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Data outsourcing has recently emerged as a successful solution allowing individuals and organizations
to delegate data and service management to external third parties. A major challenge in the data outsourc-
ing scenario is how to guarantee proper privacy protection against the external server. Recent promising
approaches rely on the organization of data in indexing structures that use encryption and the dynamic
allocation of encrypted data to physical blocks for destroying the otherwise static relationship between
data and the blocks in which they are stored. However, dynamic data allocation implies the need to re-
write blocks at every read access, thus requesting exclusive locks that can affect concurrency. Also, these
solutions only support search conditions on the values of the attribute used for building the indexing
structure.

In this paper, we present an approach that overcomes such limitations by extending the recently pro-
posed shuffle index structure with support for concurrency and multiple indexes. Support for concurrency
relies on the use of several differential versions of the data index that are periodically reconciled and ap-
plied to the main data structure. Support for multiple indexes relies on the definition of secondary shuffle
indexes that are then combined with the primary index in a single data structure whose content and allo-
cation is unintelligible to the server. We show how using such differential versions and combined index
structure guarantees privacy, provides support for concurrent accesses and multiple search conditions, and
considerably increases the performance of the system and the applicability of the proposed solution.
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1. Introduction

The evolution of information and communication technology is leading to infor-
mation system architectures that rely more and more on third parties for the manage-
ment of IT functions. A major motivation for such a trend is economical: with out-
sourcing an organization can simplify its structure and benefit from the large scale
economies of rented IT services, with low costs and high availability. However, a sig-
nificant obstacle to a greater adoption of outsourcing is today represented by possible
concerns over improper exposure of confidential or sensitive information. As a mat-
ter of fact, while the external service provider can be relied upon for guaranteeing
protection of managed data, it is of utmost importance to protect possible sensitive
information from the eyes of the service provider itself.

The research and development communities have devoted significant attention to
the problem of protecting data confidentiality in outsourcing scenarios, producing
several solutions addressing different aspects of the problem. All proposals apply
encryption to make data not intelligible to the server, providing support for query
execution either by associating additional indexes with the encrypted data (e.g., [1,4,
8,16,17,24,26]) or extending the tree-based indexing structures typically adopted in
DBMSs (e.g., [8]). Tree-based approaches, unlike additional indexes, are not vulner-
able to privacy breaches exploiting the possible correlation between frequencies of
the index values and of the actual data behind them [4]. However, even tree-based in-
dexes remain vulnerable to attacks based on the observation of sequences of accesses
and on the analysis of the frequency distribution of access requests. Such vulnera-
bility can be counteracted by adopting approaches that change the location of the
encrypted data at every access, so to break the otherwise static relationship between
data and their physical location [9,19,28]. Dynamically allocated data structures rep-
resent the best defense against frequency attacks by the server. Among them, the
shuffle index [9] extends the classical B+-tree structure used in databases with en-
cryption, cover searches (to “hide” the actual target search in a set of additional fake
searches, thus providing uncertainty over the block actually targeted), and shuffling
to enforce dynamic allocation.

Although the shuffle index enjoys limited overhead with respect to the protection
guarantees it offers [9], like other dynamically allocated data structures, it could po-
tentially affect performance in scenarios where accesses need to operate concurrently
and need to be performed according to different search attributes. In fact, reallocat-
ing data at the server requires write (hence exclusive) locks on the block involved
in an access even in the execution of read-only operations. Also, searches based on
attributes different from the index with which the shuffling structure has been orga-
nized require downloading the whole database for evaluating the search condition
locally.

In this paper, we extend the shuffle index in [9] to efficiently support concurrent
accesses and multiple indexes while guaranteeing privacy in data accesses. Our so-
lution to support concurrent accesses to the indexed data consists in having transac-
tions operating on dynamically created portions of the primary shuffle index, which
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we call delta versions. Delta versions are maintained in the server main memory, are
managed – and shuffled at each access – independently one from the other, and are
periodically reconciled and applied to the primary data structure on disk.

Our solution to support multiple indexes consists in the definition of secondary
index structures which are then merged – at the logical and physical level – together
with the primary index so to form a single structure whose organization and alloca-
tion is unintelligible to the server. This combined shuffle index guarantees protection
against the long-term accumulation of information by the server [9].

The approach presented in this paper supports concurrency and multi-index
searches while offering a guarantee that the server monitoring the sequence of ac-
cesses will not be able to use the information about the frequency or the order of
accesses to infer the content of the database and the target values of accesses per-
formed by users. The experimental results show that our solution produces up to a
fourfold increase in system throughput in case of concurrent accesses. In [10] we
presented an early version of our proposal that introduced delta versions for sup-
porting concurrency. Here we extend the proposal with support for multiple indexes.
Also, we provide the algorithm for reconciling delta versions and formally analyze
its correctness and security. The experimental results are extended by measuring the
average service time of a system using the proposed indexing technique, and the
average response time as seen by the client.

The remainder of this paper is organized as follows. Section 2 introduces the shuf-
fle index and describes how it protects access confidentiality by means of cover
searches and dynamic data allocation. Section 3 formally defines a shuffle index
at the abstract, logical, and physical levels, and introduces the use of delta versions
for supporting concurrent accesses. Section 4 describes the execution of concurrent
accesses to the shuffle index using a set of delta versions. Section 5 discusses an
approach for reconciling delta versions with the main index. Section 6 presents the
reconciliation algorithm and formally shows its correctness. Section 7 presents sec-
ondary shuffle indexes as a solution for supporting search conditions on different
attributes and describes how they can be combined with the primary shuffle index
at the logical and physical levels. Section 8 analyzes the security guarantees offered
by the proposed indexing technique. Section 9 presents the experimental results as-
sessing the throughput, average service time, and average response time provided by
our shuffle index. Section 10 discusses related work. Finally, Section 11 reports our
conclusions. The proofs of the theorems are reported in Appendix.

2. Preliminary concepts

Before introducing our approach, we illustrate the shuffle index with which out-
sourced data are organized [9]. We assume that the outsourced data collection is
stored in a relation r defined over schema R(A1, . . . , An). The tuples in r are in-
dexed over a candidate key K ⊆ {A1, . . . , An}. For simplicity, but without loss



AUTHOR  C
OPY

428 S. De Capitani di Vimercati et al. / Supporting concurrency in private accesses

of generality, in this paper we assume that indexes are defined over candidate keys
composed of one attribute only, even if they can be defined on arbitrary subsets of
attributes that represent a candidate key for the relation. The outsourced data are or-
ganized as an unchained B+-tree, with actual data stored in the leaves of the tree
in association with their index values (i.e., the shuffle index is a primary index for
the outsourced data collection). The fact that the tree is unchained means that there
are no links connecting the leaves. The fan-out F of the tree regulates the number of
index values stored in the nodes. Each node stores a list V[1, . . . , q] of q values, with
�F2 � − 1 � q � F − 1 (the lower-bound does not apply to the root) ordered from
the smallest to the greatest, and has q + 1 children. The first child of a node is the
root of the subtree with all values v < V[1]; the ith child is the root of the subtree
containing the values v with V[i− 1] � v < V[i]; and the last child is the root of the
subtree with all values v � V[q]. Figure 1(a) illustrates a graphical representation of

Fig. 1. An example of abstract (a), logical (b)–(c), and physical (d)–(e) index before (b)–(d) and after
(c)–(e) the execution of a search operation.
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an example of our abstract data structure. For simplicity, in our examples we refer to
every node with a label (not explicitly reporting values in the node).

At the logical level, nodes are allocated to logical addresses that work as logical
identifiers. Pointers between nodes of the abstract data structure correspond, at the
logical level, to node identifiers, which can then be easily translated at the physi-
cal level into physical addresses at the storing server. In the following, we assume
that the physical address corresponds to the logical identifier of the node stored in
it. Note that the possible order among identifiers does not necessarily correspond to
the order in which nodes appear in the value-ordered abstract representation. Fig-
ure 1(b) illustrates a possible representation at the logical level of the abstract data
structure in Fig. 1(a). In the figure, nodes appear ordered (left to right) according to
their identifiers, which are reported on the top of each node. Pointers to children are
represented by reporting in each node the ordered list of the identifiers of its children.
For simplicity and easy reference, in our example, the first digit of the node identifier
denotes the level of the node in the tree. Before sending to the server the index for
storing it, the content of each node is prefixed with a random salt and then encrypted
in CBC mode with a symmetric encryption function producing an encrypted block.
All nodes in the index are encrypted with the same encryption key, which is shared
between the data owner and users authorized to access the outsourced data collec-
tion. Figure 1(d) illustrates the physical representation of the logical data structure in
Fig. 1(b). Since each block is encrypted, the server does not have any information on
the content of the node stored in the block or on the parent-child relationship between
nodes stored in blocks. Retrieval of the leaf block containing the tuple corresponding
to an index value requires an iterative process. Starting from the root of the tree and
ending at a leaf, the read block is decrypted retrieving the address of the child block
to be read at the next step. Each access to a leaf block then requires h + 1 rounds of
communication between the client and the server, where h is the height of the tree.
To avoid leaking to the server the fact that (i) some blocks represent a path in the
tree and (ii) different accesses aim at the same content, the shuffle index extends the
search operation by:

• performing, in addition to the target search, other fake cover searches, guaran-
teeing indistinguishability of target and cover searches and operating on disjoint
paths of the tree (retrieving, at every level of the tree, num_cover + 1 blocks at
the same time);

• maintaining a set of blocks in a local cache;
• mixing (shuffling) the content of all retrieved blocks as well as those maintained

in cache and rewriting them accordingly on the server.

Intuitively, cover searches introduce uncertainty over the leaf block actually be-
longing to the target search and do not allow the server to establish the parent-child
relationship between blocks (since every access entails reading multiple blocks at ev-
ery level). The cache is used to make searches repeated within a short time interval
not recognizable as being the same search (if the nodes in the target path are al-
ready in cache, an additional cover search will be executed instead). Shuffling moves
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content among blocks, thus breaking the correspondence between nodes (contents)
and blocks (addresses). Note that shuffling requires to re-encrypt the involved nodes
with a different random salt, so to produce a different encrypted text, and changing
the pointers to them in their parents (which will have to point to the new blocks to
which nodes have been allocated). Changing the allocation of nodes to blocks pro-
vides confidentiality: (i) subsequent searches looking for the same content would
aim at different blocks, and (ii) subsequent searches hitting the same block would
involve a different content.

As an example, consider a search for value b3 over the abstract index in Fig. 1(a),
and assume that the search adopts a3 as cover and that the local cache contains the
path to d2 (i.e., (001, 103, 201)). Figure 1(b) illustrates the logical representation of
the abstract index before the execution of the search operation and how accessed
blocks are shuffled, level by level, to obtain the structure in Fig. 1(c). The nodes
involved in the search operation are denoted in gray in the figure. Note that although
the server knows which blocks have been accessed (gray blocks in Fig. 1(d)–(e)) it
cannot detect which of those blocks is the actual target of the search and how the
content of blocks has been shuffled, since blocks are re-encrypted using a different
salt at each write operation.

