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In this work, we study the localization of flexural waves in highly symmetric clusters of scatterers. It is
shown that when the scatterers are placed regularly in the perimeter of a circumference the quality factor of the
resonances strongly increases with the number of scatterers in the cluster. It is also found that in the continuous
limit, that is to say, when the number of scatterers tends to infinite, the quality factor is infinite so that the modes
belong to the class of the so called bound states in the continuum or BICs, and an analytical expression for the
resonant frequency is found. These modes have different multipolar symmetries, and we show that for high
multipolar orders the modes tend to localize at the border of the circumference, forming therefore a whishpering
gallery mode with an extraordinarily high quality factor. Numerical experiments are performed to check the
robustness of these modes under different types of disorder and also to study their excitation from the far field.
Although we have focused our study to flexural waves, the methodology presented in this work can be applied
to other classical waves, like electromagnetic or acoustic waves, being therefore a promissing approach for the
design of high quality resonators based on finite clusters of scatterers.

I. INTRODUCTION

Bound states in the continuum (BICs) are eigenmodes of a
system whose energy lies in the radiation part of the spectrum
while remaining localized in a finite part of the system and
with an infinite lifetime. These states were first mathemati-
cally proposed in 1929 by von Neumann and Wigner in the
framework of quantum mechanics [1], although the concept
has been extended to classical waves, like acoustics [2–6], mi-
crowaves [7, 8] or optics [9–11].

Despite the fact that the practical realization of BICs is a
challenging problem, structures based on them present sharp
resonances with extremely high quality factors, which have
as well the advantage, unlike ideal BICs, that can be ex-
cited with external radiative fields. Also named quasi-BICs
(or QBICs), these modes have been widely used in sensing
applications[12–14].

Among the wide variety of geometries and structures used
to find BICs[15], those based on finite structures are specially
interesting for practical applications, since periodic or waveg-
uide BICs will always present finite-size effects which will de-
crease their efficiency. For instance, circular clusters of scat-
terers studied in some recent works[14, 16] are extraordinarily
convenient from the practical point of view. In this work, we
will generalize the study of these circular clusters of scatter-
ers to provide a general schema for the realization of QBICs
based on this geometry.

The manuscript is organized as follows: After this intro-
duction, in section II we study the formation of bound states
in the continuum in open systems by attaching a cluster of
mass-spring resonators to a thin elastic plate. We will find that
when the scatterers in the cluster are arranged in the corners of
a regular polygon the quality factor of the resonances quickly
increases with the number of scatterers in the cluster. In sec-
tion III we perform several numerical experiments to check
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the robustness of these modes, and in section IV their excita-
tion from the far field will be considered. Finally, section V
sumarizes the work.

II. EIGENMODES OF A POLYGONAL CLUSTER OF
SCATTERERS

The propagation of flexural waves in thin elastic plates
where a cluster of N point-like resonators has been attached
at positions Rα is described by means of the inhomogeneous
Kirchhoff[17] equation

(∇4− k4
0)ψ(r) =

N

∑
α=1

tα δ (r−Rα)ψ(r) (1)

where ψ(r) is the spatial part of the vertical displacement of
the plate, which is assumed to be harmonic and of the form

W (r, t) = ψ(r)e−iωt . (2)

Also, the free space wavenumber k0 is given by

k4
0 =

ρh
D

ω
2, (3)

with ρ , h and D being the plate’s mass density, height and
rigidity, respectively. The response of each resonator is given
by the tα coefficient, which is a resonant quantity whose prop-
erties depend on the geometry of the scatterer attached to the
plate[18]. However, for the purposes of the present work, it
will be assumed that it can take any real value in the range
tα ∈ (−∞,∞).

