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A B S T R A C T

Amyotrophic Lateral Sclerosis (ALS) is a fast-progressing disease with no cure. Nowadays, needle electromyo-
graphy (nEMG) is the standard practice for electrodiagnosis of ALS. Surface electromyography (sEMG) is
emerging as a more practical and less painful alternative to nEMG but still has analytical and technical
challenges. The objective of this work was to study the feasibility of using a set of morphological features
extracted from sEMG to support a machine learning pipeline for ALS diagnosis. We developed a novel
feature set to characterize sEMG based on quantitative measurements to surface representation of Motor
Unit Action Potentials. We conducted several experiments to study the relevance of the proposed feature set
either individually or combined with conventional feature sets from temporal, statistical, spectral, and fractal
domains. We validated the proposed machine learning pipeline on a dataset with sEMG upper limb muscle
data from 17 ALS patients and 24 control subjects. The results support the utility of the proposed feature set,
achieving an F1 score of (81.9 ± 5.7) for the onset classification approach and (83.6 ± 6.9) for the subject
classification approach, solely relying on features extracted from the proposed feature set in the right first
dorsal interosseous muscle. We concluded that introducing the proposed feature set is relevant for automated
ALS diagnosis since it increased the classifier performance during our experiments. The proposed feature set
might also help design more interpretable classifiers as the features give additional information related to the
nature of the disease, being inspired by the clinical interpretation of sEMG.
1. Introduction

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative
disease that leads to muscle atrophy due to the progressive loss of
motor neurons [1,2]. According to a review of epidemiological studies
provided by [3], there has been an increasing number of patients
diagnosed with ALS over the last years. There are two main disease
phenotypes, spinal-onset and bulbar-onset, corresponding to weakness
presentation in limbs an bulbar muscles, respectively [2,4]. Gradually,
the condition of the patient deteriorates up to a severely disabled
state, leading to an average survival from the onset of symptoms of
approximately three years [4,5].

The most frequently performed exam as part of the diagnosis routine
is electromyography (EMG), which measures the electric potentials
generated by muscular cells. The MU, which represents the anatomi-
cal and functional element of the neuromuscular system [4], can be
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described as a single motor neuron and all of the muscle fibers that
it innervates [1]. The electrical activity of the muscle fibers generates
electrical changes called MUAPs, which are distinguishable in shape
and size for each MU [6,7], as can be seen in Fig. 1.

The ALS diagnosis guidelines defined in 2008 during the Awaji
consensus meeting support the utility of needle EMG (nEMG) as an
attempt to improve the diagnostic accuracy of the Revised El Escorial
criteria [8,9]. nEMG is an invasive technique that uses a needle record-
ing electrode inserted directly into the muscle, providing accurate
electrical potential measurements. However, this invasive technique
has the disadvantage of being particularly painful for patients, which
hinders its repetitive usage for tracking disease progression in rou-
tine medical appointments. Additionally, it cannot be performed in
an outpatient setting since it requires professional expertise, and its
vailable online 22 August 2022
746-8094/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.bspc.2022.104011
Received 21 February 2022; Received in revised form 12 May 2022; Accepted 11 J
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

uly 2022

http://www.elsevier.com/locate/bspc
http://www.elsevier.com/locate/bspc
mailto:maria.antunes@fraunhofer.pt
https://doi.org/10.1016/j.bspc.2022.104011
https://doi.org/10.1016/j.bspc.2022.104011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2022.104011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biomedical Signal Processing and Control 79 (2023) 104011M. Antunes et al.
Fig. 1. Illustrative examples of different MUAP waveforms originated from different MUs.
recordings often present variability due to small movements of the
electrodes with higher muscular force [6].

These are some of the reasons for the growing interest in surface
EMG (sEMG) [10], a method that also measures the electrical activity of
skeletal muscles, but it relies on surface electrodes. Despite the versatil-
ity of these electrodes, they record signals with a lower signal-to-noise
ratio in comparison with nEMG, and the tissues underlying the elec-
trodes act as a low-pass filter, causing similar shapes in potentials from
different motor units [11]. Since surface electrodes are farther away
from the muscle fibers, the recorded MUAPs are lower in amplitude
and with higher superposition probability of multiple MUAPs. These
drawbacks have resulted in the long medical community’s discrediting
of sEMG potential in clinical practice [12].

The latest technological advances in sensing hardware, computing
capacity, and signal processing for sEMG have contributed to an in-
creasingly acceptance of this technique in clinical practice. According
to a recent systematic review [13], sEMG offers significant practical
and analytical flexibility compared to nEMG due to its non-invasive
nature, and there is a need for multi-disciplinary research collaboration
on the topic. From these conclusions arises the need to understand
the role and utility of sEMG in predicting the ALS diagnosis through
Machine Learning (ML) models. This is of particular interest if relations
can be established between the sEMG characteristics and the actual
pathophysiology phenomena of the disease.

The interpretation of quantitative data from a sEMG signal can be
very informative, namely through the use of time, frequency, and time–
frequency features. For a thorough review of such features across dif-
ferent applications refer to [14–16]. Several works have been proposed
in the context of ALS diagnosis using these features and automated
learning architectures. The experimental data collection setup on these
experiments is often categorized into nEMG, sEMG, and high-density
surface electromyography (HDsEMG).

