19], Support
Vector Machines [13], and Multi-layer Perceptron [52].

5.3.6 Experimental Results

The best-performing classifier for our work in accuracy to predict knowledge gain based
on the eye movements and reading pattern from the extracted features was a Multilayer
Perceptron classifier (MLP) with 42.1% accuracy, followed by AdaBoost with 34.6%, K-
Nearest Neighbor (KNN) with 33.6%, Support Vector Machine (SVM) with 31.8%, Decision
Tree with 30.8%, and last but not least Random Forest classifier with 26.2%. MLP classifier

43

5 Experiments

Table 5.2: The Classifiers (clf) we used in our knowledge gain prediction to calculate preci-
sion (p), recall (r), f1-score (f1) and accuracy (acc) are: Adaboost (ada), Decision
Tree (dt), K-Nearest Neighbor (knn), Multi-layer Perceptron (mlp), Random For-
est (rf), and Support Vector Machine (svm).

Low Moderate High Macro
clf p r f1 p r f1 p r f1 p r f1 acc

ada 36.1 53.7 43.1 30.2 31.7 31.0 66.7 08.0 14.3 44.3 31.1 29.5 34.6
dt 28.3 31.7 29.9 31.7 31.7 31.7 35.0 28.0 31.1 31.7 30.5 30.9 30.8
knn 29.3 29.3 29.3 40.9 43.9 42.4 27.3 24.0 25.5 32.5 32.4 32.4 33.6
mlp 43.2 46.3 44.7 43.1 61.0 50.5 20.0 04.0 06.7 35.4 37.1 34.0 42.1
rf 26.4 34.1 29.8 27.9 29.3 28.6 18.2 08.0 11.1 24.2 23.8 23.2 26.2
svm 37.9 26.8 31.4 34.0 41.5 37.4 21.4 24.0 22.6 31.1 30.8 30.5 31.8

was not only the best-performing in accuracy but also in average F1-score and average recall,
moreover, the second in average precision. The classes in MLP classifier are distributed as
follows: The class High reaches 06.7% in f1-score, 0.04% in recall, and 2% in precision.
However, for the class Moderate, the numbers bounce to 50.5% in f1-score, 61% in recall,
and 43.1% in precision. Finally, for the class Low, 44.7% in f1-score, 46.3% in recall, and
43.2% in precision. We can see a big difference between the classes Low and Moderate and
between the class High. This is expected due to a data-set imbalance regarding the class
High, meaning the number of entries for the class High is not equal to the number of entries
in the other classes. Therefore, our model gets exposed to less data from the High class,
and as a result, we get a lower efficiency in KG prediction. In other words, our classifier
will perform poorly in KG prediction for the High class. We can observe the same pattern
for the other classifiers in predicting the class High. Except for the Decision Tree classifier,
which jumps up to 31.1% in f1-score, 28.0% in recall, and 35.0% in precision, however, this
is not an indicator that the classifier can perform well in predicting the knowledge gain in
class, as it performs poorly in distinguishing the other two classes. In conclusion, our model
can distinguish well between the Low and Moderate classes. However, it performs poorly
for the class High. In order to improve the predictability of the class High, we need more
data entries for the class High so that data would be balanced and, therefore, the prediction
numbers would jump up to the other classes’ numbers. Moreover, It can be needed for more
features to be included in the model that would help to distinguish the class High from the
other two and increase its accuracy, precision, recall, and f1-score.

44

6 Conclusion

In this final chapter, we arranged our thoughts to briefly discuss the summary of our work
in section (6.1). Furthermore, we conclude the limitations of the work and present ideas to
explore that would help to overcome the limitations in the future work section (6.2).