A self-consistent multiple scattering solution can be found
for the above equation as

ψ(r) = ψ0(r)+
N

∑
α=1

Bα G(r−Rα) (4)
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where ψ0(r) is the external incident field on the cluster of
scatterers, G(r) is the Green’s function of Kirchhoff equation,

G(r) =
i

8k2
0
(H0(k0r)−H0(ik0r)) (5)

with H0(·) being Hankel’s function of first class. The multiple
scattering coefficients Bα can be obtained by means of the
self-consistent system of equations

N

∑
β=1

Mαβ Bβ = ψ(Rα), (6)

where

Mαβ = t−1
α δαβ −G(Rαβ ) (7)

is the multiple scattering matrix M.
The eigenmodes of a cluster of N scatterers attached to a

thin elastic plate can be found assuming that there is no in-
cident field, so that the total field excited in the plate is due
only to the scattered field by all the particles[19, 20]. Under
these conditions equation (6) becomes a homogeneous system
of equations with non-trivial solutions only for those frequen-
cies satisfying

detM(ω) = 0. (8)

For finite clusters of scatterers the above condition can be
satisfied only for complex frequencies, being the inverse of
the imaginary part of this frequency the quality factor of the
resonance. Those configurations in which the imaginary part
of the resonant frequency is extraordinarily small (hence the
quality factor extraordinarily big) receive the name of quasi-
BIC or QBIC modes. In the following lines it will be shown
that arranging the scatterers in the vertices of regular polygons
we can obtain resonances whose quality factor diverges as the
number of scatterers approaches to infinite.

Then, if the scatterers are all identical with impedance t0
and they are regularly arranged in a circumference of radius
R0 and placed at angular positions 2πα/N, for α = 0, . . . ,N−
1, (as shown in Figure 9 in Appendix A) the Hamiltonian of
the system commutes with the rotation operator RN , whose
eigenvalues are λ` = exp(i2π`/N), with `= 0, . . . ,N−1, and
this implies a relationship between the coefficients of the
form[16]

B`
α = e2iπ`α/NB`

0, (9)

thus equation (6) becomes

(1− t0 ∑
β

G(R0β )e
2iπ`β/N)B`

0 = 0. (10)

It is more suitable now to define the Green’s function as

G(r)≡ ig0ξ (r) (11)

where

g0 =
1

8k2
0

(12)

and

ξ (r) = H0(k0r)−H0(ik0r), (13)

so that ξ (0) = 1 and γ0 = t0g0 is a real quantity. The eigen-
modes of the system are found as the non-trivial solutions of
equation (10), thus for the `-th mode we need to solve

1− iγ0 ∑
β

ξ (Rβ )e
2iπ`β/N = 0. (14)

This equation will give us a set of complex free-space
wavenumbers kn

0 from which we can obtain the eigenfrequen-
cies ωn by means of the plate’s dispersion relation. The imag-
inary part of these eigenfrequencies is related with the quality
factor of the mode: the lower the imaginary part the larger
the quality factor, thus a BIC will be found if we can obtain
a real wavenumber kn

0 satisfying the above equation. Thus,
assuming this wavenumber exists, we define

S` = ∑
β

ξβ e2iπ`β/N = S`R + iS`I , (15)

and the secular equation can be divided in real and imaginary
parts as

S`R(k0) = 0 (16)

1+ γ0S`I (k0) = 0. (17)

The second of these equations will always be satisfied, since
γ0 is a resonant factor that can be selected to run from −∞ to
∞. Therefore, we have to find the conditions for which the
first of the equations can be satisfied.

FIG. 1. SR summation for different situations. In panel a the differ-
ent lines correspond to different number of scatterers in the cluster,
and the resonance index is fixed at l = 0. In panel b, the number of
scatterers in the cluster is fixed (N = 10) and the evolution of SR/N
as a function of k0 is shown for different resonant index.

Figure 1, panel a, shows the evolution of S`R (in logarithmic
scale, for clarity) as a function of k0R0 for `= 0 and for differ-
ent number of scatterers N in the cluster. As can be seen, for
a small number of scatterers the function does not approach
zero, so that no BIC can be found, although for a relatively
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large number of particles the function is nearly zero indicat-
ing a high-quality resonance. Panel b in figure 1 shows S`R as
a function of k0R0 but for a fixed number of scatterers N = 10
and for `= 0,1,2,3. In this case, we can see how the function
S`R is nearly zero for low `, although for ` = 3 the minimum
is actually far away the zero value. It is found numerically
that these minima approach to zero as we increase the number
of scatterers in the cluster, although the zero value is reached
only in the limit N→∞, indeed it is found that (see Appendix
A )

lim
N→∞

1
N

S`R = J2
` (k0R0), (18)

consequently the resonances of the cluster are given by the ze-
ros of the Bessel function J`(k0R0) in this limit, reaching the
BIC condition, although in clusters with N > 10 good quality
resonances are found, being therefore quasi-BIC modes. It is
interesting to mention that the position of the resonances is
independent of the number of particles N, although the corre-
sponding impedance γ0 has to be obtained from equation (17)
which will be, in general, a function of N.