In the context of nEMG, statistical, temporal and spectral features
have proven useful in discriminating the disease [17–20]. HDsEMG is
a sEMG technique that uses arrays of individual electrodes designed to
record simultaneously, thus increasing the spatial characterization of
the electrical muscle activity. Some studies have addressed the poten-
tial advantages of this technique in identifying fasciculation potentials
(FPs) [21,22] and used for ALS diagnosis [10].

The application of learning algorithms on sEMG data has a broad
range application areas, such as assistive technology [23–25], reha-
bilitation technology [26], and silent speech recognition [27]. In the
context of using sEMG for objective assessment of ALS, beta-band
(15–30 Hz) intermuscular coherence was explored by [28] and latter
by [29] to determine whether it can distinguish ALS patients from
normal subjects. The authors of [29] collected a dataset with 15 ALS
and 15 control subjects and achieved a sensitivity of 87% and speci-
ficity of 87%. The authors of [30] propose an automated machine
learning pipeline with features extracted from sEMG using tsfresh [31].
They used a dataset composed of 65 subjects (20 with the inclusion
of body myositis, 20 with ALS and 25 healthy control). Two classifi-
cation strategies were designed: muscle-level, meaning the prediction
2

is accomplished for each muscle of all subjects individually; patient-
level, which relied on classification voting ensembles on the muscles
from the same patient. They classified each subject as being either
patient or healthy and achieved an Area Under the Curve (AUC) score
of 81.7% and 81.5% for muscle-level and patient-level, respectively.
The authors of [32] used a set of statistical, temporal, complexity, and
fractal features from sEMG recordings in the limbs. They used a dataset
composed of 33 subjects (13 with ALS and 20 healthy control). The
authors tested several machine learning classifiers, where the decision
tree, random forest, and AdaBoost, achieved the highest performance.
An average accuracy of 77% was achieved by combining differences
between features extracted from the hand and forearm recordings.
More recently, the authors of [33] attained accurate classification
performance on a dataset composed of 13 patients with ALS and 10
healthy controls with electrodes configured for facial sEMG collection.

Further works using nEMG or sEMG in the context of ALS diagnosis,
can be followed in [34], which recently conducted a systematic litera-
ture review on machine learning techniques and biomedical signals in
the context of ALS. The number of works using nEMG has been higher
compared to sEMG, which motivates the need for more contributions
in the context of sEMG.

The clinical interpretation of a nEMG exam relies on the analysis
of MUAP waveforms. Quantitative measurements are conducted by the
clinician, such as MUAP amplitude, duration, number of phases, firing
rate, among others [35]. The quantitative measurements calculated
using feature extraction from the studies identified above do not place
a strong emphasis on the MUAPs morphology. Quite often, prior studies
use a set of statistical, temporal, and spectral features to evaluate the
EMG into a more high-level setting. Nevertheless, changes in the shape
of surface representations of MUAPs measured by sEMG are helpful
to identify possible pathological changes in MU activity patterns [36].
Therefore, there is a gap in the literature regarding using morphological
features for MUAPs, which can later be used for ML algorithms. These
features would be representative of the morphology of the MUAPs
based on their surface sEMG representations. Furthermore, they could
more objectively depict the changes in the EMG caused by ALS: rein-
nervation potentials, which result in higher amplitude MUAPs; loss of
MUs, translating into an increased firing rate of the active MUs; and
evidence of FPs, marked by abrupt spikes [9].

The use of morphological features to complement the feature sets
which are typically used would present some advantages. Those fea-
tures might capture complementary discriminate behaviors on the
waveform as the disease progresses. Additionally, since those features
are inspired by clinical interpretation, they can lead to more inter-
pretable predictions from the classifiers. These features would include
the detection of MUAPs of a sEMG signal, which is the process of
identifying and isolating the surface representations of MUAPs. Since
the measured muscle has a limited number of MUs, each originating a
unique MUAP, the signal can be decomposed into the different firing
MUAPs. This process starts with the detection of MUAPs, followed by
their categorization into one of the originating MUs.

In this paper, we propose a novel set of morphological features
for EMG analysis. Our contributions are focused on the introduction
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Fig. 2. Schematic representation of the proposed machine learning pipeline.
of a signal processing pipeline to compute the morphological features
on sEMG and a validation study for automated ALS diagnosis using
a cohort of control and ALS patients. The proposed features were
included as an add-on to the open-source Python library entitled Time
Series Feature Extraction Library (TSFEL) [37].

The rest of this paper is organized as follows: Section 2 presents
the proposed set of morphological features, describes the dataset and
the proposed machine learning pipeline. The results are presented
in Section 3 and discussed in Section 4. Finally, Section 5 summa-
rizes the contributions and limitations of this work, along with some
recommendations for future work.

2. Materials and methods

We implemented a ML pipeline to validate the proposed sEMG
features in a binary classification task, as represented in Fig. 2. The goal
of this task was to distinguish between pathological and healthy sEMG
signals. The first stage addresses the preprocessing steps, particularly
signal filtering and window segmentation of muscular activation inter-
vals. Secondly, several features are extracted and combined into the
final feature vector that describes each window. Next, the features are
used for the learning stages, hyperparameter optimization, and feature
selection. Lastly, the learning stage is repeated with the optimized
hyperparameters and selected features, and the final classification task
is performed.