6.1 Summary

In this work, we have explored the Search as Learning (SAL) domain that investigates
detecting the learning process during a web search. Moreover, we dived into SAL deeper to
focus on knowledge gain prediction during a web search, which is one of the goals of this new
domain. Along the way, we have researched the work of the prior researchers and looked
into the methods they applied to predict knowledge gain during a web search. Moreover,
we attempted to replicate the implementation of Bhattacharya and Gwizdka’s work [2] by
relying on their eye gaze and reading pattern features for the knowledge gain prediction.
In addition, we have extended their implementation by introducing a word-level precision
method to calculate eye movement and reading pattern features. To achieve this level of
precision, we relied on a reading software protocol [29] that maps the eye fixation data on a
website page’s textual content, allowing us to detect the reading patterns of the participants
and differentiate between eye fixations on the textual content or non-textual content. We
also proposed a different approach to filter and group eye fixations based on their similarity
if they belong to the same word or based on fixation type if they are of a reading type. The
results show that it is possible to predict knowledge gain based on how the eyes move on the
text on web pages during the reading process. Moreover, we also found a correlation between
the participants’ reading fixations number and knowledge gain. Those results demonstrate
that the reading pattern of the participants and their eye movements play an essential role
in determining knowledge gain. That means skillful readers who fixate more on the text
and move their eyes back to the left less have a higher gain in knowledge. Based on the
eye movement and reading pattern features, we built a machine-learning model and used
different classifiers to predict the knowledge gain of the participants. The classifiers’ results
reveal the ability of the built model to distinguish between the Low and Moderate classes
of knowledge gain. However, it was not the case for the class High. One of the reasons can
be an imbalance in the data set regarding this class.

45

6 Conclusion

6.2 Future Work

Even though our work uses a word-level accuracy to map the fixations, some limitations
can be further worked on to improve knowledge gain prediction. One of our limitations was
working with an imbalanced data set in the class High that caused low predictability scores
for our model to predict high learning gains. To avoid this limitation, more entries from this
class can be included in the data set. However, it can also be that more features are needed
for this class to increase the knowledge gain prediction score, and our set of features is not
enough. Future work can extend the word-level precision of the eye fixations by looking
even deeper into the word and fixation to detect the punctuation of the reading sentence
and multi-line reading sequences. Additionally, more fixation types, such as scanning or
skimming, can be considered, not only reading.

46

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
“Optuna: A Next-generation Hyperparameter Optimization Framework”. In: Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019. Ed. by Ankur Tere-
desai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis.
ACM, 2019, pp. 2623–2631. doi: 10.1145/3292500.3330701. url: https://doi.
org/10.1145/3292500.3330701.

[2] Nilavra Bhattacharya and Jacek Gwizdka. “Measuring Learning During Search: Dif-
ferences in Interactions, Eye-Gaze, and Semantic Similarity to Expert Knowledge”.
In: Proceedings of the 2019 Conference on Human Information Interaction and Re-
trieval, CHIIR 2019, Glasgow, Scotland, UK, March 10-14, 2019. Ed. by Leif Az-
zopardi, Martin Halvey, Ian Ruthven, Hideo Joho, Vanessa Murdock, and Pernilla
Qvarfordt. ACM, 2019, pp. 63–71. doi: 10.1145/3295750.3298926. url: https:
//doi.org/10.1145/3295750.3298926.

[3] Gérard Biau and Erwan Scornet. “A random forest guided tour”. In: Test 25.2 (2016),
pp. 197–227.

[4] Ivar Bråten, Christian Brandmo, and Yvonne Kammerer. “A validation study of the
internet-specific epistemic justification inventory with Norwegian preservice teachers”.
In: Journal of Educational Computing Research 57.4 (2019), pp. 877–900.

[5] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32. doi: 10.
1023/A:1010933404324. url: https://doi.org/10.1023/A:1010933404324.

[6] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Re-
gression Trees. Wadsworth, 1984. isbn: 0-534-98053-8.

[7] Andrei Broder. “A taxonomy of web search”. In: ACM Sigir forum. Vol. 36. 2. ACM
New York, NY, USA. 2002, pp. 3–10.

[8] Bahzad Charbuty and Adnan Abdulazeez. “Classification based on decision tree al-
gorithm for machine learning”. In: Journal of Applied Science and Technology Trends
2.01 (2021), pp. 20–28.