FIG. 2. Resonance comparison for several clusters. Each panel
presents the resonances for a different resonant index (`). The colour
code is the same for the four panels, representing a different num-
ber of scatterers in the cluster (blue is N = 4, red is N = 6, green
is N = 8 and orange is N = 10). The dashed line indicates the fre-
quency at which the resonance is predicted for an infinite number of
scatterers in the cluster.

The quality factor of these resonances can be found by the
analysis of the minimum eigenvalue of the multiple scattering
matrix M[20, 21]. Figure 2, panels a, b, c and d, show this
parameter for the modes `= 0,1,2,3, respectively. Results in
each plot are shown for clusters of N = 4,6,8 and 10 particles,
and it is clearly seen how the quality factor of the resonance
increases with the number of scatterers. The vertical dashed
line is the frequency at which the function in equation (18)
cancels, that is to say, the frequency at which the resonance
is predicted for a cluster with an infinite number of scatterers.
When higher resonances are studied, some resonances disap-
pear for the smaller clusters. This is the case of ` = 2 (panel
d), where the resonance only appears for N = 8 and N = 10.
Something remarkable happens in the ` = 3 case; the reso-
nance is present in the N = 6 cluster, whereas the rest of the

clusters do not present any resonance. As can be seen in figure
3, `= 3 shows a π/3 symmetry in the inner field. In fact, the
resonant index ` defines the symmetry of the eigenmode as
π/`. Thus, it is easier to excite this resonance when the num-
ber of scatterers is a multiple of the symmetry of the mode.
It is worth mentioning that other modes appear in this analy-
sis given that we are plotting the full multiple scattering ma-
trix M, without any hypothesis on the symmetry of the mode,
therefore all the multipolar resonances will result in minima
in the determinant of M.

FIG. 3. Real part of the eigenfunction for different resonant index.
The clusters have the same number of scatterers (N = 10).

Figure 3 shows the corresponding eigenfunctions for the
largest cluster (N = 10), showing how the index ` defines the
symmetry of the mode. It is also noticeable how as long as
the ` index increases, the eigenfunction is less confined inside
the cluster. This is a direct consequence of the decrease of the
quality factor of the resonance and the leakage of energy into
the bulk.

FIG. 4. Real part of the eigenfunction for different resonant index.
The clusters have the same number of scatterers (N = 50).

Modes of high index ` tend to localize near the scatter-
ers, resulting in the so-called whispering gallery modes. This
approach allows therefore for the systematic design of high-
quality whispering gallery modes. Figure 4 shows examples
of these modes for a cluster of N = 50 scatterers and indexes
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`= 5,10,15,20. The localization of the field near the perime-
ter of the cluster as we increase ` is evident in these plots.

III. ROBUSTNESS OF THE QUASI-BIC MODES

In this section, several numerical simulations are presented,
which objective is to study how the modes get deformed or
destroyed when the positions of the scatterers in the cluster
are perturbed.

FIG. 5. Disappearence of the BIC resonance when some scatterers
are missing in the circular array. At left, the evolution of the res-
onance; the blue line represents the cluster with all the scatterers
present, in the red one one scatterer is missing, the green line is for
two missing scatterers, and the orange line is for three missing scat-
terers. The total number of resonators is 20. The resonance index is
` = 2. At right, both maps show the eigenfunctions (real value) for
the original situation and the three times deformed cluster.