This section also encloses the description of the experimental pro-
tocol in which data were collected.

2.1. Data

We used an anonymized dataset that we collected and previously
explored in [38], where a more detailed description of the experimental
protocol can be found. The data was acquired from two different sub-
sets of subjects: healthy controls (HCs) and patients diagnosed with ALS
within the preceding 36 months, with a muscle strength greater than
three according to the Medical Research Council scale (MRC scale), in
the tested muscles. Patients could not present any other neurological
disorders. All patients were medicated with Riluzole [39].

The ALS patient population was initially comprised of 21 subjects.
The patients were divided into two categories depending on their
disease phenotype. Since bulbar-onset patients do not often express
significant abnormalities with sEMG recordings at the upper arms, the
spinal-onset patients were the only ones considered for further analysis,
resulting in 17 subjects, seven men and ten women, with a mean age
3

of 59 ± 10. A group of 24 healthy subjects was considered, nine men
and 15 women. Therefore, the final dataset totaled 41 subjects, 17
diagnosed with the spinal onset of ALS and 24 HCs.

The study was performed in accordance with the ethical standards
of the 1964 Helsinki Declaration and its later amendments. Ethical
approval for this research was obtained from the Ethics Committee
of Centro Hospitalar Universitário Lisboa Norte. Informed consent was
obtained from all individual participants involved in the study.

Fig. 3 shows the experimental setup. Subjects were seated with
both hands and forearms on a desk in a parallel position, 10 cm away
from each other with hand palms facing one another in 90 degrees
flexion with the elbow. Then, they were asked to perform the same
movement on both left and right hands while listening to a programmed
sound, which guided the task. This task was a coordinated movement of
vertical elevation of both index fingers in the opposing direction of the
remaining fingers, reaching maximum articular amplitude. The subject
would then hold that position with a certain degree of force for three
seconds, return to the original position and remain in that position
for three seconds while trying to relax as much as possible. The task
was repeated for six minutes or less, depending on the maximum time
tolerated by the patients. Each muscle had two surface electrodes con-
nected. The electrodes were fixed on the first dorsal interosseus muscle
for both hands, with the reference electrode on the first interphalangeal
joint of the index finger, and the extensor digitorum communis muscle for
both forearms, with the reference electrode 3 cm distal. The ground
was placed on ulna bone inferior extremity since no muscle activity is
present in that region. The electrode placement protocol resulted in the
recording of four time-synchronized signals for each subject [38].

All recordings were performed with a biosignalsplux (Plux, Lisbon,
Portugal) biomedical data collection system with eight analog input
channels converted to 12-bit signals and an external channel used as
reference ground. The sEMG sensors include 2nd order bandpass analog
filters with 25 and 450 Hz cut-off frequencies adjacent to the electrodes.
The sEMG signals were acquired with a gain of 1000 and a sampling
frequency of 1000 Hz.

The first channel refers to the left hand, the second channel refers
to the left forearm, and the third channel refers to the right hand. The
fourth channel was discarded since no complete data were available for
all subjects.

2.2. Preprocessing

The first step of the preprocessing consisted of filtering the record-
ings by removing the baseline offset and then applying a 3rd order
Butterworth bandpass filter between the frequencies of 10 and 300 Hz.
Since we were interested in analyzing the intervals where the subject
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Fig. 3. Experimental setup. The electrodes were attached on the first dorsal interosseus muscle for both hands and the extensor digitorum communis muscle for both forearms. The
ground electrode was attached to the ulna bone inferior extremity. The signals were recorded using a biosignalsplux biomedical data collection system. The subjects were asked
to perform consecutive repetitions between resting and contraction periods [38].
performed muscular contractions, an onset detector based on Teager–
Kaiser Energy Operator (TKEO) was applied [40]. Afterward, a careful
visual inspection was conducted on each record to ensure that the
onset detection result was in accordance with the muscular contraction
intervals. A total of 3592 contractions was detected for the 41 subjects,
of which 54% were healthy samples and 46% pathological samples. It
is important to mention that there was some variability in the number
of contractions among the subjects, with an average number of onsets
of 88 ± 16 per acquisition.

2.3. Feature extraction

After the preprocessing and muscular contraction detection, we
extracted several features for each contraction interval. Therefore, each
contraction period was represented into a k-dimensional real-valued
feature vector, where k is the total number of features. The resting
intervals between muscular contractions were not considered. The
features were extracted from the three available channels.

We explored a wide variety of features to characterize the record-
ings. A set of state-of-the-art EMG features was combined with the
proposed set of features to understand their discriminating value in
sEMG for ALS diagnosis. We used the TSFEL open-source library [37]
to extract time-, statistical-, and spectral-domain features with default
settings. Based on the work from [38] fractal-domain features were
also extracted. Finally, the proposed group of peak-related and MUAP
morphology features were considered. This totals 196 features. These
features were extracted for the three channels, resulting in 588 features.
The computation of the pairwise correlation of features using the Pear-
son correlation method excluded the features whose correlation was
higher than 0.95. Thus a total of 317 features per muscular activation
interval was considered.