[9] Kittipong Chomboon, Pasapitch Chujai, Pongsakorn Teerarassamee, Kittisak Kerd-
prasop, and Nittaya Kerdprasop. “An empirical study of distance metrics for k-nearest
neighbor algorithm”. In: Proceedings of the 3rd international conference on industrial
application engineering. 2015, pp. 280–285.

[10] Michael J. Cole, Jacek Gwizdka, Chang Liu, Nicholas J. Belkin, and Xiangmin Zhang.
“Inferring user knowledge level from eye movement patterns”. In: Inf. Process. Manag.
49.5 (2013), pp. 1075–1091. doi: 10.1016/j.ipm.2012.08.004. url: https://doi.
org/10.1016/j.ipm.2012.08.004.

47

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3295750.3298926
https://doi.org/10.1145/3295750.3298926
https://doi.org/10.1145/3295750.3298926
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ipm.2012.08.004
https://doi.org/10.1016/j.ipm.2012.08.004
https://doi.org/10.1016/j.ipm.2012.08.004

Bibliography

[11] Michael J. Cole, Jacek Gwizdka, Chang Liu, Ralf Bierig, Nicholas J. Belkin, and
Xiangmin Zhang. “Task and user effects on reading patterns in information search”.
In: Interact. Comput. 23.4 (2011), pp. 346–362. doi: 10.1016/j.intcom.2011.04.007.
url: https://doi.org/10.1016/j.intcom.2011.04.007.

[12] Andrew RA Conway, Michael J Kane, Michael F Bunting, D Zach Hambrick, Oliver
Wilhelm, and Randall W Engle. “Working memory span tasks: A methodological re-
view and user’s guide”. In: Psychonomic bulletin & review 12.5 (2005), pp. 769–786.

[13] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Mach. Learn.
20.3 (1995), pp. 273–297. doi: 10.1007/BF00994018. url: https://doi.org/10.
1007/BF00994018.

[14] Barry De Ville and Padraic Neville. Decision trees for analytics: using SAS Enterprise
miner. SAS Institute Cary, NC, 2013.

[15] Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan Shi, and Qianli Ma. “A survey on
ensemble learning”. In: Frontiers Comput. Sci. 14.2 (2020), pp. 241–258. doi: 10.
1007/s11704-019-8208-z. url: https://doi.org/10.1007/s11704-019-8208-z.

[16] Grant Eckstein, Wesley Schramm, Madeline Noxon, and Jenna Snyder. “Reading L1
and L2 Writing: An Eye-Tracking Study of TESOL Rater Behavior.” In: TESL-EJ
23.1 (2019), n1.

[17] Carsten Eickhoff, Jaime Teevan, Ryen White, and Susan T. Dumais. “Lessons from
the journey: a query log analysis of within-session learning”. In: Seventh ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2014, New York, NY,
USA, February 24-28, 2014. Ed. by Ben Carterette, Fernando Diaz, Carlos Castillo,
and Donald Metzler. ACM, 2014, pp. 223–232. doi: 10.1145/2556195.2556217. url:
https://doi.org/10.1145/2556195.2556217.

[18] Stefan Engeser. “Messung des expliziten Leistungsmotivs: Kurzform der Achievement
Motives Scale”. In: Retrieved 10 (2005), p. 2010.

[19] Evelyn Fix and Joseph Lawson Hodges. “Discriminatory analysis. Nonparametric dis-
crimination: Consistency properties”. In: International Statistical Review/Revue Inter-
nationale de Statistique 57.3 (1989), pp. 238–247.

[20] Shane Frederick. “Cognitive reflection and decision making”. In: Journal of Economic
perspectives 19.4 (2005), pp. 25–42.

[21] Yoav Freund and Robert E. Schapire. “A decision-theoretic generalization of on-line
learning and an application to boosting”. In: Computational Learning Theory, Sec-
ond European Conference, EuroCOLT ’95, Barcelona, Spain, March 13-15, 1995, Pro-
ceedings. Ed. by Paul M. B. Vitányi. Vol. 904. Lecture Notes in Computer Science.
Springer, 1995, pp. 23–37. doi: 10.1007/3-540-59119-2_166. url: https://doi.
org/10.1007/3-540-59119-2%5C_166.