The first situation considers missing scatterers in the polyg-
onal arrangement. Figure 5, panel a, shows the plot of the
minimum eigenvalue of the multiple scattering matrix as a
function of frequency when all the scatterers are present (blue
line), and then when we remove one (red), two (green) or three
(orange) adjacent scatterers. The total number of resonators in
the cluster is N = 20, and the explored resonance is `= 2. We
see how frequency of the resonance is slightly displaced and
its quality factor decreases. The quality factor of the original
resonance is Q = 1880; Q = 1086 after deleting one scatterer,
Q = 392 after deleting the second one and the resonance dis-
appears when the third resonator is removed.

Panels b to e of figure 5 show the maps of the mode for
the different situations described above. It is clear that the
symmetry of the mode is generally preserved and the field is
still localized inside the cluster, although the leakage is strong
when three scatterers are removed from the cluster, as can
be understood from the broadening of the peak shown in the
panel a.

From the practical point of view it is also interesting to an-
alyze the quality of the resonances with positional disorder of
the particles in the cluster, since this is something we cannot
avoid in practical realizations of these structures. Then, the
positional disorder has been applied to each scatterer in its

angular position, such that

θβ = 2π
β

N
+σN (0,1), (19)

where N (0,1) is a normal distribution of zero mean and uni-
tary variance, and σ is the variance of the disorder we aim to
apply. Therefore, all the scatterers remain in the same circle of
radius R0, but they are no longer equally distributed all along
it.

FIG. 6. Disappearence of the BIC resonance the position of the res-
onators is slightly changed. At left, the evolution of the resonance;
the blue line represents the cluster at the original configuration, the
red, green and orange lines show the resonance with increasing per-
centage of disorder in the position of the scatterers. The maps at right
show the eigenfunctions (real value) for the four configurations.

Figure 6 shows the same results as figure 5 but for the posi-
tional disorder just described, with σ = 5×π/180 for the red
line, 7.5× π/180 for the green one and 10× π/180 for the
orange one. We see how the quality factor of the resonance
is strongly reduced as the disorder is increased, although the
quadrupolar symmetry of the mode still remains.

These results show that, although the quality factor of the
resonances is strongly sensitive to the perturbations of the
cluster, their symmetry is a robust parameter against disor-
der. We have also seen that the frequency of the resonance is
weakly disturbed.

IV. EXCITATION OF QUASI-BICS FROM THE
CONTINUUM

In this section we will explore the possibility of exciting and
detecting quasi-BICs by means of external incident fields to
the cluster. The excitation of BICs by means of incident plane
waves is impossible, since these states belong to the contin-
uum and BICs do not couple to them. However, quasi-BICs
can in principle be excited by these fields resulting in strong
peaks in the scattering cross section of the cluster, which can
be used for instance for sensing applications.

Figure 7 shows an example of the scattered field by a cluster
of N = 50 scatterers when a plane wave propagates along the
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x axis. Simulations are shown for three different wavenum-
bers. Panels a and c show non-resonant frequencies, while the
panel b shows the scattered field at the quasi-BIC condition,
showing how, although some scattered field leaves the cluster,
most of the scattering energy remains confined inside it.

FIG. 7. Sccatered field from a N = 50 resonators’ cluster for three
different frequencies. The bound state in the continuum is predicted
to happen at the second frequency (k0R0 = 5.118). While the elastic
field is completely located inside the circle in the middle panel, both
right and left panels show the energy distributed all along the plate.
The maximum displacement field is bigger in the middle panel than
in the other two.

The analysis of the excitation of a quasi-BIC mode can be
done by means of the far field radiated by the cluster upon
plane wave incidence at frequencies near the quasi-BIC con-
dition. The far-field radiation function is given by

f (θ) =
N

∑
β=1

Bβ e−ik0Rβ cos(θ−θβ ), (20)

and the total scattering cross-section σsca is computed as[22]

σsca =
1

16πDk2
0

∫ 2π

0
| f (θ)|2dθ . (21)

Figure 8 shows the far-field analysis for the example shown
in figure 7. The left panel shows the function S2

R, showing the
minima where the resonance is expected (k0R0 = 5.118). We
can see how at this frequency there is an enhancement of the
far-field pattern f (k0,θ) shown in the central panel, although
the symmetry of this radiation pattern does not corresponds
to that of the quasi-BIC mode. The reason is that the mode
is confined inside the cluster, thus the ` = 2 symmetry can
be observed only in the near field, but this field interacts with
the N = 50 scatterers of the cluster and excite some radiation
far field with a multipolar symmetry. The right panel shows

how the total scattering cross section σsca is enhanced at the
resonant condition, as expected.