A list of all the features considered is available in Appendix.

2.3.1. Novel features
We propose two groups of novel features: peak-related and MUAP

morphology features. A brief description of these 18 new features can
be found in Table 1. The first group quantifies statistical characteristics
related to the positive peaks of the signal. The second one provides
quantitative measurements related to the MUAP morphology, which are
summarized in Fig. 4. These features were designed under the hypothe-
sis that they can be more interpretable, as they measure morphological
characteristics that represent physiological processes that are taken into
account in clinical interpretation to diagnose neuropathies.

The signal processing pipeline designed to obtain the novel features
includes detecting the signal’s peaks and isolating the surface repre-
sentations of individual MUAPs. The MUs activated during muscular
contraction generate MUAPs and their summation yields the sEMG
4

Table 1
Description of the proposed peak-related and morphology features.

Feature Description

Peak-related features

Number of peaks Total number of peaks
Peaks difference Time interval between consecutive peaks
Peaks rate Number of peaks per second

MUAP morphology features

Peak-to-peak amplitude Amplitude from the lowest negative peak
to the highest positive peak of the MUAP

Peak-to-peak difference Time interval between the lowest negative
peak to the highest positive peak of the MUAP

MUAP duration Time interval during which the MUAP occurs
MUAP integrated area Absolute area of the MUAP
MUAP rise time Time interval between maximum negative peak

and the following minimum positive peak within
the duration of the MUAP

MUAP phases Number of baseline crossings within the duration
where amplitude exceeds the mean of the signal

MUAP turns Number of positive and negative peaks where the
differences from the preceding and following turn
exceed 25 μV

signal. The sEMG decomposition consists of segmenting and identifying
the constituent MUAPs. Our approach for MUAP isolation consists of
(1) identifying all the significant local maxima during muscle acti-
vation periods and (2) post-process the detected peaks to isolate the
MUAP waveform in their neighborhood. An overview of the processing
workflow is depicted in Fig. 5.

Firstly, a local maximum is considered significant if its amplitude is
higher than the 98-th percentile of the muscular onset interval and the
distance between consecutive maxima has a minimum value of 20ms,
to prevent the detection of peaks related to noise. Using the peaks
obtained in this step, the peak-related features were extracted for each
muscular contraction window of the signal. The number of peaks and
peaks rate were directly quantified. The peaks difference was deter-
mined for each pair of consecutive peaks and then averaged, resulting
in two features which were the average and standard deviation of this
measure.

The detected peaks and the waveform are then processed according
to Algorithm 1. We provide below a thoroughly description of the
algorithm.

We considered an interval before and after the peak, 𝑝, to delimit
the MUAPs around the previously detected peaks. The window size, 𝑤,
was set to 20ms centered in each detected peak, as the average MUAP
duration ranges from 10ms to approximately 30ms [41].

Next, we found the positions and amplitudes of the global maxima
and minima of the considered window to measure the peak-to-peak
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Fig. 4. Quantitative characteristics of MUAP waveforms. ‘‘PP’’ corresponds to peak-to-peak.
Fig. 5. Schematic representation of the proposed MUAP isolation pipeline.
distance and peak-to-peak time interval. These peak-to-peak measures
were determined for each MUAP within the muscular contraction onset,
and then their mean and respective standard deviation were calculated,
resulting in a total of four features.

To calculate the remaining morphology features, the MUAP wave-
form was isolated through the detection of plateaus around the main
peak. We extended the candidate interval with a neighborhood of 1
ms before and after the positions of the previously mentioned global
maxima and minima. A threshold (𝛥) was defined as a fraction of the
peak-to-peak amplitude calculated along with this candidate interval. A
neighborhood search procedure before and after the candidate interval
was conducted to find the positions where the signal amplitude exceeds
𝛥. The first samples greater than 𝛥 are the MUAP start and ending
positions. This last processing stage allowed the extraction of the
remaining ten features, namely the MUAP duration, integrated area,
rise time, phases, and turns. Similar to the procedure adopted for peak-
to-peak measures, the measures were determined first for each MUAP
within a muscular contraction interval, and then we considered the
average and standard deviation of the respective measures.
5

2.4. Classification

A supervised classification approach was applied to discriminate
between subjects with ALS and HCs. The selected model was an Ad-
aBoost classifier, using Random Forest as the base estimator. The
learning phase started with the optimization of the model by iteratively
experimenting with different groups of the model’s hyperparameters
in the classification task. All available features from the train data
were considered for this task, throughout ten folds of Shuffle-Group-Out
Cross-Validation [42]. The most common group of hyperparameters
maximizing the F1 score metric throughout all folds was selected as
the ideal set of hyperparameters. Then, the model was retrained with
the optimized hyperparameters and multiple train samples as input,
guaranteeing that all samples from each subject were either on the
training set or on the test set. Since one subject has multiple activation
intervals, each interval with a set of features extracted, each sample
was classified separately.