3. Main index and delta versions

Before introducing our solution for supporting concurrent accesses and the eval-
uation of conditions over different attributes of the outsourced data collection, we
need to formalize the components of the shuffle index data structure and of the shuf-
fling (which were only procedurally managed in the original proposal [9]). Data can
be seen at the abstract, logical, and physical levels, which we formally capture as
follows.

• Abstract (T a): set {na1 , . . . ,nam} of abstract nodes forming an unchained
B+-tree. Each internal node in T a is a pair na = 〈Values, Children〉 with Val-
ues a list of q index values and Children a list of q + 1 child nodes. Leaf nodes
are represented with nodes of the form 〈Values, Tuples〉 that include, instead of
the list of child nodes, the set Tuples of tuples in r with index values in Values.

• Logical (T ): triple (T a, ID,φ), where T a is an abstract data structure, ID is
a set of logical identifiers, and φ : T a → ID is a bijective function associ-
ating each abstract node na in T a with a logical identifier id in ID. Triple
(T a, ID,φ) determines how the abstract nodes in T a are allocated to logi-
cal identifiers in ID. Each internal node na = 〈Values, Children〉 ∈ T a is
then represented by a (logical) node of the form 〈id, V, P〉, where id = φ(na),
V = Values, and P[j] = φ(Children[j]), j = 1, . . . , q + 1. Leaf nodes are rep-
resented with logical nodes of the form 〈id, V, T〉 that include tuples T instead
of pointers to children.

• Physical (T e): set of (disk) blocks storing T . Each logical node 〈id, V, P〉 ∈ T
(〈id, V, T〉 ∈ T for leaves) is stored in a block that can be seen as a pair of the
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form 〈id ,b〉, where b = Ek(salt‖id‖V‖P) (b = Ek(salt‖id‖V‖T) for leaves)
with E a symmetric encryption function, k the encryption key (which is the
same for all nodes in T and is known to the data owner and authorized users),
and salt a value chosen at random for each encryption.

In the following, we use the term node to refer to an abstract content and block
to refer to a specific memory slot in the logical/physical structure. When either the
term node or the term block can be used, we will use them interchangeably.

Shuffling executed at every access randomly exchanges the content among blocks.
A shuffling of logical index T = (T a, ID,φ) is equivalent to reallocating nodes
to potentially different blocks (the corresponding abstract index structure remains
unaltered), as formally defined in the following.

Definition 3.1 (Shuffling). Let T = (T a, ID,φ) be a logical index and π : ID →
ID be a random permutation of ID. The shuffling of T with respect to π is a logical
index T ′ = (T a, ID,φ′), where φ′ is a composite function defined as φ′ = π ◦ φ.

Note that a change in the allocation of nodes to blocks implies that the point-
ers to children must be updated to reflect their new allocation, thus preserving
the correct parent-child relationship. After shuffling, each abstract node na =
〈Values, Children〉 in T a is represented by logical node 〈id, V, P〉 in T ′, where id =
φ′(na) = π(φ(na)), V = Values, and P[j] = φ′(Children[j]) = π(φ(Children[j])),
j = 1, . . . , q + 1. In the following, for simplicity and without loss of generality, we
assume shuffling to operate within the boundary of the tree level (i.e., permutations
are always performed among nodes of the same level of the tree).

A delta version is essentially a – potentially shuffled – portion of the main index,
as captured by the following definition.

Definition 3.2 (Delta version). Let T = (T a, ID,φ) be a logical index. A delta
version Δi = (Δa

i , IDi,φi) of T is a shuffling of (Δa
i , IDi,φ) with respect to a

permutation π, where Δa
i⊆T a such that ∀na∈Δa

i , the parent of na belongs to Δa
i ;

IDi =
⋃

na∈Δa
i
φ(na); and φi : T a → ID such that φi(na) = φ(na) if na /∈ Δa

i .

At the physical level, delta versions are stored in blocks obtained by encrypting
the nodes in Δa

i with the same encryption key k used for the main shuffle index.
These blocks are maintained by the server in main memory. Figure 2(b) illustrates
an example of delta version of the logical index in Fig. 2(a). Note that, since a delta
version is composed of nodes along paths that are traversed when executing search
operations, the parent of each node in the delta version also belongs to the delta ver-
sion. Therefore, every delta version always includes the root of T a. In the following,
we use T and Δi to denote the set of logical nodes forming a shuffle index and a
delta version, respectively.

Merging a delta version with a main index implies enforcing on the main index
the allocation of nodes to blocks prescribed by the delta version, as captured by the
following definition.
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Fig. 2. An example of main index (a) and of execution of two subsequent searches (b)–(c) over it using
delta version Δ1.

Definition 3.3 (Merge). Let T = (T a, ID,φ) be a logical index and Δi =
(Δa

i , IDi,φi) be a delta version of T . The merge of T and Δi, denoted T ⊕ Δi,
is logical index T ′ = (T a, ID,φi).

In terms of actual enforcement, T ′ can be simply obtained by flushing the blocks
of the delta version to the main index (i.e., by overwriting the blocks on disk with
the blocks in main memory associated with the same physical address), while leaving
the other blocks unaltered. Such an operation – which can be performed without any
need to download the involved blocks or performing computation by the client –
produces an index that correctly represents the original data structure and includes
the shuffling operated on the delta version (see Theorem 5.1 in Section 5).

4. Operating on delta versions

The basic idea of our approach is that transactions operate on delta versions (dy-
namically created and maintained in main memory at the server) rather than on
the main shuffle index. Concurrent transactions execute Algorithm 1, operating at
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Algorithm 1. Access to a shuffle index through delta versions
T = (T a , ID, φ): logical index on a candidate key K with domain DK , height h, fan-out F
Δ1 ,. . . ,Δn : delta versions of T
Allocation1[0, . . . , h],. . . ,Allocationn[0, . . . , h]: layered structure that keeps track of node-block associations

and of parent-child relationships by storing, for each node in Δi , its logical identifier id ,
its label label , and the label of its parent parent (see Section 6)

num_cover: number of cover searches
target_value: value to be searched in the shuffle index

MAIN
/* Delta version assignment */

1: v_id := GetAvailableDeltaVersion /* require the allocation of a delta version to the server */
2: let t∈VERSION s.t. t [Δid]=v_id
3: if ∃t′ ∈VERSION s.t. t′[status]=‘free’ ∧ t′[ts]>t [ts] then exit /* server’s misbehavior: Δv_id is not the MRU delta version */
4: t [status] := ‘busy’
5: Root := Decrypt(ReadBlocks(root_id, Δv_id)) /* retrieve the root node of the chosen delta version */
6: if Root.ts<t [ts] then exit /* server’s misbehavior: the access at time t [ts] has been discarded */
7: t [ts] := current_time
8: Root.ts := current_time

/* Access execution */
9: target_id := repeated_id := Root.id /* identifier of the node along the path to the target and of the repeated search */

10: repeated := TRUE /* the root is always a repeated search */
11: num_cover := num_cover + 1
12: Parents := {Root}
13: for i:=1. . . num_cover do cover_id[i] := target_id
14: for i:=1. . . num_cover do /* choose cover searches */
15: randomly choose cover_value[j] in DK s.t. /* DK is the domain of attribute K */

∀j=1,. . . ,i−1, ChildToFollow(Root,cover_value[i])�=ChildToFollow(Root,cover_value[j]),
ChildToFollow(Root,cover_value[i])/∈Δv_id .Repeated[1], and
ChildToFollow(Root,cover_value[i])�=ChildToFollow(Root,target_value)

/* search, shuffle, and update repeated searches and the delta version */
16: for l:= 1. . . h do
17: let n∈Parents such that n .id=target_id /* node along the path to the target at level l − 1 */
18: target_id := ChildToFollow(n ,target_value) /* identifier of the node along the path to the target at level l */

/* identify the blocks to read from the server */
19: ToRead_ids := {target_id}
20: if target_id/∈Δv_id .Repeated[l] then /* the target node is not along the path to a repeated search */
21: if repeated then
22: num_cover := num_cover − 1
23: repeated := FALSE

25: else
26: let n∈Parents s.t. n .id = repeated_id /* repeated_id is the identifier of the node along the path to the repeated search */
27: repeated_id := n .P ∩ Δv_id .Repeated[l] /* identifier of the node along the path to the repeated search */
28: ToRead_ids := ToRead_ids ∪ {repeated_id}
29: for i:=1. . . num_cover do
30: let n∈Parents s.t. n .id=cover_id[i]
31: cover_id[i] := ChildToFollow(n ,cover_value[i])
32: ToRead_ids := ToRead_ids ∪ {cover_id[i]}

/* read blocks */
33: Read := Decrypt(ReadBlocks({id∈ToRead_ids: id∈Allocationv_id[l]}, Δv_id)) /* blocks read from the delta version */
34: Read := Read ∪ Decrypt(ReadBlocks({id∈ToRead_ids: id /∈Allocationv_id[l]}, T )) /* blocks read from the main index */
35: for each n∈Read s.t. n .id /∈Allocationv_id[l] do /* insert a tuple in Allocationv_id[l] for each new node in the delta version */
36: ta .id := n .id
37: ta .label := label(n .V )
38: let npar∈Parents s.t. t .id∈npar .P
39: ta .parent := label(npar .V )
40: Insert(ta ,Allocationv_id[l])

/* shuffle nodes */
41: let π be a permutation of ToRead_ids
42: for each n∈Read do
43: let ta∈Allocationv_id[l] s.t. ta .id=n .id /* update Allocationv_id[l] with the new node-block association */
44: n .id := π(n .id )
45: ta .id := n .id
46: for each n∈Parents do /* determine effects on parents and store nodes at level l−1 */
47: for i:=0. . . F do n .P[i] := π(n .P[i])
48: WriteBlock(n .id , Encrypt(n), Δv_id) /* write blocks in the delta version */
49: target_id := π(target_id) /* update the identifier of the node along the path to the target */
50: repeated_id := π(repeated_id) /* update the identifier of the node along the path to the repeated search */
51: for i:=1. . . num_cover do cover_id[i] := π(cover_id[i]) /* update the identifier of the nodes along the paths to covers */
52: Δv_id .Repeated[l] := ToRead_ids /* update repeated searches at level l */
53: Parents := Read
54: for each n∈Read do WriteBlock(n .id , Encrypt(n), Δv_id) /* write nodes at level h */

/* return the target leaf node */
55: let n∈Read such that n .id=target_id
56: t [status] := ‘free’
57: return(n)
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a trusted party, to access the outsourced relation r to search for a target_value of
the attribute on which the shuffle index has been defined (i.e., attribute K). The al-
gorithm is composed of two steps: (i) the choice of the delta version on which the
search should operate and (ii) the execution of the access to the shuffle index through
the chosen delta version. We now briefly describe the two steps.