[22] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting”. In: J. Comput. Syst. Sci. 55.1 (1997),
pp. 119–139. doi: 10.1006/jcss.1997.1504. url: https://doi.org/10.1006/jcss.
1997.1504.

[23] Giovanni Fulantelli, Ivana Marenzi, Qazi Asim Ijaz Ahmad, and Davide Taibi. “SaR-
Web-A tool to support search as learning processes”. In: SAL@ SIGIR. 2016.

48

https://doi.org/10.1016/j.intcom.2011.04.007
https://doi.org/10.1016/j.intcom.2011.04.007
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1007/s11704-019-8208-z
https://doi.org/10.1145/2556195.2556217
https://doi.org/10.1145/2556195.2556217
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1007/3-540-59119-2%5C_166
https://doi.org/10.1007/3-540-59119-2%5C_166
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504

Bibliography

[24] Ujwal Gadiraju, Ran Yu, Stefan Dietze, and Peter Holtz. “Analyzing Knowledge
Gain of Users in Informational Search Sessions on the Web”. In: Proceedings of the
2018 Conference on Human Information Interaction and Retrieval, CHIIR 2018, New
Brunswick, NJ, USA, March 11-15, 2018. Ed. by Chirag Shah, Nicholas J. Belkin,
Katriina Byström, Jeff Huang, and Falk Scholer. ACM, 2018, pp. 2–11. doi: 10.1145/
3176349.3176381. url: https://doi.org/10.1145/3176349.3176381.

[25] Souvick Ghosh, Manasa Rath, and Chirag Shah. “Searching as Learning: Exploring
Search Behavior and Learning Outcomes in Learning-related Tasks”. In: Proceedings of
the 2018 Conference on Human Information Interaction and Retrieval, CHIIR 2018,
New Brunswick, NJ, USA, March 11-15, 2018. Ed. by Chirag Shah, Nicholas J. Belkin,
Katriina Byström, Jeff Huang, and Falk Scholer. ACM, 2018, pp. 22–31. doi: 10.1145/
3176349.3176386. url: https://doi.org/10.1145/3176349.3176386.

[26] Laura Granka, Matthew Feusner, and Lori Lorigo. “Eye monitoring in online search”.
In: Passive eye monitoring. Springer, 2008, pp. 347–372.

[27] Wolfgang Gritz, Anett Hoppe, and Ralph Ewerth. “On the Impact of Features and
Classifiers for Measuring Knowledge Gain during Web Search - A Case Study”. In:
Proceedings of the CIKM 2021 Workshops co-located with 30th ACM International
Conference on Information and Knowledge Management (CIKM 2021), Gold Coast,
Queensland, Australia, November 1-5, 2021. Ed. by Gao Cong and Maya Ramanath.
Vol. 3052. CEUR Workshop Proceedings. CEUR-WS.org, 2021. url: http://ceur-
ws.org/Vol-3052/paper6.pdf.

[28] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. “Multi-class adaboost”. In: Statis-
tics and its Interface 2.3 (2009), pp. 349–360.

[29] Daniel Hienert, Dagmar Kern, Matthew Mitsui, Chirag Shah, and Nicholas J. Belkin.
“Reading Protocol: Understanding what has been Read in Interactive Information
Retrieval Tasks”. In: Proceedings of the 2019 Conference on Human Information In-
teraction and Retrieval, CHIIR 2019, Glasgow, Scotland, UK, March 10-14, 2019. Ed.
by Leif Azzopardi, Martin Halvey, Ian Ruthven, Hideo Joho, Vanessa Murdock, and
Pernilla Qvarfordt. ACM, 2019, pp. 73–81. doi: 10.1145/3295750.3298921. url:
https://doi.org/10.1145/3295750.3298921.

[30] Christoph Hölscher and Gerhard Strube. “Web search behavior of Internet experts and
newbies”. In: Computer networks 33.1-6 (2000), pp. 337–346.