To improve the robustness of the proposed method, class probabil-
ities were used for sample rejection, which eliminated signal windows
whose attributed class had a probability value lower than an optimal
threshold. The rejected windows were not considered for the overall
classification performance. According to a method proposed by [43],
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Algorithm 1: MUAP isolation algorithm.
IND_MAJOR_PEAKS returns the positions of the global maxima and minima
f a given signal. PEAKTOPEAK calculates the peak-to-peak amplitude of a
iven signal.
Input:

𝑂𝑛𝑠𝑒𝑡𝑊 𝑎𝑣𝑒𝐹𝑜𝑟𝑚 ⊳ An array with SEMG data for a given onset interval.
𝑝𝑒𝑎𝑘𝑠 ⊳ The array positions of the MUAP’s peaks.
𝑤 ⊳ MUAP maximum duration interval (s)
𝑓𝑠 ⊳ Sampling frequency (Hz).
𝛿 ⊳ Fraction of the peak-to-peak amplitude to consider.

utput:
𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑑𝑃𝑜𝑠𝑃𝑎𝑖𝑟𝑠 ⊳ A list of start and end position pairs for each MUAP.

1: 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑑𝑃𝑜𝑠𝑃𝑎𝑖𝑟𝑠 = [ ]
2: for 𝑝 in 𝑝𝑒𝑎𝑘𝑠 do
3: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑒𝑑𝑊 𝑎𝑣𝑒𝑓𝑜𝑟𝑚 ← 𝑂𝑛𝑠𝑒𝑡𝑊 𝑎𝑣𝑒𝑓𝑜𝑟𝑚[𝑝 − 𝑤×𝑓𝑠

2 ∶ 𝑝 + 𝑤×𝑓𝑠
2 ]

4: 𝑀𝑢𝑎𝑝𝑀𝑎𝑗𝑜𝑟𝑃 𝑒𝑎𝑘𝑠 ← FIND_MAJOR_PEAKS(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑒𝑑𝑊 𝑎𝑣𝑒𝑓𝑜𝑟𝑚)
5: 𝑆𝑡𝑎𝑟𝑡𝑃 𝑜𝑠 = 𝑀𝑢𝑎𝑝𝑀𝑎𝑗𝑜𝑟𝑃 𝑒𝑎𝑘𝑠[0] − (1 × 𝑓𝑠)
6: 𝐸𝑛𝑑𝑃𝑜𝑠 = 𝑀𝑢𝑎𝑝𝑀𝑎𝑗𝑜𝑟𝑃 𝑒𝑎𝑘𝑠[1] + (1 × 𝑓𝑠)
7: 𝛥 ← PEAKTOPEAK (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑒𝑑𝑊 𝑎𝑣𝑒𝑓𝑜𝑟𝑚[𝑆𝑡𝑎𝑟𝑡𝑃 𝑜𝑠 ∶ 𝐸𝑛𝑑𝑃𝑜𝑠]) × 𝛿

8: Do a neighborhood search of 𝑤×𝑓𝑠
2 samples before 𝑆𝑡𝑎𝑟𝑡𝑃 𝑜𝑠

9: if any sample in neighborhood >= 𝛥 then:
10: 𝑀𝑢𝑎𝑝𝐼𝑛𝑖𝑡𝑃 𝑜𝑠 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑃 𝑜𝑠 ⊳ 𝑆𝑎𝑚𝑝𝑙𝑒𝑃 𝑜𝑠 is the first sample found.
11: else
12: 𝑀𝑢𝑎𝑝𝐼𝑛𝑖𝑡𝑃 𝑜𝑠 ← 𝑝 − 𝑤×𝑓𝑠

2
3: end if

4: Do a neighborhood search of 𝑤×𝑓𝑠
2 samples after 𝐸𝑛𝑑𝑃𝑜𝑠

5: if any sample in neighborhood >= 𝛥 then:
6: 𝑀𝑢𝑎𝑝𝐸𝑛𝑑𝑃𝑜𝑠 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝑃 𝑜𝑠 ⊳ 𝑆𝑎𝑚𝑝𝑙𝑒𝑃 𝑜𝑠 is the first sample found.

17: else
18: 𝑀𝑢𝑎𝑝𝐸𝑛𝑑𝑃𝑜𝑠 ← 𝑝 + 𝑤×𝑓𝑠

2
9: end if

0: 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑑𝑃𝑜𝑠𝑃𝑎𝑖𝑟𝑠 ← [𝑀𝑢𝑎𝑝𝐼𝑛𝑖𝑡𝑃 𝑜𝑠,𝑀𝑢𝑎𝑝𝐸𝑛𝑑𝑃𝑜𝑠]
1: end for

return 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑑𝑃𝑜𝑠𝑃𝑎𝑖𝑟𝑠

the optimal threshold 𝜃𝑜𝑝𝑡 for rejection cost 𝑏 was obtained using the
following equation:

𝜃𝑜𝑝𝑡(𝑏) = 𝑎𝑟𝑔max
𝜃

(

|𝜃| −
𝑏

1 − 𝑏
⋅ |𝜃|

)

(1)

here 𝜃 is a probability threshold in the interval [0, 1], 𝜃 and 𝜃
epresent the subset of true rejects and false rejects for the threshold 𝜃,
espectively. The rejection cost value 𝑏 was set to 0.5.

