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1. Abstract

An original approach is proposed to define the optimal design of any unidirectional fiber—reinforcement to
improve the structural performance of existing structural elements. A problem of topology optimization
is formulated, simultaneously searching for the regions to be strengthened and the optimal local fiber
orientation. The maximum equivalent stress in the underlying material is minimized, for a given amount
of reinforcement. The Tsai—Wu strength criterion is employed, to take into account the different strength
properties of the material in tension and compression and the possible material anisotropy. Tensile
stresses along the fiber direction are not allowed in the reinforcement. The resulting multi-constrained
min-max problem is solved by mathematical programming. A numerical example is presented to discuss
the features of the achieved optimal layouts, along with their possible application to the preliminary
design of any fiber reinforcement.

2. Keywords: Topology optimization, Fiber-reinforcement, Orthotropic materials, Tsai-Wu failure cri-
terion, Min-max problems.

3. Introduction

The use of Fiber Reinforced Composites (FRCs) for the strengthening of existing buildings has dramat-
ically increased in the last decades. This technique has several advantages over standard retrofitting
techniques such as flexibility, effectiveness, reversibility and reduced increase in structural weight [1].
Applications are equally found on historical masonry buildings and modern concrete or reinforced con-
crete members constructions. A suitable placement of unidirectional reinforcing strips provides structural
elements with enhanced tensile strength, thus remarkably improving the load carrying capacity of the
whole structure [2].

In this work a topology optimization problem is formulated to simultaneously search for the regions
to be strengthened and for the optimal local inclination of the reinforcement. The fiber reinforcement
modeled as an ad hoc orthotropic homogeneous medium, with mechanical properties depending both on
the density and the orientation of the fibers [3, 4]. A min-max problem is formulated to minimize the local
maximum equivalent stress in the underlying material, for a prescribed amount of fiber-reinforcement.
With the aim of providing a quite general procedure for both isotropic (e.g. concrete) and orthotropic
media (e.g. brickwork, reinforced concrete), the Tsai-Wu strength criterion is used to define an equivalent
stress that efficiently detects highly tensile-stressed regions throughout the existing structural component.
Since the compressive strength of the fibers is not relied on in practical retrofitting applications, a suitable
set of relaxed stress constraints is introduced in the formulation. The resulting multi-constrained min-
max problem takes full advantage of the implementation of an ad hoc selection strategy that allows the
number of local stress evaluations to be significantly reduced, following the approach presented in [5].

A few numerical examples are presented to discuss the features of proposed procedure and the
achieved optimal layouts, along with their possible application for the preliminary design of any struc-
tural retrofitting. Two-dimensional problems are analyzed, assuming the in-plane stiffness to be given by
the sum of that of the fixed underlying layer and that of the overlying fiber-reinforcement. Extension to
three-dimensional problems, where a two-dimensional overlapping layer has to be designed, are currently
under investigations.

4. Governing equations
Consider a linear elastic material S occupying a two—dimensional domain €2, either iso- or orthotropic;

let Cisj%k be the components of its 4th-order elasticity tensor. An orthotropic linear elastic layer F',

representing any fiber-reinforcement, is superimposed on S; let Cf;-hk be its elasticity constants. An
orthogonal reference frame Ox,xo, hereafter referred to as ‘global’ reference frame, is adopted for both
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Figure 1: Portion of a structural element S retrofitted with a layer of fiber-reinforcement F'.

layers, see Figure 1. As the optimal distribution and orientation of the reinforcing layer is sought, the
dependence of Cf-hk on the fiber orientation 6(x) e.g. to axis #1 (0 < 6 < 7) and the density of the
reinforcement material p(x) (0 < p < 1) at any point y € £ are expressed as

Clne(p(x),0(x)) = p)PCEML(0(X)), (1)

where the well-known SIMP model [6] has been adopted. 05-2 +(0(x)) is the stiffness tensor for the ‘virgin’
medium; p > 1 is a penalization parameter (usually p = 3, see e.g. [7]).