[31] Anett Hoppe, Peter Holtz, Yvonne Kammerer, Ran Yu, Stefan Dietze, and Ralph Ew-
erth. “Current challenges for studying search as learning processes”. In: 7th Workshop
on Learning & Education with Web Data (LILE2018), in conjunction with ACM Web
Science. 2018.

[32] George K Hung. “Oculomotor Control”. In: Wiley Encyclopedia of Biomedical Engi-
neering (2006).

[33] Md Zahidul Islam. “EXPLORE: A novel decision tree classification algorithm”. In:
British National Conference on Databases. Springer. 2010, pp. 55–71.

[34] Vikramaditya Jakkula. “Tutorial on support vector machine (svm)”. In: School of
EECS, Washington State University 37.2.5 (2006), p. 3.

[35] SR Jiao, J Song, and B Liu. “A review of decision tree classification algorithms for
continuous variables”. In: Journal of Physics: Conference Series. Vol. 1651. 1. IOP
Publishing. 2020, p. 012083.

49

https://doi.org/10.1145/3176349.3176381
https://doi.org/10.1145/3176349.3176381
https://doi.org/10.1145/3176349.3176381
https://doi.org/10.1145/3176349.3176386
https://doi.org/10.1145/3176349.3176386
https://doi.org/10.1145/3176349.3176386
http://ceur-ws.org/Vol-3052/paper6.pdf
http://ceur-ws.org/Vol-3052/paper6.pdf
https://doi.org/10.1145/3295750.3298921
https://doi.org/10.1145/3295750.3298921

Bibliography

[36] Rishita Kalyani and Ujwal Gadiraju. “Understanding User Search Behavior Across
Varying Cognitive Levels”. In: Proceedings of the 30th ACM Conference on Hypertext
and Social Media, HT 2019, Hof, Germany, September 17-20, 2019. Ed. by Claus
Atzenbeck, Jessica Rubart, and David E. Millard. ACM, 2019, pp. 123–132. doi: 10.
1145/3342220.3343643. url: https://doi.org/10.1145/3342220.3343643.

[37] Vojislav Kecman. “Support vector machines–an introduction”. In: Support vector ma-
chines: theory and applications. Springer, 2005, pp. 1–47.

[38] Xingshan Li, Linjieqiong Huang, Panpan Yao, and Jukka Hyönä. “Universal and spe-
cific reading mechanisms across different writing systems”. In: Nature Reviews Psy-
chology 1.3 (2022), pp. 133–144.

[39] Gerald Matthews, Sian E Campbell, Shona Falconer, Lucy A Joyner, Jane Huggins,
Kirby Gilliland, Rebecca Grier, and Joel S Warm. “Fundamental dimensions of subjec-
tive state in performance settings: task engagement, distress, and worry.” In: Emotion
2.4 (2002), p. 315.

[40] Felipe Moraes, Sindunuraga Rikarno Putra, and Claudia Hauff. “Contrasting Search
as a Learning Activity with Instructor-designed Learning”. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, CIKM
2018, Torino, Italy, October 22-26, 2018. Ed. by Alfredo Cuzzocrea et al. ACM, 2018,
pp. 167–176. doi: 10.1145/3269206.3271676. url: https://doi.org/10.1145/
3269206.3271676.

[41] Fionn Murtagh. “Multilayer perceptrons for classification and regression”. In: Neuro-
computing 2.5 (1990), pp. 183–197. doi: 10.1016/0925- 2312(91)90023- 5. url:
https://doi.org/10.1016/0925-2312(91)90023-5.

[42] Christian Otto, Ran Yu, Georg Pardi, Johannes von Hoyer, Markus Rokicki, Anett
Hoppe, Peter Holtz, Yvonne Kammerer, Stefan Dietze, and Ralph Ewerth. “Predict-
ing Knowledge Gain During Web Search Based on Multimedia Resource Consump-
tion”. In: Artificial Intelligence in Education - 22nd International Conference, AIED
2021, Utrecht, The Netherlands, June 14-18, 2021, Proceedings, Part I. Ed. by Ido
Roll, Danielle S. McNamara, Sergey A. Sosnovsky, Rose Luckin, and Vania Dimitrova.
Vol. 12748. Lecture Notes in Computer Science. Springer, 2021, pp. 318–330. doi:
10.1007/978-3-030-78292-4_26. url: https://doi.org/10.1007/978-3-030-
78292-4%5C_26.