4.1. Delta version assignment

Every access operation is executed over a delta version. To avoid imposing syn-
chronization constraints, we assume the allocation of delta versions to each transac-
tion to be determined by the server (line 1). However, we need to provide a means
to control the proper behavior of the server in the allocation of the versions. It is im-
portant to ensure that the server: (i) does not discard the shuffling requests, (ii) does
not create a new delta version at each access to have transactions always operating
on the main index (and therefore on a static data structure), and (iii) does not selec-
tively allocate versions to monitor specific activities. Therefore, we assume that a
trusted client acts as a coordinator for concurrent accesses by different transactions.
The presence of the client allows detecting possible misbehaviors of the server in
the management of delta versions and in the execution of shuffling operations. The
client initially sets the number of delta versions (which corresponds to the maxi-
mum amount of concurrent accesses to be supported). The client maintains a table
VERSION(Δid, ts, status), reporting for each delta version Δid the time ts of last ac-
cess and the status (busy or free) of the version. We require the transaction at the
client side to update the entry for the version allocated to it, by setting ts to the cur-
rent time and status to busy (line 4) before accessing the data. We instead account
for a lazy process for the transactions in setting that the version allocated to each of
them has been released (status free, line 56). Hence, while a version appearing as
free in table VERSION is certainly free, a version appearing as busy could actually
have been released (but the transaction be late in reporting the status change). We
require the server to manage the allocation of delta versions according to a Most
Recently Used (MRU) policy, that is, an access should always be enforced on the
version most recently used. The client can then check that the server has performed
proper allocation by verifying whether the time of last access to the delta version
allocated to a transaction is greater than the greatest ts associated with a free version
in the table (the “greater than” condition is to accommodate for possible delays of
transactions operating at the client side to set version status free, lines 2–3). We note
that, to perform such a control, the client requires an exclusive lock on table VER-
SION when it sends to the server a request for the allocation of a delta version to a
transaction (line 1). This exclusive lock is necessary to prevent changes to the status
of the delta versions in the time window between the assignment by the server of a
delta version to the transaction and the verification by the client of the correctness of
the assignment. The exclusive lock is released when the transaction has set to busy
the status of the delta version assigned to it (line 4). We assume the root of every
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delta version to be timestamped at each access. This allows the client to check that
the root is actually the result of the access executed at the time ts recorded in the ta-
ble for the delta version (lines 5–6) and, therefore (since the root points to the other
blocks in the tree) the freshness of the whole version.

4.2. Access execution

Access execution works essentially like in the original shuffle index proposal re-
questing h + 1 communication steps between a transaction and the server such that
at each level of the shuffle index num_cover + 2 blocks (lines 9–56) are read from
the server. If the operation needs to read a block that does not belong to the delta
version, such a block is taken from the main index and included in the delta version.
Apart from the need to include new blocks in the delta version, the only notable
difference with respect to the original shuffle index proposal is that we depart from
the local cache maintained for hiding that subsequent searches were aiming at the
same node. The reason for departing from the cache is that its maintenance would
impose a strong synchronization overhead among the different transactions operat-
ing at the client side. To prevent the server from recognizing that two subsequent
accesses aim at the same block, we take a dual approach with respect to using the
cache, and adopt repeated searches instead. Intuitively, while the cache ensures con-
sequent searches never access the same block (if a value just retrieved is needed, a
fake value is searched instead, so to ensure no intersection between the two searches
and that the same number of blocks is accessed at each level), repeated searches
always ensure intersection between subsequent searches (regardless of whether the
two searches are looking for the same value or not). For enforcing repeated searches,
we store, in conjunction with each delta version, a layered structure that keeps track
of the identifiers of the blocks accessed during the last search (Repeated[0, . . . , l]).
Execution of an access on a delta version will also request at least one block per level
among those appearing in the last search. Each search then accesses num_cover + 2
blocks at every level of the index, since, besides the blocks of the target and cover
searches, an additional block is necessary for the repeated search. At the beginning,
when the delta version is empty, there is no search to repeat and an additional cover
is requested instead.

As an example, consider the index in Fig. 2(a) and assume that the data owner
decides to adopt six delta versions that are, at initialization time, all empty. Let us
now suppose that the data owner searches for value a1 and decides to adopt one
cover and operates on delta version Δ1. In this case, two covers (e.g., d2 and e3) are
needed. The blocks on the paths to a1, d2, and e3 are all read from the main index,
shuffled, and written back in Δ1 as illustrated in Fig. 2(b). Suppose now that, after
a number of concurrent accesses to the shuffle index, the status of the six available
delta versions is the one illustrated in Table 1 and that the data owner needs to execute
another search for value b4. The server assigns to the transaction delta version Δ1,
as it is the most recently used available delta version. Let us also assume that the
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Table 1

Status of the delta versions available for the shuffle index

Δid ts status

1 15 free

2 14 busy

3 9 free

4 12 busy

5 18 busy

6 10 free

transaction adopts one cover search (e.g., g3), and one repeated access (e.g., 001,
101, 218). Since the nodes along the paths to b4 and g3 (except the root) do not
belong to Δ1 they are read from the main index, and after shuffling their content with
all accessed blocks, they are copied in the delta version. Figure 2(c) illustrates Δ1
after the execution of the second search operation.

5. Reconciling delta versions and main index

A delta version grows at every access by including new requested blocks that
were not previously contained in the delta version. In the long run, a delta version
could potentially include all the blocks of the main index saturating the server main
memory. Hence, we periodically synchronize the main index with the delta versions,
reporting shuffling operations on the main index and resetting the delta versions.
Note that we cannot simply destroy the delta versions without changing the main
index. In fact, although all operations are read-only (i.e., the abstract data structure
remains unaltered), the principle of the shuffle index is that the allocation of nodes
to blocks is dynamic. It is therefore important to apply the shuffle performed on the
delta versions to the main index, so to enjoy the protection of shuffling for subsequent
accesses.

If there were a single delta version, applying the performed shuffling on the main
index would be simple. Indeed, it would be sufficient to flush the blocks included
in the delta version to the main index on disk, as formally proved by the following
theorem.

Theorem 5.1. Given a logical index T = (T a, ID,φ) and a delta version Δi =
(Δa

i , IDi,φi) of T , the set (T ∪ Δi) \ ({〈id, V, P〉 ∈ T : id ∈ IDi} ∪ {〈id, V, T〉 ∈
T : id ∈ IDi}) of logical nodes represents logical index T ′ = T ⊕ Δi.

Proof. See the Appendix. �

The situation may however be complicated by the presence of several delta ver-
sions, which can have operated independently on the same nodes/blocks. In this case,
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a reconciliation is needed to ensure correctness of the index and, in particular, to en-
sure that no content is lost and pointers to child blocks are properly set. We first note
that, while it is important that shuffling is enforced on the main index, the specific
way in which nodes are shuffled (i.e., which node goes to which block) does not
have any impact, provided it represents a random permutation. As long as alloca-
tion is dynamic, any rearrangement would do. Hence, a straightforward approach to
enforce shuffling on the main index would be to download all the blocks contained
in the delta versions at the client side, retrieve (by decrypting) the corresponding
nodes, allocate them to blocks, and re-upload them at the server by rewriting the in-
volved blocks on the main index. Such a naive approach, requiring to download all
the blocks and to re-encrypt all the nodes, is clearly too expensive and not needed.
Our approach aims at minimizing the blocks to be downloaded and re-uploaded by
limiting these blocks to the ones strictly needed to guarantee correctness or to avoid
leakage on the node allocation, while flushing as many blocks as possible directly to
disk (without downloading them at the client side).

To determine which blocks need to be downloaded and re-encrypted, we have
to identify the blocks for which the presence of multiple delta versions represents a
problem. In principle, it is sufficient for two delta versions to have a block (and hence
the corresponding node) in common to require checking all the blocks in them, since
the node (which should be reported in only one block to the main index) may have
been re-allocated to any of the blocks within each delta version. In practice, only the
block where the node was originally allocated in the main index and the new block
where it has been allocated in each of the delta versions need to be strictly involved in
some re-encryption, since the delta versions have conflicting node/block allocations.

We then start by characterizing conflicting node/block allocations among a set of
delta versions as follows.

Definition 5.2 (Conflicting allocations). Let T = (T a, ID,φ) be a logical index
and {Δ1, . . . , Δn} be a set of delta versions of T . The conflicting allocations of Δi

with respect to {Δ1, . . . , Δn} \ {Δi} is a set Ci of pairs 〈nai , idi〉, where nai ∈ Δa
i ,

idi = φi(nai ), and ∃naj ∈ Δa
j , i �= j, such that either: (1) nai = naj (same node); or

(2) φi(nai ) = φj(naj ) (same block).

It is easy to see that, with respect to nodes, the nodes that are in conflict for a
given delta version Δi are all those nodes that are also present in another version
(i.e., belong to Δa

i ∩ Δa
j , for some j �= i) or that are contained in blocks which are

also present in another version (i.e., are allocated to a block in IDi ∩IDj , for some
j �= i). Analogously, with respect to blocks, the blocks that are in conflict for a given
delta version Δi are all those blocks that are also present in another version (i.e.,
belong to IDi ∩ IDj , for some j �= i) or that contain nodes that are also present
in another version (i.e., belong to Δa

i ∩ Δa
j , for some j �= i). For completeness,

Definition 5.2 captures both components representing conflicts, in terms of pairs
〈node, block〉 since the conflict requires to revisit the allocation of the node contained
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Fig. 3. An example of main index (a), two delta versions Δ1 (b) and Δ2 (c), and the result of their recon-
ciliation (d).

in the block. To illustrate, consider the two delta versions Δ1 and Δ2 in Fig. 3(b)–(c).
The nodes/blocks representing a conflicting allocation in each version are marked
with the word conflict (conf. for leaves) below each block.

All blocks involved in a conflict for some delta version cannot be simply written to
disk as the resulting index would not be correct (some nodes would be lost and others
would appear replicated). To ensure consistency of the content, it is important to rec-
oncile the delta versions so that there is agreement – with respect to common nodes
or common blocks – on which node is allocated to which block. We capture this by
formalizing the definition of reconciled delta version, resulting from a reconciliation
of different delta versions, as follows.

Definition 5.3 (Reconciled delta version). Let T = (T a, ID,φ) be a logical index,
{Δ1, . . . , Δn} be a set of delta versions of T , and Ci be the conflicting allocations
of Δi with respect to {Δ1, . . . , Δn} \ {Δi}, i = 1, . . . ,n. A reconciled delta version
of {Δ1, . . . , Δn} is a delta version Δr = (Δa

r , IDr,φr) where Δa
r = Δa

1 ∪ · · · ∪ Δa
n,

IDr = ID1 ∪ · · · ∪ IDn, and φr(na) = φi(na) if na ∈ Δa
i and 〈na,φi(na)〉 /∈ Ci.