A voting system that took into account all samples from one signal
as implemented to provide a diagnosis for the subject. This diag-
ostic criterion counts the number of healthy classified samples as
he number of votes for the HC class, and the corresponding samples
or the ALS class. The class with the most votes was considered the
inal decision of the classifier for that signal. Therefore, two different
ypes of classification tasks were performed: onset classification and
subject classification. The latter consists of implementing the voting
system that considers the information given by the onset classification
task.

A 10-fold Shuffle-Group-Out Cross-Validation scheme that split the
number of subjects in half for train and test sets in each fold was used.
The group of chosen subjects for train and test in a fold was the same
throughout all experiments in that specific fold so that outcomes from
different experiments could be compared.

3. Results

This section presents the results of the onset and subject classifica-
tion approaches. It reports the average results of the Cross-Validation
scheme.

The accuracy, precision, recall, and F1 score were used to assess
the classification performance. Accuracy is the overall probability of
correctly classified instances over the total number of instances. Pre-
cision is the ratio between correctly classified ALS instances and the
6

total number of instances classified as ALS. The recall is the ratio
Table 2
Onset classification results obtained by using each feature group separately measured
by means of F1, precision, recall, and accuracy scores. The scores are presented in
percentage (%) as the average of ten folds with the respective standard deviation. The
best scores per metric are highlighted in bold.

F1 score Precision Recall Accuracy

Temporal 68.9 ± 7.8 77.0 ± 4.5 69.3 ± 5.7 73.4 ± 6.1
Spectral 81.2 ± 4.7 85.3 ± 3.7 80.7 ± 4.2 82.8 ± 4.6
Statistical 69.2 ± 8.6 74.6 ± 6.4 70.0 ± 6.9 73.0 ± 7.9
Fractal 71.5 ± 9.9 78.7 ± 4.1 72.3 ± 7.3 75.5 ± 6.9
Proposed 77.1 ± 3.2 80.7 ± 4.0 76.7 ± 2.7 78.9 ± 3.4

Table 3
Subject classification results obtained by using each feature group separately measured
by means of F1, precision, recall, and accuracy scores. The scores are presented in
percentage (%) as the average of ten folds with the respective standard deviation. The
best scores per metric are highlighted in bold.

F1 score Precision Recall Accuracy

Temporal 67.3 ± 10.1 74.1 ± 10.0 68.7 ± 7.3 70.0 ± 9.5
Spectral 75.4 ± 7.8 79.5 ± 7.6 76.1 ± 7.3 76.7 ± 7.5
Statistical 69.6 ± 8.4 74.6 ± 7.9 70.7 ± 7.5 71.4 ± 8.3
Fractal 69.7 ± 10.6 77.2 ± 5.9 71.5 ± 7.9 72.4 ± 9.0
Proposed 70.8 ± 4.7 75.5 ± 6.1 71.9 ± 4.1 72.4 ± 4.7

between correctly classified ALS instances and the total number of
ALS instances. F1 score is the harmonic mean of precision and recall.
Except for accuracy, all metrics were macro-averaged since the dataset
was approximately balanced in terms of pathological and healthy sam-
ples, giving a more generalized performance measure irrespective of
the class. However, the subject classification task presented a slight
imbalance since the dataset contained a higher number of healthy
subjects.

The onset and subject classification results, which will be pre-
sented below, are not comparable, considering they represent distinct
outcomes of the same signal. We conducted several experiments to
evaluate the proposed pipeline in the onset and subject classification
approaches.

The first experiment consisted of training the model with the five
feature sets separately, to evaluate the individual predictive capability
of each set. Table 2 summarizes the performance scores for the onset
classification approach using each feature set individually. The spectral
features produced the overall best results, followed by the set of pro-
posed features. On the other hand, the temporal and statistical groups
performed relatively poorly, with overall lower scores.

Table 3 summarizes the performance scores for the subject classifi-
cation approach using each set feature set individually. The results are
in agreement with the outcome for the onset classification task, with
the group of features with the best overall scores being the spectral,
followed by the proposed feature set.

In the second experiment, we evaluated how the individual intro-
duction of the proposed feature set would impact the classification. We
hypothesized that introducing the proposed feature set to the feature
group containing all the remaining features (i.e., temporal, statistical,
spectral, and fractal) would increase the overall classification results.

Table 4 shows a comparison of the onset classification perfor-
mance when using the temporal, spectral, statistical, and fractal fea-
tures and when considering all features by introducing the proposed
feature sets. The results support the hypothesis that combining the pro-
posed feature set with the remaining features would increase the over-
all performance. This hypothesis was further validated in the subject
classification approaches, whose results are presented in Table 5.

In the previous experiments, we considered the available data from
the three channels. In order to reduce the complexity for both data
collection and processing in real ambulatory settings, a single-channel
configuration would be desirable. In the third experiment, we evaluated
the classification performance of each channel individually.