[43] Christian Otto et al. “SaL-Lightning Dataset: Search and Eye Gaze Behavior, Resource
Interactions and Knowledge Gain during Web Search”. In: CHIIR ’22: ACM SIGIR
Conference on Human Information Interaction and Retrieval, Regensburg, Germany,
March 14 - 18, 2022. Ed. by David Elsweiler. ACM, 2022, pp. 347–352. doi: 10.1145/
3498366.3505835. url: https://doi.org/10.1145/3498366.3505835.

[44] Georg Pardi, Johannes von Hoyer, Peter Holtz, and Yvonne Kammerer. “The Role of
Cognitive Abilities and Time Spent on Texts and Videos in a Multimodal Searching
as Learning Task”. In: CHIIR ’20: Conference on Human Information Interaction and
Retrieval, Vancouver, BC, Canada, March 14-18, 2020. Ed. by Heather L. O’Brien,
Luanne Freund, Ioannis Arapakis, Orland Hoeber, and Irene Lopatovska. ACM, 2020,
pp. 378–382. doi: 10.1145/3343413.3378001. url: https://doi.org/10.1145/
3343413.3378001.

[45] Leif E Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009), p. 1883.

50

https://doi.org/10.1145/3342220.3343643
https://doi.org/10.1145/3342220.3343643
https://doi.org/10.1145/3342220.3343643
https://doi.org/10.1145/3269206.3271676
https://doi.org/10.1145/3269206.3271676
https://doi.org/10.1145/3269206.3271676
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1007/978-3-030-78292-4_26
https://doi.org/10.1007/978-3-030-78292-4%5C_26
https://doi.org/10.1007/978-3-030-78292-4%5C_26
https://doi.org/10.1145/3498366.3505835
https://doi.org/10.1145/3498366.3505835
https://doi.org/10.1145/3498366.3505835
https://doi.org/10.1145/3343413.3378001
https://doi.org/10.1145/3343413.3378001
https://doi.org/10.1145/3343413.3378001

Bibliography

[46] Mezbahur Rahman and Qichao Zhang. “Comparison among pearson correlation coef-
ficient tests”. In: Far East J Math Sci (FJMS) 99 (2016), pp. 237–255.

[47] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil, and Mohammed Amine Ja-
nati Idrissi. “Multilayer perceptron: Architecture optimization and training”. In: (2016).

[48] Hassan Ramchoun, Mohammed Amine Janati Idrissi, Youssef Ghanou, and Mohamed
Ettaouil. “Multilayer Perceptron: Architecture Optimization and Training”. In: Int. J.
Interact. Multim. Artif. Intell. 4.1 (2016), pp. 26–30. doi: 10.9781/ijimai.2016.415.
url: https://doi.org/10.9781/ijimai.2016.415.

[49] Random Forest classifier tutorial: How to use tree-based algorithms for machine learn-
ing. https : / / www . freecodecamp . org / news / how - to - use - the - tree - based -
algorithm-for-machine-learning/. Accessed: 2022-10-09.

[50] Keith Rayner. “Eye movements in reading and information processing: 20 years of
research.” In: Psychological bulletin 124.3 (1998), p. 372.

[51] Erik D Reichle, Keith Rayner, and Alexander Pollatsek. “The EZ Reader model of
eye-movement control in reading: Comparisons to other models”. In: Behavioral and
brain sciences 26.4 (2003), pp. 445–476.

[52] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Tech. rep. Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[53] Dario D. Salvucci and Joseph H. Goldberg. “Identifying fixations and saccades in
eye-tracking protocols”. In: Proceedings of the Eye Tracking Research & Application
Symposium, ETRA 2000, Palm Beach Gardens, Florida, USA, November 6-8, 2000.
Ed. by Andrew T. Duchowski. ACM, 2000, pp. 71–78. doi: 10.1145/355017.355028.
url: https://doi.org/10.1145/355017.355028.