Since Δr is a delta version, by Definition 3.2 φr : T a → ID is a bijective func-
tion that associates each abstract node na ∈ T a with a logical identifier id ∈ ID.
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Function φr is such that: φr(na) = φ(na) if na does not belong to any delta version;
φr(na) = φi(na) if na belongs to one delta version only (i.e., Δi); and φr(na) needs
to be properly defined as the result of a reconciliation among Δ1, . . . , Δn, otherwise.
Therefore φr does not generate any conflicting allocation and correctly associates
nodes with physical addresses reserved by the server to the shuffle index.

The reconciled delta version can then be enforced on the shuffle index as in the
case of a single delta version, by merging T and Δr producing logical index Tr =
T ⊕ Δr that represents the same abstract index as T .

For producing the reconciled version, in addition to blocks in conflict also the
blocks containing a pointer to a block in conflict (e.g., block 103 in Δ2 in Fig. 3(c))
need to be re-written, as the pointer should be changed to refer to the new block
where the child node (e.g., c4) has been allocated.

While the blocks in conflict and their parents are the only ones that should be
downloaded by the client and re-uploaded (after shuffling the nodes in conflict) to
produce a correct reconciled version (all other blocks in the delta versions could
simply be flushed to disk directly by the server), we may need to download (and ei-
ther include in the shuffling or simply re-write) other blocks. The reason is to ensure
that the server cannot infer node/block allocations by observing that only few blocks
have been involved in a reconciliation. As an example, for Δ1 in Fig. 3(b), the only
leaf block to download and re-upload would be conflicting block 222, therefore the
server can infer that it stores the value accessed (as target or cover) by two searches
performed with different delta versions. To avoid leakages like this, and provide the
same uncertainty over the block allocation enjoyed by the original shuffle index pro-
posal, we require each version, for each level of the index, to: (i) perform shuffling
of either 0 or at least num_cover + 1 blocks and (ii) flush directly either 0 or not less
than num_cover + 1 blocks. If for a given level there are less than num_cover + 1
blocks to flush, additional cover blocks are also downloaded and re-uploaded after
re-encrypting them with a new salt (to make them not recognizable). Like parents,
these latter nodes are not involved in the shuffling to avoid propagating the need for
changes to higher levels of the index. For instance, with reference to Δ1 in Fig. 3(b):
(i) 225 is added as cover to perform shuffling among at least two nodes at leaf level,
and (ii) 108 is also downloaded since it would have been the only one flushed at
level one. Figure 3(d) illustrates the merging of the index in Fig. 3(a) after reconcili-
ation of delta versions Δ1 and Δ2 in Fig. 3(b)–(c). In the figure, blocks flushed by the
server from main memory to disk are represented in dark gray and are marked with
the word fl. below each of them; blocks that have been downloaded at the client side,
re-encrypted, and uploaded back on the server are represented in light gray and are
marked with the word upload (up., for leaves) below each of them; and blocks that
have not been involved in the reconciliation process are represented in white.

6. Algorithm for reconciling delta versions and main index

Algorithm 2, operating at the client side, performs the reconciliation of a set of
delta versions and the main index. It works as follows. Given a logical index T and
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Algorithm 2. Reconciliation of delta versions and the main index
T =(T a , ID, φ): logical index on a candidate key K with domain DK , height h, fan-out F
Δ1 ,. . . ,Δn : delta versions of T
Allocation1[0, . . . , h],. . . ,Allocationn[0, . . . , h]: layered structure that keeps track of node-block associations

and of parent-child relationships by storing, for each node in Δi , its logical identifier id ,
its label label , and the label of its parent parent

num_cover + 1: minimum number of nodes to shuffle (to flush, respectively) at each level of each delta version

MAIN
1: for i:=1, . . . , n do Allocationi[0, . . . , h] := Decrypt(Download(Allocation[0, . . . , h],Δi))

/* reconcile Δ1 ,. . . ,Δn with T starting from the leaves */
2: for l:=h,. . . ,0 do
3: toWrite := ∅, Replicas := ∅
4: for i:=1, . . . , n do

/* classify the nodes at level l in Δi */
5: ToReconcilei[l] := {tr∈Allocationi[l]:∃tr′ ∈ Allocationj [l], i �= j, tr.label=tr′ .label} /* conflicting nodes */
6: ToShufflei[l] := ToReconcilei[l] ∪ {ts∈Allocationi[l]:∃ts′ ∈ Allocationj [l], i �= j, ts.id=ts′ .id} /* conflicting blocks */
7: if l=h then ToAdjusti[l] := ∅
8: else ToAdjusti[l] := {ta∈Allocationi[l]:∃ta′ ∈ ToShufflei[l + 1], ta.label=ta′ .parent} /* parents of conflicting allocations */
9: Unchangedi [l] := Allocationi[l] \ (ToShufflei[l]∪ToAdjusti[l]) /* nodes to flush */

/* extend the set of nodes to shuffle to be num_cover + 1 */
10: if 0 < |ToShufflei[l]| � num_cover then
11: if |ToShufflei[l] ∪ ToAdjusti[l]| > num_cover then /* extend the set of nodes to shuffle with parents of conflicting allocations */
12: let cover⊆ToAdjusti[l] s.t. |ToShufflei[l] ∪ cover| = num_cover + 1
13: ToShufflei[l] := ToShufflei[l] ∪ cover
14: ToAdjusti[l] := ToAdjusti[l] \ cover
15: else
16: if |Allocationi[l]| > num_cover then
17: let cover ⊆ Unchangedi[l] s.t. |ToShufflei[l] ∪ ToAdjusti[l] ∪ cover| = num_cover + 1
18: else cover := Unchangedi [l]
19: ToShufflei[l] := ToShufflei[l] ∪ ToAdjusti[l] ∪ cover
20: ToAdjusti[l] := ∅
21: Unchangedi [l] := Unchangedi[l] \ cover

/* extend the set of nodes to flush to be num_cover */
22: if 0 < |Unchangedi[l]| � num_cover then
23: ToAdjusti[l] := ToAdjusti[l] ∪ Unchangedi[l]
24: Unchangedi [l] := ∅
25: Blind-Write(Unchangedi [l],Δi) /* flush unchanged blocks */
26: Read := Decrypt(Download(ToShufflei[l]∪ToAdjusti[l],Δi) /* read blocks */
27: for each ta∈(ToAdjusti[l]∪ToShufflei[l]\ToReconcilei[l]) do
28: let block∈Read such that block.id=ta.id
29: if l<h then /* adjust pointer to children in nodes that do not have multiple copies */
30: for j=1, . . . , F do
31: if ∃ts′∈ToShufflei[l + 1] s.t. ts′ .id=block.P[j] then block.P[j] := ρl+1(ts′ .label)
32: toWrite := toWrite ∪ {block}
33: Replicas := Replicas ∪ {block∈Read: ∃tr∈ToReconcilei[l], block.V =tr.V }

/* define an assignment function, with shuffling, for nodes to shuffle */
34: ρl : {ts.label :ts∈(ToShuffle1[l]∪. . .∪ToShufflen[l])} → {ts.id :ts∈(ToShuffle1[l]∪. . .∪ToShufflen[l])} /* identity function otherwise */
35: for each block∈toWrite do block.id := ρl(label(V )) /* update the block identifier */
36: for each block∈Replicas do
37: Copies := {block∈Replicas:block.V =val} /* set of blocks storing the same abstract node */
38: if l<h then
39: create block′ with block′ .id=ρl(label(V )), block′ .V =V /* create a new block representing the abstract node */
40: for j=1, . . . , F do /* adjust pointers to children */
41: for i:=1, . . . , n do
42: if ∃tr∈ToReconcilei[l] s.t. tr.label=label(V ) and

∃ta′∈Allocationi[l + 1] s.t. block.P[j]=t′ .id , block∈Copies then
43: block′ .P[j] := ρl+1(ta′ .label)
44: else block′ .P[j] := block.P[j]
45: else block′ := 〈ρl(label(V )),V ,block.T 〉 with block∈Copies
46: toWrite := toWrite ∪ {block′}

/* write reconciled blocks in the main index */
47: for each block∈toWrite do Write(block.id ,Encrypt(salt||block))
48: for i:=1, . . . , d do /* remove all delta versions */
49: remove Δi from main memory /* server-side */
50: VERSION[i] := 〈i, 0, 0〉 /* client-side */

a set {Δ1, . . . , Δn} of delta versions of T , the reconciliation algorithm visits all the
blocks in the delta versions level by level, following a bottom-up strategy that starts
from the leaves. For each level l = h, . . . , 0, the algorithm first partitions the blocks
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in each delta version in the following three classes (lines 5–24).

• ToShufflei[l]: set of blocks at level l of delta version Δi that must be shuffled
before writing them in the main index. The blocks that must be shuffled in-
clude both conflicting allocations (Definition 5.2) and cover nodes and are at
least num_cover + 1. In the choice of covers, the algorithm first includes in
ToShufflei[l] the blocks in ToAdjusti[l].

• ToAdjusti[l]: set of blocks at level l, with l < h, of delta version Δi that do not
belong to ToShufflei[l] and that have at least a child in ToShufflei[l + 1].

• Unchangedi[l]: set of blocks at level l of delta version Δi that belong neither to
ToShufflei[l] nor to ToAdjusti[l]. These nodes must be at least num_cover + 1,
otherwise they are moved to ToAdjusti[l].

To easily classify the blocks composing a delta version without the need for the client
to download all of them, each delta version is associated with a layered structure,
called Allocationi[0, . . . , h], stored at the server side and updated at each shuffling
(see Algorithm 1, lines 36–40, 43–45). This structure summarizes the node/block
associations and the parent-child relationships between (abstract) nodes in the delta
version. For each block at level l in Δi, Allocationi[l] stores a triple of the form
〈id, label, parent〉, where id is the block identifier, label is the identifier of the val-
ues V stored in the block (i.e., it is the identifier of the abstract node), and parent
is the label of the parent of the block. Before starting the reconciliation process, the
client downloads from the server these metadata (line 1) and classifies the blocks in
each delta version in the server’s main memory without the need to download them
(lines 2–24). The algorithm then flushes to the main index on disk all the blocks in
Unchangedi[l] (line 25) and downloads the blocks in ToShufflei[l] and ToAdjusti[l],
i = 1, . . . ,n, whose content or allocation need to be updated (line 26). The al-
gorithm first adjusts the pointers to children of the internal nodes in ToAdjusti[l],
i = 1, . . . ,n, according to the node/block allocation resulting from the reconcili-
ation of the nodes/blocks at level l + 1 (lines 27–31). The algorithm then shuffles
and reconciles the blocks in ToShuffle1[l] ∪ · · · ∪ ToShufflen[l], such that no two
nodes are allocated to the same block and, vice versa, no two blocks store the same
node (line 34). The algorithm also updates the pointers to children in shuffled blocks
representing internal nodes, according to the node/block allocation resulting from
the reconciliation of the nodes/blocks at level l + 1 (lines 35–46). The algorithm
encrypts and writes to the main index the resulting blocks (line 47). Finally, the al-
gorithm empties all the delta versions on the server and updates relation VERSION at
the client side accordingly (lines 48–50). Note that the reconciliation algorithm, sim-
ilarly to the search algorithm illustrated in Section 4, requires an interaction between
the client and the server that consists of h + 1 communication steps. During these
steps, the client however does not download all the nodes of the delta versions, but
only the ones in ToShufflei[l] and ToAdjusti[l], with i = 1, . . . ,n and l = 0, . . . , h.