Assuming perfect bonding, both layers share the same displacement field u in Q. Over a part I'; of
the boundary of Q, tractions ¢, are prescribed, whereas over the remaining part I',, displacements gg are
prescribed.

In matrix form, the relationship between the in-plane strain components (e = [e11 €22 2¢12] and the
in-plane stress components ¢ in the layer to be reinforced (¢° = |07} 05, 07,]) in the global reference

frame can be expressed as 0° = C%%¢, where
1 Elsl V152E151 0
C=———— | vE;5 E5 0 ; (2)
L=vwg | 7 0 GS1-viud)

Here, EY,, E5, are the Young moduli, v5,, v, are the Poisson’s ratios and G is the in-plane shear

modulus of the material to be reinforced (with v, Ef) = v3) Es)).

Similarly, let o' = [of] 0d; 013] be the array of the stress components in the reinforcing layer. Denote
by Xi,Xs the symmetry axes of the reinforcing material (see Fig. 1), hereafter referred to as ‘local’
reference frame. Assuming that the reinforcement exhibits prevailing stiffness along the fiber direction

(X1), the elastic matrix C? in the local reference frame reads

EF 0 0
cf=1|1 0 00 (3)

0 0 0
where BT is the Young modulus along the fiber direction. The array of the stress components in the local
reference frame, EF, can be expressed as QF = T~ 1o, where T is the classical transformation matrix
for the array of the stress components, depending on . In matrix form, the stress-strain law for the
reinforcing layer in the global reference frame reads of” = p? T(9)CH°T(0)7e. Note that, accordingly,
the only non-vanishing stress component in the reinforcement is the normal stress along the fibers, 1.
The weak formulation for the elastic equilibrium of the body can be stated as: find u € H' such that

u |p, = u5 and

/ ST (C%0 4+ P T(O)CFOT(O)T) e(w) d = / £ v dl, (4)
Q Tt

Vv € H'. In the bilinear form on the Lh.s. in Eq. (4), the contribution of each material layer to the
overall strain energy can be pinpointed.

To obtain a numerical approximated solution of the equilibrium problem, €2 is subdivided N quad-
rangular elements with bi-linear displacement shape functions. A piecewise constant discretization is
adopted for the density field and the orientation field: from here onwards, z. and t. (e = 1...N) will



denote the values of p and € in the e—th finite element, respectively. Eqn. (4) reduces to the following
matrix form:

N
DK+ KI%)] U = F, (5)

e=1

where K20 is the stiffness matrix of any element of the unreinforced structure, KX is the stiffness matrix
of any element of the reinforcing layer, U is the array of the nodal degrees of freedom sand F is the array
of the nodal equivalent loads.

In the formulation of the topology optimization problem for the reinforcing layer, the stress along the
fiber direction, o1, will be constrained to take only positive values all over 2. Indeed, the poor perfor-
mances of any thin FRC lamina in compression are well-known, as debonding and buckling phenomena
can occur: the constraint ensures that the FRC strips act as distributed ties to strengthen any brittle
structure against potential cracking and tensile failure. In a finite element formulation, this constraint
will be expressed as

Gl =aPLpe(te) Ue >0, e=1...N (6)

where Lg . is a ‘failure stress matrix’ depending on t., that recovers an equivalent stress for the fiber-
reinforcing layer, in the e—th finite element, from the generalized displacement vector, U..

Following [8], an appropriate failure criteria for the porous SIMP material should be defined on the
so—called apparent ‘local’ stress <U£ 1) = 55 11/74, with ¢ > 1. In the numerical applications, the
non-negativity constraint will be prescribed on <U£ 11)-

To take the different strength properties in tension and compression of the underlying layer S to be
retrofitted, a Tsai-Wu strength criterion will be employed [9], which, in the 2D-case, reads:

qu =Fi01+ Fyoo + F11 0’% + Foo Ug + 2F5 0109 + Fgg U%Q <1. (7)

The Voigt notation has been used to denote the stress components (o1 = 011, 02 = 0922, 06 = 012)
referred to the local axes. F; and Fj; (4,5 = 1,2,6) are material constants that may be expressed in
terms of compressive strength values (o1, 0Lac), of the tensile strength values (op1¢, or2:), and of the
in-plane shear strength o along the local axes as follows:

1 1 orit+0oLic
Fh=-——— Fpop=-—""— F=—"—""7
OL1t " OLlc OL2t - OL2e oLt OLlc ()
OL2t + 0L2¢ 1
Fop=——"——, 2F=—VFuly, Feg=—F"
OL2t - OL2c 01

In particular, if the layer to be reinforced is isotropic, setting 0. = 0p1c = 0r2¢, 0Lt = 01t = 02t and
Fs6 = 3/(0r1t - 0L1c), the Tsai-Wu criterion can be reduced to a parabolic strength criterion of the form:

3.5 OLe— O
5 2 L Lt
O'eq:U e —+ ¢ : Jlgl, (9)
Lc Lt OLc " OLt
where Jp is the first stress invariant and J} is the second invariant of the deviatoric stress (see e.g. [10]).
In a finite element formulation, Eq. (7) (or (9)) can be rewritten as:

08 =UlQscUc+Lg U <1, e=1...N, (10)

where Qg and Lg . are ‘failure stress matrices’ that recover the quadratic and the linear part of the
Tsai—-Wu equivalent stress for the existing structure, in the e—th finite element, from the generalized
displacement vector of the element.

5. The topology optimization problem

Aim of the proposed approach is distributing a limited amount of fiber—reinforcement, that has to be
properly oriented to minimize the maximum value of the equivalent Tsai—Wu stress measure qu over the
existing structure. Taking Eqs. (5), (6) and (10) into account, the discrete stress—constrained formulation



can be cast in the following form:

S

min  max {O'e_’eq

Te,te e=1,N

st Yol KO+ a2 K[O(t)] U = F,

donxeVe | nVe <V, (11)
:zrgpf‘” 6£eq(te) >0, for e=1,...,.N

0<wz <1,

0<te < m.

The first inequality constraint in Eq. (11) defines the available amount of reinforcement, Vy; the weight
of the FRC layer is given by sum of the products of the element density x. by the relevant volume V,
over the NV finite elements.

The problem in Eq. (11) is handled via mathematical programming, resorting to the Method of
Moving Asymptotes (MMA) [11] as minimizer. The min-max problem is solved writing a minimization
problem where the constraints in Eqn. (11.2-4) are preserved along with the optimization unknowns and
their range of variations, while a new scalar objective function is considered, see in particular [12].

To improve the computational performance of the proposed approach, a very limited set of aes) eg-values
is passed to the minimizer rather than the N entries, meaning that a check of the highly—stressed regions
is performed in the underlying layer, see also [13]. In the retrofitting problems that are commonly dealt
with, the elements that are responsible for the tensile failure of the underlying structure are located in
limited regions of the domain and their set remains more or less unchanged during the optimization.

Referring to the constraints on 05 11, an alternative strategy has been implemented. Only the NI
constraints in Eqns. (11.3) whose Lh.s. is larger then 0.65 are considered to be active during the first
iteration. The threshold is linearly increased until the tenth step and is constantly set to 0.85 thereafter,
see also [5]. A very limited set of active constraints is able to steer the minimizer towards optimal solu-
tions that are free from the arising of undesired compressive—stressed regions of reinforcement.

6. Numerical application

To illustrate the potentialities of the proposed approach, the optimal reinforcement of an architrave
connecting two vertical elements and subjected to horizontal actions is sought, see Figure 2. A distributed
shear load f =50 kN/m acts upon the structure.

The adopted discretization consists of regular meshes of square elements. The FRC layer to be
optimized has a thickness thf = 0.15 mm and an elastic modulus Ef = 230 GPa. The admissible
volume fraction of reinforcing material V; = 0.15. The optimization procedure is performed starting
from an initial guess, where reinforcement is supposed to be evenly distributed over the structure, i.e.
Z. = V¢ everywhere. Fibers are initially oriented according to the local direction of the largest principal
stress in the unreinforced existing material.