[54] Florian Schmidt-Weigand and Katharina Scheiter. “The role of spatial descriptions in
learning from multimedia”. In: Comput. Hum. Behav. 27.1 (2011), pp. 22–28. doi: 10.
1016/j.chb.2010.05.007. url: https://doi.org/10.1016/j.chb.2010.05.007.

[55] Wolfgang Schneider, Matthias Schlagmüller, and Marco Ennemoser. LGVT 6-12: Lesegeschwindigkeits-
und-verständnistest für die Klassen 6-12. Hogrefe Göttingen, 2007.

[56] Patrick Schober, Christa Boer, and Lothar A Schwarte. “Correlation coefficients: ap-
propriate use and interpretation”. In: Anesthesia & Analgesia 126.5 (2018), pp. 1763–
1768.

[57] ER Sruthi. “Understanding Random Forest”. In: Data Science Bloagathon. Analytics
Vidhya, 2021.

[58] SVM: Feature Selection and Kernels. https://towardsdatascience.com/svm-feature-
selection-and-kernels-840781cc1a6c.

[59] Rohail Syed, Kevyn Collins-Thompson, Paul N. Bennett, Mengqiu Teng, ShaneWilliams,
WendyW. Tay, and Shamsi T. Iqbal. “Improving Learning Outcomes with Gaze Track-
ing and Automatic Question Generation”. In: WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020. Ed. by Yennun Huang, Irwin King, Tie-Yan Liu,
and Maarten van Steen. ACM, 2020, pp. 1693–1703. doi: 10.1145/3366423.3380240.
url: https://doi.org/10.1145/3366423.3380240.

51

https://doi.org/10.9781/ijimai.2016.415
https://doi.org/10.9781/ijimai.2016.415
https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/
https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/
https://doi.org/10.1145/355017.355028
https://doi.org/10.1145/355017.355028
https://doi.org/10.1016/j.chb.2010.05.007
https://doi.org/10.1016/j.chb.2010.05.007
https://doi.org/10.1016/j.chb.2010.05.007
https://doi.org/10.1145/3366423.3380240
https://doi.org/10.1145/3366423.3380240

Bibliography

[60] Rui Tang, Ran Yu, Markus Rokicki, Ralph Ewerth, and Stefan Dietze. “Domain-
Specific Modeling of User Knowledge in Informational Search Sessions”. In: Proceedings
of the CIKM 2021 Workshops co-located with 30th ACM International Conference
on Information and Knowledge Management (CIKM 2021), Gold Coast, Queensland,
Australia, November 1-5, 2021. Ed. by Gao Cong and Maya Ramanath. Vol. 3052.
CEURWorkshop Proceedings. CEUR-WS.org, 2021. url: http://ceur-ws.org/Vol-
3052/paper8.pdf.

[61] Suryakanthi Tangirala. “Evaluating the impact of GINI index and information gain
on classification using decision tree classifier algorithm”. In: International Journal of
Advanced Computer Science and Applications 11.2 (2020), pp. 612–619.

[62] Zhuo Wang, Jintao Zhang, and Naveen Verma. “Realizing low-energy classification
systems by implementing matrix multiplication directly within an ADC”. In: IEEE
transactions on biomedical circuits and systems 9.6 (2015), pp. 825–837.

[63] What is a decision tree how to make one. https://venngage.com/blog/what-is-
a-decision-tree/. Accessed: 2022-10-09.

[64] Ran Yu, Ujwal Gadiraju, and Stefan Dietze. “Detecting, Understanding and Sup-
porting Everyday Learning in Web Search”. In: CoRR abs/1806.11046 (2018). arXiv:
1806.11046. url: http://arxiv.org/abs/1806.11046.