Consider the main shuffle index in Fig. 3(a) and its delta versions in Fig. 3(b)–
(c) and assume that num_cover = 1. Table 2 illustrates an example of execution
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Table 2

Reconciliation of the shuffle index in Fig. 3(a) with the two delta versions in Fig. 3(b)–(c)

l Δ1 Δ2

ToShuffle ToAdjust Unchanged ToShuffle ToAdjust Unchanged ρ ToWrite

2 208 a1 201 f2
218 b4 215 e1
230 g3 227 c2

222 d2 212 d2 d2 → 225 225 d2
225 e3∗ e3 → 222 222 e3

222 c4 c4 → 212 212 c4
1 102 e[227, 210, 225, 217] 106 e[215, 210, 208 ,217] e → 107 107 e[215, 210, 222, 217]

105 d[229, 222, 205, 207] 104 d[229, 212, 205 ,207] d → 101 101 d[229, 225, 205, 207]

101 g[228, 224, 230, 206] g → 106 106 g[228, 224, 230, 206]

107 a[208, 220, 226, 213] a → 102 102 a[208, 220, 226, 213]

101 f [221, 201, 211, 232] f → 105 105 f [221, 201, 211, 232]

107 h[202, 203, 219, 216] h → 104 104 h[202, 203, 219, 216]

108 b[231, 214, 223, 218]∗ 108 b[231, 214, 223, 218]

103 c[209, 227, 204, 222] 103 c[209, 227, 204, 212]

0 001 r[107, 108, 104, 105, 001 r[107, 108, 104, 105, 001 r[105, 102, 103, 104, 001 r[105, 102, 103, 104, r → 001 001 r[102, 108, 103, 101,

102, 103, 101, 106] 102, 103, 101, 106] 106, 101, 108, 107] 106, 101, 108, 107] 107, 105, 106, 104]
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of the reconciliation algorithm. The columns of the table represent: the level of the
shuffle index (l); the nodes that must be downloaded, reconciled, and shuffled by
the data owner (ToShuffle); the nodes that must be downloaded and updated but that
should not be involved in shuffling operations (ToAdjust); the nodes that are flushed
directly to disk (Unchanged); the assignment of nodes in ToShuffle to blocks (ρ);
and the blocks written on the server (ToWrite). In columns ToShuffle and ToAdjust,
a∗ denotes covers. We note that each row in the table illustrates the evolution of an
abstract node during the reconciliation of the delta versions with the main index.

It is interesting to note that, for l = 2, ToAdjust is empty for both the delta ver-
sions since the visited nodes are leaves. Also, node 225 storing value e3 is moved
from Unchanged to ToShuffle, since ToShuffle would otherwise include less than
num_cover + 1 nodes. For l = 1, Unchanged is empty for both the delta versions,
since the only node in Unchanged for Δ1 is moved to ToAdjust to guarantee that Un-
changed includes either 0 or at least num_cover + 1 nodes in each delta version. For
l = 0, the root note clearly belongs to ToAdjust since its children has been shuffled
and therefore its content must be updated accordingly. It is easy to see from the fig-
ure that each abstract node is written back to the server only once, only the nodes in
ToShuffle are possibly associated with a different block, while nodes in ToAdjust are
stored in the same block after updating pointers to children.

The main index T ′ computed by Algorithm 2 is the result of the merge of the
original index T with a delta version Δρ that includes all the blocks/nodes in all delta
versions and that shuffles (at least) all the nodes/blocks with conflicting allocations.
That is, Δρ guarantees that the node/block allocation of blocks that do not belong to
any delta version remains unchanged, while any other allocation may change. Hence,
Δρ can be seen as an extended reconciled delta version of {Δ1, . . . , Δn} and T (i.e.,
it represents a reconciled delta version possibly including additional cover nodes).
Formally, the correctness of Algorithm 2 is proven by the following theorem.

Theorem 6.1. Given a logical index T = (T a, ID,φ), a set {Δ1, . . . , Δn} of delta
versions of T , and Δr = (Δa

r , IDr,φr) a reconciled delta version of {Δ1, . . . , Δn}
with T , the logical index T ′ = (T a, ID,φρ) computed by Algorithm 2 represents
T ⊕ Δρ, where Δρ = (Δa

ρ, IDρ,φρ) with Δa
ρ = Δa

r , IDρ = IDr, and φρ(na) =
φ(na) if na /∈ Δa

ρ.

Proof. See the Appendix. �

7. Supporting multiple indexes

The adoption of a shuffle index built on a candidate key K permits to efficiently
evaluate conditions of the form K = v, with v a value in the domain of K, without
revealing to the server any information about the target v of the access. The eval-
uation of conditions on attributes different from K requires instead the data owner
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to download all the tuples in r and to locally evaluate the search condition on them.
The computational cost of these queries could potentially be quite high. To efficiently
support the evaluation of these queries at the server side, even when their frequency
is low, the data owner has to define additional indexes on different attributes of the
outsourced relation. If the data owner adopts index structures that statically allocate
data to disk blocks, the definition of more than one index on the same relation may
compromise both data and access confidentiality, since the storage server can exploit
static indexes for drawing inferences. In fact, the adoption of an index structure that
does not change data allocation at each access permits the server to keep track of the
frequency with which the content of each block is accessed by users’ queries. If the
server knows the frequency distribution of accesses to values in the domain of the in-
dexed attribute, it can exploit the collected information to infer both the target of each
access and the value of the indexed attribute stored in each (encrypted) block. Also,
the presence of multiple indexes defined on the same relation may enable the server
to reconstruct the associations among the values of indexed attributes in each tuple of
the relation. As an example, suppose that the outsourced relation stores the medical
data of the patients in a hospital and that the data owner defines two indexes, on at-
tribute Name and on attribute Disease, respectively. By monitoring the frequency of
accesses to blocks, the server might possibly reconstruct, not only the names of the
hospitalized patients, but also the diseases of some of them (which should be kept
secret). An evaluation of the risk can be found in [4], where the exposure deriving
from access to index structures over encrypted data has been investigated. In fact, as
shown in [4], knowledge of the frequency distribution of values can enable the server
to reconstruct, for a significant fraction of the data, the correspondence between the
plaintext data and the values of the index.

In this section, we extend our shuffle index data structure to support multiple in-
dexes.

7.1. Secondary indexes and combined shuffle index

We define a set of secondary shuffle indexes over the attributes frequently involved
in accesses to the outsourced relation. Consistently with usual practice in commercial
systems, we assume that both the primary and secondary shuffle indexes are defined
over candidate keys, that is, each value in the domain of the indexed attributes ap-
pears at most in one tuple of the outsourced relation.

At the abstract level, primary and secondary shuffle indexes represent independent
abstract data structures. Given candidate key Ai, the abstract secondary index T a

i on
Ai is a set {na1 , . . . ,nam} of abstract nodes forming an unchained B+-tree. The inter-
nal nodes of the secondary index are pairs of the form na = 〈Values, Children〉, with
Values a list of index values and Children a list of q + 1 child nodes. The leaf nodes
are pairs of the form na = 〈Values, Key-values〉, where Key-values represents the set
of values of attribute K (on which the primary shuffle index has been defined) for the
tuples such that t[Ai] ∈ Values (the primary shuffle index has instead the tuples in
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Fig. 4. An example of an abstract primary and secondary index (a) and the corresponding logical (b) and
physical (c) combined shuffle index.

the leaves). Figure 4(a) illustrates, on the right-hand side, an abstract secondary in-
dex defined on the same outsourced relation as the primary index in Fig. 1(a), which
has been reported on the left-hand side of Fig. 4(a) for the reader’s convenience.

At the logical level, the primary and secondary indexes can either be kept separate
or combined in a single shuffle index representing all the abstract structures defined
on the outsourced relation. The main advantage of keeping indexes separate at the
logical level is that each index can be managed independently from the others. The
drawback is that an observer (e.g., the storage server) can monitor the attribute in-
volved in each query evaluation (i.e., the attribute on which the search condition is
defined). To prevent this leakage of information, we combine all the abstract indexes
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defined for the outsourced relation in a single combined shuffle index at the logical
level. This permits to shuffle blocks that store nodes of different abstract structures,
breaking the correspondence between blocks and the abstract index to which the
nodes they store belong (i.e., the attribute on which the index has been defined). All
the abstract indexes defined on the outsourced relation must have the same height
(i.e., the leaves of all the indexes must be at the same level) to be combined in one
logical structure. In fact, if the abstract indexes had different heights, the paths vis-
ited while accessing the logical index would be composed of a different number of
nodes depending on the abstract index to which the path belongs, potentially disclos-
ing to the server the attributes involved (either as target, cover, or repeated searches)
in each access to the index. Note however that, since the fan-out of B+-trees is usu-
ally relatively high, forcing the leaves of all abstract indexes to be at the same level
can only modestly increase (at most one level) the height of each index.

To combine multiple abstract indexes in one logical structure, we add a prefix to
all the values in each abstract node. This prefix represents the attribute on which
the index has been defined. We then create an auxiliary root node for the structure,
whose children are the roots of the abstract primary and secondary indexes defined
for the outsourced relation. At the logical level, a combined shuffle index is defined
as follows.

Definition 7.1 (Combined shuffle index – Logical level). Let R(A1, . . . , An) be the
outsourced relation, and I = {K, Ai, . . . , Aj} ⊆ {A1, . . . , An} be the set of attributes
on which either the primary or a secondary index has been defined. A logical index
T for R over I is a triple (T a, ID,φ) where:

• T a = {Ai · na | Ai ∈ I ∧ na ∈ T a
i } ∪ {root} is the set of nodes in the abstract

indexes T a
i , Ai ∈ I, defined on the outsourced relation and the auxiliary root

node root = 〈I, Children〉, with Children the root nodes of the abstract indexes;
• ID is a set of logical identifiers;
• φ : T a → ID is a bijective function associating each abstract node Ai · na in
T a with a logical identifier id in ID.