V. SUMMARY

In summary, we have studied the possibility of having
bound states in the continuum (BICs) in clusters of scatterers
for flexural waves in thin plates. We found that a polygonal

FIG. 8. Far-field radiation pattern and scattering cross-section. The
left graph represents the SR term as a function of the frequency of the
system. The central map shows the far-field radiation pattern ( f (θ))
as a function of the angle and the frequency. Finally, the right graph
represents the scattering cross-section as a function of the frequency.
As it can be seen, the zero of the SR summation term finds a peak in
both the far-field radiation pattern and the scattering cross-section.

arrangement, which would become a circular scatterer when
the number of scatterers tends to infinite, presents resonances
of divergent quality factor, thus these modes can be defined
as quasi-BIC modes. We also derived an analytical expres-
sion for the resonant frequency of the different multipolar res-
onances of the circular scatter which is accurate as well for
finite clusters. Several numerical experiments show that these
modes are robust in general, in the sense that only the quality
factor is significantly changed when different types of disor-
der are applied, while the resonant frequency is only weakly
distorted. We found as well that the quasi-BIC modes can
be excited from the continuum, since a peak in the total scat-
tering cross section is detected, which enhances the possible
applications of these structures for sensing applications. The
formulation based on multiple scattering theory shows as well
that this approach is not unique of flexural waves but it could
also be applied to other type of classical or quantum waves,
with similar results expected.
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Appendix A: Appendix: Continuous limit of the cluster’s
Green’s function

R0

2π

N

2R0 sin(π/N)

FIG. 9. Cluster’s geometry.

In this appendix we will derive an analytical expression for

the sum S`R when the number of scatterers in the circular array
tends to infinite. According to figure 9, the scatterers in the
cluster are placed in the vertices of a regular polygon of N
sides, thus the position of the α scatterer is given by

Rα = R0 cos2π/Nαx̂+R0 sin2π/Nαŷ (A1)

In the limit of N −→ ∞, the variable θα = 2πα/N can be
substituted by a continuous variable θ ∈ [0,2π], such that
dθ = 2π/N. Also, the distance R0α between the scatterer of
reference and any scatterer in the cluster is, according to figure
9,

R0α = 2R0 sin
π

N
(A2)

which, in the limit N −→ ∞ becomes

R(θ) = 2R0 sin
θ

2
(A3)

Thus, we can write

lim
N→∞

1
N

S`R =
1

2π
Re

∫ 2π

0
ξ (θ)ei`θ dθ . (A4)

with

ξ (θ) = H0(k0R(θ))+
2i
π

K0(k0R(θ)), (A5)

For `= 0 we have

lim
N→∞

1
N

S0
R =

1
2π

∫ 2π

0
J0(2k0R0 sin(θ/2))dθ

=
2
π

∫
π/2

0
J0(2k0R0 sinθ)dθ .

By using the following identity [23]

∫
π/2

0
J2ν(2zsinx)dx =

π

2
J2

ν(z), (A6)

we arrive to

lim
N→∞

1
N

S0
R = J2

0 (k0R0). (A7)

Similarly, for ` 6= 0, we have now

lim
N→∞

1
N

S`R =
1

2π
ℜ

∫ 2π

0
χθ eilθ dθ (A8)

thus

1
2π

∫ 2π

0
J0(2k0R0 sinθ/2)eilθ dθ

=
1

(2π)2

∫ 2π

0

∫
π

−π

e−i2k0R0 sin(θ/2)sinτ eilθ dτdθ

=
1

2π2

∫
π

0

∫
π

−π

e−i2k0R0 sin(θ)sinτ e2ilθ dτdθ

=
(−1)2l

2π

∫
π

−π

J2l(2k0R0 sinτ)dτ

=
2(−1)2l

π

∫
π/2

0
J2l(2k0R0 sinτ)dτ
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so that we have

lim
N→∞

1
N

S`R = J2
` (k0R) (A9)
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