[65] Ran Yu, Ujwal Gadiraju, Peter Holtz, Markus Rokicki, Philipp Kemkes, and Stefan
Dietze. “Predicting User Knowledge Gain in Informational Search Sessions”. In: The
41st International ACM SIGIR Conference on Research & Development in Informa-
tion Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018. Ed. by Kevyn
Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz.
ACM, 2018, pp. 75–84. doi: 10.1145/3209978.3210064. url: https://doi.org/10.
1145/3209978.3210064.

[66] Wei Zhang, Xiaohui Chen, Yueqi Liu, and Qian Xi. “A distributed storage and compu-
tation k-nearest neighbor algorithm based cloud-edge computing for cyber-physical-
social systems”. In: IEEE Access 8 (2020), pp. 50118–50130.

[67] Yao Zhang and Chang Liu. “Users’ Knowledge Use and Change during Information
Searching Process: A Perspective of Vocabulary Usage”. In: JCDL ’20: Proceedings of
the ACM/IEEE Joint Conference on Digital Libraries in 2020, Virtual Event, China,
August 1-5, 2020. Ed. by Ruhua Huang, Dan Wu, Gary Marchionini, Daqing He, Sally
Jo Cunningham, and Preben Hansen. ACM, 2020, pp. 47–56. doi: 10.1145/3383583.
3398532. url: https://doi.org/10.1145/3383583.3398532.

52

http://ceur-ws.org/Vol-3052/paper8.pdf
http://ceur-ws.org/Vol-3052/paper8.pdf
https://venngage.com/blog/what-is-a-decision-tree/
https://venngage.com/blog/what-is-a-decision-tree/
https://arxiv.org/abs/1806.11046
http://arxiv.org/abs/1806.11046
https://doi.org/10.1145/3209978.3210064
https://doi.org/10.1145/3209978.3210064
https://doi.org/10.1145/3209978.3210064
https://doi.org/10.1145/3383583.3398532
https://doi.org/10.1145/3383583.3398532
https://doi.org/10.1145/3383583.3398532

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related Work
	Knowledge Gain
	Resource Data and Knowledge Gain
	Behavioral Data, Search Data and Knowledge Gain
	Eye-tracking Data, Reading Pattern, and Knowledge Gain

	Foundations
	Eye Movements during Reading
	Fixations and Saccades
	Visual Acuity
	Saccade Latency
	Perceptual Span
	Regressions
	Where to Fixate Next

	E-Z Reading Model
	Word Identification
	Visual Processing
	Attention
	Oculomotor Control

	Reading Protocol Tool
	Data input
	Word-Eye-Fixation Computation

	Machine Learning Classifiers
	AdaBoost
	Terminology
	Ensemble Machine Learning Approach
	How does AdaBoost Algorithm Work?

	K-Nearest Neighbour
	How does K-NN Work?
	How to Choose the K Value

	Decision Tree
	Types of Decision Trees
	Terminology in Decision Trees
	How Do Decision Trees Work?
	Attribute Selection Measures

	Random Forest
	How does RF Work?

	A Multilayer Perceptron
	Terms in MLP
	How MLP Works?

	Support-vector Machine
	How does SVM Algorithm Work?

	Correlation Coefficient
	Pearson Correlation Coefficient
	Correlation Coefficient Interpretation

	Methodology
	Bhattacharya and Gwizdka and Words Level data pre-processing
	Data Cleaning
	Filtering and Grouping
	Bhattacharya and Gwizdka Grouping and Filtering
	Word-level Grouping and Filtering

	Feature Extraction
	Reading Pattern and Eye-tracking Data Processing
	Total Reading Fixations Count Calculation
	Fixation Duration Calculation
	Total Reading length Calculation
	Total Eye Regression Count Calculation
	Total Regression Length Calculation

	Behavioral Data Processing
	Fixating Session Time Calculation
	Dwell Time Calculation

	Experiments
	Dataset
	Task Description
	Procedure and Knowledge Measurements
	Technical Environment Setup
	Dataset Structure
	Eye-movement Features

	Correlation
	Knowledge Gain Prediction
	Knowledge Gain Definition
	Metrics
	Experimental Setup
	Hyper-parameter Optimization
	Classifiers
	Experimental Results

	Conclusion
	Summary
	Future Work