Biomedical Signal Processing and Control 79 (2023) 104011M. Antunes et al.

s
s

s
r

s
r

p
c
a
f
i
d
p
c
t
f

y
f

f
m
c
f
r
l
s
u

Table 4
Onset classification results obtained by using all feature groups and all features except
the proposed ones, measured by means of F1, precision, recall, and accuracy scores. The
cores are presented in percentage (%) as the average of ten folds with the respective
tandard deviation. The best scores per metric are highlighted in bold.
Feature set F1 score Precision Recall Accuracy

Temporal
Spectral
Statistical
Fractal

80.0 ± 3.0 85.2 ± 1.9 79.0 ± 3.0 82.6 ± 3.3

All 83.1 ± 4.2 86.9 ± 2.8 82.1 ± 4.2 84.8 ± 3.7

Table 5
Subject classification results obtained by using all feature groups and all features except
the proposed ones by means of F1, precision, recall, and accuracy scores. The scores are
presented in percentage (%) as the average of ten folds with the respective standard
deviation. The best scores per metric are highlighted in bold.

Feature set F1 Score Precision Recall Accuracy

Temporal
Spectral
Statistical
Fractal

76.6 ± 5.8 81.2 ± 6.0 76.9 ± 5.4 78.1 ± 5.7

All 78.9 ± 6.0 82.3 ± 6.0 78.8 ± 5.3 80.00 ± 6.0

Table 6
Onset classification results obtained by using all features from each channel and from
all channels simultaneously, measured by means of F1, precision, recall, and accuracy
cores. The scores are presented in percentage (%) as the average of ten folds with the
espective standard deviation. The best scores per metric are highlighted in bold.

F1 score Precision Recall Accuracy

Left hand 68.9 ± 5.7 76.0 ± 3.7 70.4 ± 5.6 71.9 ± 4.4
Left forearm 72.3 ± 7.9 79.7 ± 9.0 71.7 ± 6.9 76.1 ± 8.2
Right hand 81.9 ± 5.1 84.9 ± 5.5 81.3 ± 4.9 83.0 ± 5.3
All channels 83.1 ± 4.2 86.9 ± 2.8 82.1 ± 4.2 84.8 ± 3.7

Table 7
Subject classification results obtained by using all features from each channel and from
all channels simultaneously, measured by means of F1, precision, recall, and accuracy
cores. The scores are presented in percentage (%) as the average of ten folds with the
espective standard deviation. The best scores per metric are highlighted in bold.

F1 score Precision Recall Accuracy

Left hand 65.5 ± 10.5 71.9 ± 9.7 67.8 ± 9.4 68.1 ± 9.3
Left forearm 66.8 ± 10.8 76.1 ± 12.0 68.5 ± 9.9 69.5 ± 10.5
Right hand 79.4 ± 8.4 83.7 ± 7.9 79.4 ± 7.8 80.9 ± 7.9
All channels 78.9 ± 6.0 82.3 ± 6.0 78.8 ± 5.3 80.0 ± 6.0

Table 6 summarizes the results for the onset classification ap-
roach in using individual channels and considering all the available
hannels. The best results for the onset classification approach were
chieved when considering all three channels. For the subject classi-
ication task, the best results were achieved for the right first dorsal
nterosseous muscle, as shown in Table 7. Therefore, the right first
orsal interosseous muscle showed interesting results with competitive
erformance results in a single-channel configuration. Using a single
hannel setup reduces the number of features by two-thirds, increasing
he computational processing speed, which is crucial when performing
eature selection.

The results suggest that the right first dorsal interosseous muscle
ields reasonable diagnosis performance alone. For this reason, it was
urther explored in the additional experiments.

In the next experiment, we explored the classification performance
or each feature set considering only the right first dorsal interosseous
uscle. The results are presented in Tables 8 and 9. In both classifi-

ation approaches, the proposed feature set achieved the highest per-
ormance values compared to the other individual feature sets. These
esults suggest that the proposed feature set can diagnose ALS muscu-
ar contraction intervals with a reasonable performance. In compari-
on with previous experiments, the performance values were achieved
sing a single-channel configuration and a single feature set.
7

Table 8
Onset classification results obtained by using each feature group separately extracted
from the right first dorsal interosseus only, measured by means of F1, precision, recall,
and accuracy scores. The scores are presented in percentage (%) as the average of ten
folds with the respective standard deviation. The best scores per metric are highlighted
in bold.

F1 score Precision Recall Accuracy

Temporal 73.2 ± 6.3 79.3 ± 5.6 73.1 ± 6.0 76.9 ± 4.7
Spectral 78.6 ± 4.8 81.5 ± 5.2 78.4 ± 4.8 79.7 ± 4.8
Statistical 76.5 ± 4.1 80.0 ± 3.7 76.7 ± 3.7 77.9 ± 3.9
Fractal 77.4 ± 7.1 80.9 ± 6.3 77.1 ± 7.2 79.6 ± 6.2
Proposed 81.9 ± 5.7 84.0 ± 4.9 81.9 ± 5.5 82.6 ± 5.6

Table 9
Subject classification results obtained by using each feature group separately extracted
from the right first dorsal interosseus only, measured by means of F1, precision, recall,
and accuracy scores. The scores are presented in percentage (%) as the average of ten
folds with the respective standard deviation. The best scores per metric are highlighted
in bold.