The logical index determines how the nodes in the abstract structures T a
i , with

Ai ∈ I, are allocated to logical identifiers in ID. Note that the allocation of abstract
nodes to logical identifiers is independent from the abstract index to which nodes
belong (i.e., nodes of the same abstract index may be allocated to non-contiguous
identifiers). As discussed in Section 3, each internal node na = 〈Values, Children〉
of an abstract index is represented by a (logical) node of the form 〈id, V, P〉, where
id = φ(na), V = Values, and P[j] = φ(Children[j]), j = 1, . . . , q + 1. The leaf
nodes of the logical index may have a different structure, depending on whether they
represent the leaves of the primary index or the leaves of a secondary index. Leaves
of the primary index are of the form 〈id, V, T〉, where T is a set of tuples. Leaves of
the secondary indexes are of the form 〈id, V, K-v〉, where K-v is a set of values in the
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domain of attribute K on which the primary index has been defined. Figure 4(b) illus-
trates the combined shuffle index representing the two abstract structures in Fig. 4(a).
For simplicity, in the figure we do not report the prefix of each value stored in log-
ical nodes, but we distinguish the nodes of the primary index from the nodes of the
secondary index by denoting them with a different color.

At the physical level, a combined shuffle index T is stored in a set of (disk) blocks
T e that contain the encrypted representation of the nodes in T . Figure 4(c) illustrates
the physical representation of the logical structure in Fig. 4(b).

7.2. Access to data via secondary indexes

The evaluation of a search condition t[Ai] = vi, with Ai an attribute used for build-
ing a secondary shuffle index and vi a value in the domain of attribute Ai, operates
in two steps:

(1) search for vi to retrieve the value vk in the domain of attribute K such that
∃t ∈ r: t[Ai] = vi ∧ t[K] = vk;

(2) search for vk to retrieve the tuple t with t[K] = vk to be returned in response
to the query.

If the first access to the combined shuffle index returns an empty result, the data
owner does not need to evaluate the second search since no tuple in the outsourced
relation satisfies the search condition. Otherwise, if the first access returns a value,
the second search will certainly return a tuple. Note that the server cannot infer, by
observing two subsequent accesses to the combined shuffle index, whether they are
related to the evaluation of the same search condition. In fact, two subsequent ac-
cesses related to the evaluation of the same condition adopt different target, cover,
and repeated searches. Thanks to the combination of all abstract indexes in one logi-
cal structure, the data owner can choose cover and repeated searches from the domain
of any attribute on which an index (either primary or secondary) has been defined.
In the choice of cover searches, the data owner must guarantee [9]: (i) the indis-
tinguishability of target and covers to the server’s eyes, and (ii) that the paths that
correspond to target, cover, and repeated searches are disjoint, with only the auxil-
iary root and possibly the nodes at level 1 in common (i.e., the access visits disjoint
paths on the abstract indexes).

To illustrate, consider a search for A’s value H1 over the index in Fig. 4(b) and
assume num_cover = 1. The data owner first calls Algorithm 1 searching for value
H1, using F2 as cover and d2 as repeated search. The algorithm download blocks:
(001) at level 0, (101, 102) at lever 1, (201, 202, 203) at level 2 and (304, 315, 324)
at level 3. The leaves accessed by the search algorithm are therefore: 〈304,F2, d2〉,
〈315, d2, Td2〉 and 〈324,H1, b3〉, where Td2 is the tuple in the outsourced relation
with value d2 for attribute K. The data owner invokes again Algorithm 1 searching
for value b3, using a2 as cover and F2 as repeated search. The algorithm, in this
second access to the combined shuffle index, downloads blocks: (001) at level 0,
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Fig. 5. An example of delta version of the combined shuffle index in Fig. 4.

(101, 102) at lever 1, (201, 204, 207) at level 2 and (306, 315, 320) at level 3. The
leaves accessed by the search algorithm are then: 〈306, a2, Ta2〉, 〈315,F2, d2〉 and
〈320, b3, Tb3〉, where Ta2 and Tb3 are the tuples in the outsourced relation with value
a2 and b3 for attribute K, respectively. Tuple Tb3 is the only tuple in the outsourced
relation satisfying the search condition (i.e., composing the query result).

The support of multiple indexes nicely complements the support of concurrency
without requiring any special reconsideration. In fact, having merged primary and
secondary indexes in a single data structure essentially makes the presence of mul-
tiple indexes transparent to the concurrency manager. The only note to make is that
delta versions will be defined on the combined shuffle index (in contrast to the single
primary index). Figure 5 illustrates the delta version resulting from the search for
value H1 over the combined index in Fig. 4 described above.

8. Security analysis

We analyze the protection offered by our proposal for the new aspects introduced
with respect to the serial version operating only with the main index built on one
candidate key. When a secondary index is used, it is first necessary to retrieve the
node in the secondary index that satisfies the search condition and then execute an
independent access to the primary shuffle index, searching for the value retrieved by
the first search.

Like in the original proposal, we focus the analysis on leaves of the index (nodes
at a higher level are subject to a greater number of accesses, due to the multiple
paths that pass through them, and are then involved in a larger number of shuffling
operations, which increase their protection). Since a combined shuffle index is, at
the logical and physical levels, indistinguishable from a (primary) shuffle index and
our search operations execute essentially like in the original proposal (with repeated
searches instead of cache), our solution enjoys the protection guarantees given by
cover searches like in [9]. The only potential exposure in our solution is when two
different delta versions require access to the same block in the main index for the first
time. Since the main index changes only upon reconciliation, the server can infer that
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the two requests actually refer to the same node. However, since every access execu-
tion entails reading at least num_cover+1 blocks (in addition to the repeated search)
at every level, and covers are chosen guaranteeing indistinguishability (with respect
to access profiles) between targets and covers, the server cannot determine whether
the transactions operating on the two different delta versions are actually aiming at
the same target, or either or both of them are accessing the block as a cover. The
probability that the two transactions aimed at the same target is then 1

(num_cover+1)2 .
When m delta versions request access to the same block from the main index, the
probability that all the transactions aimed at the same target is 1

(num_cover+1)m , as
formally stated by the following theorem.

Theorem 8.1. When the server detects m conflicts over a single physical block in m
versions, the probability that any pair of them is due to accesses to the same logical
node as a target is 1

(num_cover+1)2 . The probability that all of them are due to accesses

to the same logical node as a target is 1
(num_cover+1)m .

Proof. See the Appendix. �

The crucial property we are interested in evaluating is the protection against the
inferences the server may make on the data content by exploiting information on the
frequency of accesses to the blocks. Applying classical concepts of information the-
ory, we can model the information available to the server on the association between
a node nai and the block idj storing it as probability P(nai , idj). A value equal to 1
for this probability means that the server will be able to correctly identify the node-
block correspondence, whereas a value equal to 1

|T a| will correspond to the absence
of any knowledge. If the block is replicated in delta versions, each instance will be
associated with the analogous probability. Let ID′ be the set of blocks involved in
an access in a version (excluding the repeated search). For all nai ∈ T a, and for all

idj ∈ ID′, after the shuffling P(nai , idj) becomes
∑

idj∈ID′
P(na

i ,idj )
num_cover+1 , because the

shuffling can associate each node with any of the blocks involved in the access with
equal probability, thus flattening the probability distribution. After the reconciliation,
all the blocks that have been accessed by a single version will be transferred to the
main index, where they will be associated with the probabilities computed in the ver-
sion. Blocks accessed by multiple versions will be shuffled together, with a further
averaging of probabilities among the blocks. In fact, since the set of blocks that are
shuffled in each level of each delta version is at least num_cover + 1, Algorithm 2
guarantees that the server cannot infer with probability higher than 1

num_cover+1 the
block that stores, after reconciliation, each of the nodes that have been accessed by
more than one delta version, as formally proved by the following theorem.

Theorem 8.2. Let T = (T a, ID,φ) be a logical index, {Δ1, . . . , Δn} be a set of
delta versions of T , T ′ be the logical index resulting from reconciling {Δ1, . . . , Δn}
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and T through Algorithm 2, and na ∈ (Δi ∩ Δj), i, j = 1, . . . ,n, i �= j. The server
has probability lower than 1

num_cover+1 to identify the block where na is allocated.

Proof. See the Appendix. �

As a consequence of this theorem and of the above observations, for each node
nai , P(nai , idj) will progressively move toward value 1

|T a| after each access and each
reconciliation.

It is natural to study the evolution of these probabilities using the concept of en-
tropy, which allows us to identify at an aggregate level the knowledge of the server
and its degradation due to shuffling and merging. In particular, we are interested in
the impact of delta versions over the entropy, which we evaluated – as common in the
study of codes and channels when analytical models become unmanageable – exper-
imentally. We then designed a set of experiments with an initial configuration corre-
sponding to a worst case assumption where the server has a precise knowledge about
the node-block correspondence (the entropy is then equal to zero) and evaluated how
the entropy increases with access execution (for the serial index) and with access
execution and merging after reconciliation (for our proposal). The experiments have
considered a variety of configurations, with different numbers of nodes, numbers of
versions, values for num_cover, and access profiles. Access profiles have been sim-
ulated by synthetically generating a sequence of accesses that follow a self-similar
probability distribution with skewness γ in the range [0.25, 0.5] (given a domain of
cardinality d, a self-similar distribution with skewness γ provides a probability equal
to 1 − γ of choosing one of the first γd domain values). We then applied the same
sequence of accesses to the serial and concurrent shuffle index and evaluated the
growth of the entropy. Figure 6 illustrates the experimental results using 4 covers,
4 versions, 1000 nodes, skewness γ equal to 0.5 and 0.25, and varying the number
of accesses. Experiments with different configurations presented a similar behavior.

Fig. 6. Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b).
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As visible from the figure, the evolution of entropy in the concurrent scenario does
not have a smooth trend, but it is characterized by two growing trends: a lower grow-
ing rate, characterizing the time window between two reconciliations, and a higher
growing rate, characterizing reconciliations. Before the first reconciliation, the en-
tropy is slightly lower in the concurrent scenario than in the serial index. The reason
is that each delta version serves a smaller number of accesses than the shuffle index
in the serial version (assuming uniform distribution of load among versions, each
transaction has one fourth of the accesses operating on the main index). However,
already at the first reconciliation, the entropy for the concurrent scenario becomes
higher than that of the serial scenario, and remains higher. While an even higher en-
tropy might sound not intuitive and an unexpected advantage (more protection with
better performance), the explanation for such a behavior is simply that reconcilia-
tion and merging enjoy shuffling over a larger number of nodes all at one time. In
fact, reconciliation makes the concurrent shuffle index stronger because this phase
applies a shuffle over all the nodes in the conflict set. The size of this set depends on
the number of conflicts and our model forces it to be for each delta version at least
as large as the number of covers used for every shuffle. The size of the conflict set
will often be greater than the number of covers, and the growth of entropy produced
by a shuffle increases more than linearly with the number of blocks involved in the
shuffle (i.e., the execution of two shuffles over two sets of m distinct elements pro-
duces lower entropy than a single shuffle over a set of 2m elements). The cost of
such better protection can be due to reconciliation, which is below 10% of the access
cost in the configuration that maximizes the server throughput (Section 9).