A first investigation is performed assuming the architrave to be made of (isotropic) plain concrete
with the following properties: Els1 = 21000 MPa, V152 = 0.21, op1t = 1.5 MPa, op1. = 20 - op14-

The optimal layout of the reinforcement is shown in Figure 3(a). The optimal fiber direction is
approximately parallel to the FRP strips that can be identified by Figure 4. Inclined strips strengthen
the critical corners of the architrave and span over the vertical elements up to the outer edges. There,
the orientation of the reinforcement is mainly vertical and extended up to the ground constraints, thus
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Figure 2: Architrave subjected to horizontal loads: geometry and boundary conditions.
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Figure 3: Architrave made of plain concrete: optimal fiber-reinforcement for Vy = 0.15 (a) and contour

plots of the equivalent stress Ug ¢q OVver the element to be reinforced (b).
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Figure 4: Architrave made of plain concrete: fiber orientation of the optimal reinforcement.

resisting the normal bending stresses. Minor regions of reinforcement are found along the inner edges of
the vertical elements subjected to tensile stresses. A map of the equivalent stress measure qu is plotted
in Figure 3(b), where red spots stand for dangerous stress peaks.

A second investigation is performed assuming the architrave to be made of reinforced concrete. The
material is isotropic as far as its elastic properties are concerned, which are given the values employed
in the previous case. The strength anisotropy of the material is taken into account assuming oo =
20 - o1+; the remaining strength properties are the same of the plain concrete model.

The optimal reinforcing layout is shown in Figure 5(a), and suggests the adoption of an inclined
reinforcement strip running through the architrave and connecting the critical corners shared with the
vertical elements, see also Figure 6. The regions to be strengthened are not limited to highly stressed
zones, but extend into the bulk of the coupled elements to provide an effective path for the tensile stresses
arising from the applied shear loads. This is in agreement with results of the theoretical and experimental
literature of aseismic design, see e.g. [14]. According to the contours of the equivalent stress measure
afq plotted in Figure 5(b), unlike the previous case the normal bending stresses arising in the vertical
elements are not critical, because of the strength anisotropy of the underlying structure. This explains
the difference between the optimal layouts obtained in the two cases (compare Figs. 3a and 5a).

The convergence plots for the two cases are shown in Fig. 7. In both cases the optimizer solves the
multi—constrained min—max problem achieving optimal results through a smooth convergence. Appar-
ently, the anisotropic Tsai—Wu model implies an increased computational cost respect to the isotropic
parabolic strength criterion.

7. Concluding remarks
An original formulation based on topology optimization was proposed, to spot out the regions of any
structural element which have to be strengthened by a given quantity of FRC to keep the stress below a
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Figure 5: Architrave made of reinforced concrete: optimal fiber-reinforcement for Vy = 0.15 (a) and
contour plots of the equivalent stress aes) ¢q Over the element to be reinforced (b).

Figure 6: Architrave made of reinforced concrete: fiber orientation of the optimal reinforcement.

given threshold, while simultaneously defining the optimal inclination of the unidirectional reinforcement
pointwise. The anisotropy of the reinforcing layer was taken into account, along with the different
properties in tension and compression of the unreinforced material. A set of relaxed stress constraints
was incorporated in the formulation to avoid compressive stresses in the reinforcement.

Numerical simulations have been presented to assess the capabilities of the proposed approach. The
obtained solutions can inspire enhanced arrangements of the reinforcing strips. It was found that the
optimal orientation of the reinforcing fibers can differ from that of the maximum principal stress in the
underlying structure. The possible anisotropy of the underlying material also affects the layout of the
optimal reinforcement.

In the current version, perfect bonding was assumed at the interface between FRC and underlying
structure. Indeed, in practical applications an anchorage length must be provided, according to the
prescriptions given by the technical codes, to allows tensile stresses to be gradually transferred from the
ends of the reinforcing strips to the underlying structural layer. Also, the possibility of debonding should
be considered. According to international standards, this can be managed by additional constraints on
the stress in the FRC layer. This point will be addressed in the continuation of the research, where the
extension of the proposed approach to the retrofitting of 3D structural elements will also be dealt with.
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