9. Performance analysis

We implemented the search and reconciliation algorithms with Java programs. To
assess the system performance, we used a data set of 1TB stored in the leaves of
a shuffle index with 4 levels. The size of the nodes of the shuffle index was 8 KB.
The hardware used in the experiments included a server machine with 2 Intel Xeon
Quad 2.0 GHz L3-4 MB, 12 GB RAM, four 1TB disks, 7200RPM, 32 MB cache,
and Linux Ubuntu with the ext4 file system, and a client machine with an Intel Core
2 Duo CPU T5500 at 1.66 GHz, 2 GB DRAM, and Linux Ubuntu. The client and
the server operate in a local area network (100 Mbps Ethernet, with average RTT of
0.48 ms). The results reported in this section have been obtained as the average over
50 runs and, for each run, the number of accesses is 5000 and the number of covers
adopted at each access is 4. The inverse of the average disk time needed to perform
a single search gives an upper bound of 52 tps to the maximum throughput of the
system.

To emulate the workload of an outsourcing service, we designed a generator
scheme, modeling the number of access requests per second as a random variable
following a Poisson distribution with mean arrival rate λ (the time when an access
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request arrives is independent from the time of arrival of previous requests). In our
experiments, we considered λ = 16 tps and λ = 32 tps, which correspond to 30%
and to 60%, respectively, of the physical maximum throughput (52 tps). These are
sensible workloads for a service hosted on a single machine and a robust test for the
deployment of the proposed solution in a real world scenario. In fact, a workload
of 60% of the maximum disk service rate is known to be optimal with respect to
the upper bound of the physical maximum throughput [18]. Due to the value of the
maximum throughput, well below the ability of the program to simulate requests,
a single emulator in the client can adequately model the requests originating from
multiple transactions in different network locations.

To evaluate the performance gain obtained with the support of concurrent searches
and the overhead due to reconciliation, we compare the results obtained in three
different scenarios: (i) serial shuffle index [9]; (ii) concurrent shuffle index where
delta versions are never reconciled; and (iii) concurrent shuffle index where delta
versions are periodically reconciled. In the experiments, delta versions are reconciled
every 128 and every 256 access requests, for the configuration with λ = 16 tps and
λ = 32 tps, respectively. A higher reconciliation frequency increases the overhead
because it more often requires write locks on the disk blocks to be re-written. On the
other hand, a lower frequency requires less often such locks but over a considerably
larger number of blocks (conflicts among versions grow more than linearly with
respect to the number of access requests). Figure 7 shows as the chosen threshold
values enable us to balance these two aspects and optimize the server throughput for
the employed operating setup.

To assess the performance of our model we analyzed the following three parame-
ters: (i) the throughput; (ii) the average service time (server-side); and (iii) the aver-
age response time (client-side). The results are described in the following.

Fig. 7. Server throughput varying the number of access requests between two subsequent reconciliations.



AUTHOR  C
OPY

S. De Capitani di Vimercati et al. / Supporting concurrency in private accesses 453

Fig. 8. Server throughput varying the number of delta versions between 1 and 128, with access request
arrival rate equal to λ = 16 tps (a) and λ = 32 tps (b).

9.1. Throughput

Figure 8(a)–(b) report the server throughput, varying the maximum number of
delta versions between 1 and 128 with access request arrival rate equal to λ = 16 tps
and λ = 32 tps, respectively. Although the performance overhead of concurrent ap-
plications highly depends on the random disk access patterns required to execute
read and write accesses to blocks, Fig. 8 demonstrates how the adoption of our con-
currency support offers a threefold (fourfold, respectively) increase of the server
throughput compared to the serial shuffle index when λ = 16 tps (λ = 32 tps, re-
spectively). Note that the server throughput is higher than or equal to the mean arrival
rate λ of client requests, meaning that the time necessary to the server to process an
access request is lower than the time between two consecutive accesses. Figure 8
also highlights the limited cost due to reconciliation, which has a maximum of 25%
and is 6% in the configuration that maximizes the server throughput.

9.2. Average service time

The service time necessary to the server to provide a response to an access request
depends on different factors: disk time, synchronization time (i.e., time for locking
the data structures in main memory and time spent for the periodic reconciliation
procedures), network time, CPU time, and think time (i.e., time due to the protocol
latencies at the client side). Figure 9(a)–(b) report the components influencing the
average service time, varying the maximum number of delta versions between 1 and
128, with access request arrival rate equal to λ = 16 tps and λ = 32 tps, respectively.
It is immediate to see that the component that most affects the average service time
is the average disk time, which grows exponentially with the maximum number of
delta versions (this trend is worse in configurations with a high system workload,
that is, for λ = 32 tps). Although the average disk time increases exponentially with
the maximum number of delta versions, the average service time does not increase.
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Fig. 9. Average service time varying the number of delta versions between 1 and 128, with access request
arrival rate equal to λ = 16 tps (a) and λ = 32 tps (b).

This is due to the fact that the average synchronization time quickly decreases as
the maximum number of delta versions grows, since resource contention drops. The
average network, CPU, and think times have instead a low impact on the average ser-
vice time. Indeed, the average network time only slightly grows with the maximum
number of delta versions and the average CPU and think times are constant regard-
less of the number of ongoing transactions. In fact, the process communication costs
are negligible with respect to the computational time demands of the server appli-
cation. Analogously, the latencies imposed by the interactive access protocol at the
client side are independent from the concurrent management of transactions.

9.3. Average response time

To minimize the time required to complete an access request, we need to carefully
choose the number of delta versions to adopt for supporting concurrency. Figure 10
illustrates the average response time, varying the maximum number of delta versions
between 1 and 128, when the access request arrival rate is equal to λ = 16 tps and
λ = 32 tps. Figure 10 shows that the average response time is minimized by using 32
delta versions, and it is equal to 250 ms for λ = 16 tps and to 2000 ms for λ = 32 tps.

10. Related work

Previous work is related to the definition of indexing structures for the execution
of queries on encrypted outsourced data (e.g., [1,8,16,17,23,24,26]). The proposals
in [8,26] specifically adopt the B+-tree and the B-tree data structures to define an
index able to efficiently support search operations on the key attribute. Although
these solutions efficiently support accesses to the outsourced data, they suffer from
inference attacks when even a limited number of indexes is published [4]. Indeed,
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Fig. 10. Average response time varying the number of delta versions between 1 and 128.

they are static and do not offer protection against the attacks based on the frequency
of the accesses. Another line of work related to our is represented by cryptographic
techniques proposed for hiding to the server the value (or set thereof) in which a user
querying outsourced data is interested [12,21,27]. These proposals however do not
address access confidentiality, and are therefore not applicable to the considered sce-
nario. Other related works are in the area of Private Information Retrieval (PIR) [6].
In these works, a database is typically modeled as a N -bit string and a user is in-
terested in retrieving the i-th bit of the collection without allowing the server to
know/infer which is the bit the user is interested in. In general, PIR proposals can
be classified in two main classes: information-theoretic PIR and computational PIR.
Information-theoretic PIR protocols prevent an attacker with unlimited computing
power to learn any information about the user’s query [2,6]. Computational PIR pro-
tocols preserve the privacy of queries against adversaries restricted to polynomial-
time computations [3,5]. Recently, traditional PIR protocols have been integrated
with relational databases, to the aim of protecting sensitive data (i.e., constant val-
ues) within SQL query conditions while providing the client with efficient query
evaluation [22]. The original query formulated by the client is properly sanitized be-
fore execution and the client resorts to traditional PIR protocols, operating on the
sanitized query result only, to extract the tuples of interest. The difference between
PIR proposals and our solution is that PIR protocols suffer from a high computa-
tional overhead [25] and typically protect the confidentiality of users’ queries, while
data confidentiality is not considered an issue.

The proposals in [9,11,13,19,20,28,29] aim at protecting data confidentiality and
the accesses realized by the client over the data. The solution in [19] is based on the
definition of a B-tree index and of a technique for accessing the content of a node in
the tree that prevents the server from inferring which node has been accessed. How-
ever, the server can observe repeated accesses to the same physical block, which
correspond to repeated searches for the same values, and launch a frequency attack
to infer information about the values stored in each node of the B-tree. To counteract
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this shortcoming, in [20] the authors propose a solution based on the definition of a
fixed query plan, which is however impractical. The proposal in [28], aimed at pre-
serving both access and pattern confidentiality, adopts the pyramid-shaped database
layout of Oblivious RAM [15] and an enhanced reordering technique between adja-
cent levels of the data structure to protect both data confidentiality and the secrecy
of users’ queries. The performance of a search operation is however highly affected
by the reordering of lower levels of the database, since this reordering can take hours
and needs to be periodically performed. This appears a strong obstacle to the real
deployment of such a solution. Also, this proposal assumes the presence of a secure
coprocessor on the server, trusted by the client. The proposal in [13] exploits Obliv-
ious RAM layout as well and proposes an enhanced management of the shuffling-
based approach, by limiting the shuffling to accessed records only. To this aim, it
exploits a cache managed by a secure coprocessor operating on the server. The main
drawback of this solution is that it relies on a secure coprocessor for guaranteeing ac-
cess pattern confidentiality, and its security naturally depends on the size of the local
cache, which will typically be limited. The first proposal combining shuffling, cover
searches, and cache to offer an extensive protection of confidentiality with a limited
overhead in response times is illustrated in [9], where data are organized according
to a novel data structure whose management does not rely on a trusted component at
the server side. A similar solution has been proposed subsequently in [29], where the
authors combine cover searches and shuffling to protect access confidentiality. This
approach is however less flexible and less efficient than the proposal in [9] as it does
not adopt a B+-tree index structure and it uses a constant number of cover searches
(equal to two). Although all these proposals aim at providing access confidential-
ity, they offer support neither for concurrent accesses nor for the efficient evaluation
of searches for values of attributes different from the candidate key on which the
primary index has been defined.

11. Conclusions

Dynamically allocated data structures have recently emerged as a promising solu-
tion to provide privacy protection of data whose storage and management are dele-
gated to external servers. Such solutions, working on an index defined over the data
and requesting write locks at every access (to enforce dynamic allocation) may re-
sult limited and affect performance in scenarios where multiple transactions need to
operate concurrently or searches based on attributes different from the primary key
need to be supported. In this paper, we have addressed these limitations and extended
the recently proposed shuffle index approach to efficiently support concurrent trans-
actions and multiple indexes. Our solution provides data and access privacy, also
against frequency attacks by the server, comparable to or better than the original (se-
rial) shuffle index approach. Furthermore, it provides support for the evaluation at
the server side of a wider set of queries and a up to fourfold throughput in case of
concurrent accesses, thus providing a convincing argument for its adoption.
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Appendix. Proofs of theorems

Theorem 5.1. Given a logical index T = (T a, ID,φ) and a delta version Δi =
(Δa

i , IDi,φi) of T , the set (T ∪ Δi) \ ({〈id, V, P〉 ∈ T : id ∈ IDi} ∪ {〈id, V, T〉 ∈
T : id ∈ IDi}) of logical nodes represents logical index T ′ = T ⊕ Δi.

Proof. We first note that by Definition 3.2, na ∈ Δa
i iff φ(na) ∈ IDi. Therefore,

in the set (T ∪ Δi) \ ({〈id, V, P〉 ∈ T : id ∈ IDi} ∪ {〈id, V, T〉 ∈ T : id ∈ IDi})
of logical nodes there is not an abstract node represented by two or more logical
nodes and there is not a logical identifier repeated in two or more logical nodes.
By Definition 3.3, T ′ = T ⊕ Δi = (T a, ID,φi). The correct allocation for all the
nodes na ∈ (T a \ Δa

i ) in T ′ is id = φ(na). Therefore, if na is a leaf, logical node
〈id, V, T〉 ∈ T correctly represents na. If na is an internal node, all the children
of na do not belong to Δi (Definition 3.2) and logical node 〈id, V, P〉 ∈ T cor-
rectly represents na. Analogously, the correct allocation for all the nodes na ∈ Δa

i
in T ′ is id = φi(na). Therefore, if na is a leaf, the corresponding logical node cor-
rectly represents na. If na is an internal node, its children either belong to Δi or
to the main index. Since pointers to children are defined according to φi, the log-
ical node 〈id, V, P〉 ∈ Δi storing na correctly represents na. The structure is then
consistent. �

Theorem 6.1. Given a logical index T = (T a, ID,φ), a set {Δ1, . . . , Δn} of delta
versions of T , and Δr = (Δa

r , IDr,φr) a reconciled delta version of {Δ1, . . . , Δn}
with T , the logical index T ′ = (T a, ID,φρ) computed by Algorithm 2 represents
T ⊕ Δρ, where Δρ = (Δa

ρ, IDρ,φρ) with Δa
ρ = Δa

r , IDρ = IDr, and φρ(na) =
φ(na) if na /∈ Δa

ρ.

Proof. The proof of the theorem is based on the following observations. Given a
logical index T = (T a, ID,φ) and a delta version Δi = (Δa

i , IDi,φi) of T :

(1) the parent of each node in Δa
i belongs to Δa

i : nax ∈ Δa
i ⇒ nay = 〈Valuesy ,

Childreny〉 ∈ Δa
i s.t. nax ∈ Childreny (by Definition 3.2);

(2) if node na belongs to delta version Δi, the logical identifier φ(na) associated
with na in the main shuffle index belongs to Δi: na ∈ Δa

i ⇔ φ(na) ∈ IDi (by
Definition 3.2);
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(3) if a node na and its identifier φi(na) in Δi belong to ToShufflei[l], also
node naj allocated to φ(na) in Δi belongs to ToShufflei[l]: 〈na,φi(na)〉 ∈
ToShufflei[l] ⇔ ∃naj ∈ T a s.t. 〈naj ,φ(na)〉 ∈ ToShufflei[l], i = 1, . . . ,n,
l = 0, . . . , h (the same relationship holds for ToAdjusti[l] and Unchangedi[l]).

To prove that T ′ is a logical index resulting from T ⊕ Δρ, we first need to prove
that T ′ is a correct logical representation of T a where nodes are allocated to blocks
according to φρ. To this purpose, we consider separately the blocks in ToShufflei[l],
ToAdjusti[l], Unchangedi[l], and the blocks that do not belong to any delta version.

• Blocks that do not belong to any delta version. These nodes/blocks are not mod-
ified by the algorithm. Given a node na ∈ T a such that na /∈ Δa

i , i = 1, . . . ,n,
by observation 2 above, also φ(na) /∈ IDi, i = 1, . . . ,n. Furthermore, if na

is an internal node, its children Children[j], j = 1, . . . , q + 1 (and the blocks
to which they are allocated in T ) do not belong to Δa

i , i = 1, . . . ,n. Then, the
subtree rooted at 〈id, V, P〉 (〈id, V, T〉, respectively) representing node na in T
is consistent and correctly represents the result of the reconciliation.

• Unchangedi[l]. These blocks are written on the main index, directly from the
delta version without the client’s intervention. Given a node/block allocation
〈na,φi(na)〉 that belongs to Unchangedi[l], �Δj , i �= j, such that na ∈ Δa

j or
φ(na) ∈ IDj , since otherwise 〈na,φi(na)〉 and 〈nai ,φ(na)〉 would belong to
ToShufflei[l]. This observation also holds for all the children of the node (if na

is an internal node), since otherwise 〈na,φi(na)〉 would belong to ToAdjusti[l].
If na is an internal node, its children are stored in blocks that do not belong to
any delta version, or that belong to Unchangedi[l + 1] or to ToAdjusti[l + 1].
Since all these blocks are not re-allocated by the algorithm, the block 〈id, V, P〉
representing na in Δi correctly refers to the blocks storing the children of na

and therefore correctly represents the result of the reconciliation. Analogously,
if na is a leaf node, block 〈id, V, T〉 representing na in Δi correctly represents
the result of the reconciliation.

• ToAdjusti[l]. These blocks are downloaded by the client, which updates the
pointers according to the reconciled blocks at level l + 1 if l < h, and writes
them on the main index without changing their allocation. Given a node/block
allocation 〈na,φi(na)〉 that belongs to ToAdjusti[l], �Δj , i �= j, such that
na ∈ Δa

j or φ(na) ∈ IDj , since otherwise 〈na,φi(na)〉 and 〈nai ,φ(na)〉 would
belong to ToShufflei[l]. However, if na is an internal node, its children may
belong to ToShufflei[l + 1]. Hence, the pointers in the logical node 〈id ,V ,P〉
representing na in Δi must be updated according to the reconciliation of the
nodes at level l + 1. More precisely, if P[j] /∈ IDi, then Children[j] of na

is a node that does not belong to any delta version and therefore its allocation
has not been modified. Consequently, P[j] remains unchanged. If P[j] ∈ IDi

then Children[j] of na belongs to Δa
i . If 〈Children[j], P[j]〉 either belongs to

Unchangedi[l + 1] or to ToAdjusti[l + 1], then P[j] refers to the correct block
in T ′ and therefore it remains unchanged. Otherwise, if 〈Children[j], P[j]〉 be-
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longs to ToShufflei[l + 1], then Children[j] has been allocated to a different
identifier. Since nodes at level l+ 1 have already been reconciled with the main
index, P[j] can easily be updated to the identifier of the node in T ′ storing
Children[j] (i.e., φρ(Children[j])). If na is a leaf node, block 〈id, V, T〉 repre-
senting na in Δi already correctly represents the result of the reconciliation.

• ToShufflei[l]. These blocks are downloaded by the client, reconciled with
ToShuffle1[l], . . . , ToShufflen[l], shuffled, and written on the main index. We
note that a node/block allocation 〈na,φi(na)〉 belongs to ToShufflei[l] in three
cases: (i) na ∈ Δj , i �= j; (ii) φi(na) ∈ IDj , i �= j; or (iii) it is a cover node. In
the first case, the algorithm combines all the blocks storing na in all the delta
versions, obtaining one block that is written in the main index. If na is an inter-
nal node, block 〈id, V, P〉 computed by the algorithm is such that id = φρ(na),
V = Values, and the pointers to children are obtained as described for the blocks
in ToAdjusti[l], considering the reallocation defined when reconciling nodes at
level l + 1. If na is a leaf, block 〈id, V, T〉 computed by the algorithm is such
that id = φρ(na), V = Values and T = Tuples. In the second and third cases,
the logical node storing 〈na,φi(na)〉 is reallocated to φρ(na) (i.e., id = φρ(na))
and, if na is an internal node, the pointers to children are updated as described
for the blocks in ToAdjusti[l].

We note that T ′ does not have replicated nodes, since T a, Δa
1 , . . . , Δa

n do not
include replicas. Also, if a node na belongs to two (or more) delta versions,
〈na,φi(na)〉 belongs to ToShufflei[l] for all delta versions Δi such that na ∈ Δi.
Therefore, only one copy of these nodes is allocated to a block in T ′. We conclude
that T ′ is a correct logical representation of T a. Also, φρ(na) = φ(na) if na /∈ Δa

ρ,
since the blocks in T \ Δρ are not modified by the algorithm. Since all the blocks in
ToShuffle1[l], . . . , ToShufflen[l] are shuffled, l = 0, . . . , h, and ToShufflei[l] includes
all the blocks in Ci at level l, the algorithm shuffles all the blocks/nodes with con-
flicting allocation. �

Theorem 8.1. When the server detects m conflicts over a single physical block in m
versions, the probability that any pair of them is due to accesses to the same logical
node as a target is 1

(num_cover+1)2 . The probability that all of them are due to accesses

to the same logical node as a target is 1
(num_cover+1)m .

Proof. As it was shown in [9], the shuffle index relies on the indistinguishability
hypothesis, which guarantees that accesses to covers are not distinguishable from ac-
cesses to targets. Experimental support is provided in [9] that guarantees that covers
can follow the same statistical profile as targets. We can then see that each logical
access is indistinguishable from both the target and any of the num_cover covers.
Having 1 target and num_cover covers, each physical access will have a probability
equal to 1

(num_cover+1) of being associated with the logical node representing the tar-
get and a probability equal to num_cover

(num_cover+1) of being associated with a logical node
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representing a cover. Based on the indistinguishability hypothesis, the probabilities
will be independent. Then, the probability that two accesses to the same block cor-
respond to two accesses to the node as a target will be the product of them, that is,
p = 1

(num_cover+1)2 . The same reasoning applied over all the conflicts in the m delta
versions permits to show that the probability that all m accesses refer to the same
target is p = 1

(num_cover+1)m . �

Theorem 8.2. Let T = (T a, ID,φ) be a logical index, {Δ1, . . . , Δn} be a set of
delta versions of T , T ′ be the logical index resulting from reconciling {Δ1, . . . , Δn}
and T through Algorithm 2, and na ∈ (Δi ∩ Δj), i, j = 1, . . . ,n, i �= j. The server
has probability lower than 1

num_cover+1 to identify the block where na is allocated.

Proof. Since na ∈ (Δi ∩ Δj), 〈na,φi(na)〉 ∈ ToShufflei[l] and 〈na,φj(na)〉 ∈
ToShufflej[l]. Since we include cover nodes, ToShufflek[l], k = 1, . . . ,n, includes
at least num_cover + 1 pairs. As a consequence, in the worst case, there are at least
num_cover + 1 nodes that must be reallocated and num_cover + 1 possible alloca-
tions. Since nodes/blocks in ToShuffle1[l] ∪ · · · ∪ ToShufflen[l] are shuffled by the
algorithm, na has the same probability of being allocated by the shuffling to any of
the (at least num_cover + 1) available blocks. �
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