F1 score Precision Recall Accuracy

Temporal 74.3 ± 6.5 81.5 ± 5.3 75.2 ± 4.7 76.2 ± 6.4
Spectral 76.0 ± 5.9 81.1 ± 6.7 76.3 ± 5.4 77.6 ± 5.7
Statistical 77.6 ± 4.9 80.2 ± 5.4 77.9 ± 5.2 78.6 ± 4.9
Fractal 78.8 ± 9.4 83.1 ± 8.6 79.3 ± 8.6 80.0 ± 9.0
Proposed 83.6 ± 6.9 86.6 ± 6.5 83.7 ± 6.3 84.3 ± 6.8

4. Discussion

Prior work on the development of machine learning approaches
for automated ALS diagnosis using sEMG often relies on temporal,
frequency, and time–frequency feature sets. The use of a morphological
feature set based on the MUAP characterization to complement existing
features sets can lead to more interpretable predictions from classifiers
since the design of the morphological feature set would be inspired by
the clinical interpretation of the EMG trace.

Two classification approaches were considered, whose results are
independent and incomparable, since the voting system used for the
patient classification attributes the same class to all the contraction
intervals of each patient, which may not correspond to the truth.

The results suggest that the proposed data collection and processing
setup is feasible to diagnose ALS. The best result for the onset clas-
sification approach, with an F1 score of 83.1 ± 4.2%, was achieved
using a comprehensive group of features extracted from three channels.
The rejection rate was 27%. The rejection rates during the onset
classification experiments achieved slightly high values. However, it
is quite challenging to issue a diagnosis based on a single onset with
high certainty. These rejection rates did not affect the performance
of the subject classification approach since they relied on information
about multiple onset intervals and, thus, the classifier did not reject
any subjects. With further experiments, we also identified that using
a single channel on the right first dorsal interosseous muscle and only
relying upon the proposed set of features, an F1 score of 82.0 ± 5.7%
was achieved. Although by a slight difference, the classifier precision
was higher than recall.

The best result for the patient classification approach was achieved
when using the proposed feature set from the right first dorsal in-
terosseous muscle, with an F1 score of 83.6 ± 6.9%.

Our experiments showed that using only the right hand it is pos-
sible to achieve competitive performance in comparison to combining
channels from both upper limbs. These results are in line with previous
experiments that support evidence that when the region of the upper
limbs is the region of disease onset, the right arm is frequently first
affected than the left arm [44].

Achieving high classification performance with lower data collec-
tion and processing complexity has both analytical and practical impli-
cations. Model performance might degrade when including features not
relevant to the target variable. Additionally, a large number of features
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can slow the training and development of models and require higher
computational performance. From the application standpoint, using a
single channel and a reduced yet efficient feature set is important,
particularly for remote examination in patients’ homes.

Our classification results are in accordance with previously pub-
lished works on diagnosis using machine learning approaches with
sEMG [32,45]. The dataset used in our work was collected by Quintão
et al. [32], which reported an average accuracy of 77% when clas-
sifying between ALS patients and controls. In the present work, we
achieved a higher average accuracy value of 84.8 ± 3.7 considering
ll channels and feature sets and 82.6 ± 5.6 as the best single-channel
sing only the proposed features. However, one should mention that
he authors of [32] considered different classification models, multiple
hannel combinations, and several feature sets.

The empirical results reported herein should be considered in light
f some limitations. The proposed feature set, based on peak and
orphology-related features, relies on the assumption of correct iden-

ification of MUAPs in the recording. The sEMG decomposition into
UAPs is per se a challenging topic in EMG signal processing and often

elies on highly complex approaches for the data collection protocol
nd data processing techniques [11,46]. Over the last years, there have
een several proposed approaches for EMG decomposition [47,48],
hich are complex and still have some shortcomings. We opted for a

imple approach that allowed a significant amount of surface MUAPs
o be considered. Although our proposed method might come short
ompared to more sophisticated alternative methods, we argue that
t can still be applied for a preliminary assessment between control
nd ALS groups using our proposed set of features. This approach
oes not ensure that all detected peaks are actually representative of a
UAP, and it does not take into account that MUAP duration presents
high degree of variability [49]. Nevertheless, we argue that it can

till extract relevant quantitative information from the morphology of
he surface potentials of the MUAPs contained in the recordings. Visual
nspection of the results showed good qualitative results, although it
lso revealed some false positives and false negatives arising from noise
nd MUAPs superimpositions. The fact our approach does not need
ighly complex data collection protocols and processing techniques,
ake it an interesting method to be applied in remote ambulatory

ettings.

. Conclusions

The non-invasive nature of the sEMG offers significant practical
dvantages over invasive methods, such as the possibility to monitor
he disease with less discomfort for the patient. Although in the past
here has been some discredit in the medical community regarding
he lack of evidence to determine the clinical utility of sEMG, recent
echnological advances have reignited the awareness of the community
or this versatile technique. Therefore, there is currently the need for
ulti-disciplinary collaboration to tackle the remaining analytical and

echnical challenges of sEMG [13].
In this work, we proposed a novel feature set for the characteriza-

ion of sEMG based on the quantification of morphological properties of
urface potentials from MUs. Our contributions were the introduction
f a signal processing pipeline to compute such features and a machine
earning pipeline for automated ALS diagnosis. Our methods were
alidated using a dataset with a cohort of control and ALS patients with
EMG recordings of the upper limbs.

The present research contained several experiments which showed
romising results that uncovered the benefits of introducing mor-
hological information into automated diagnosis machine learning
ipelines. The recordings from the right first dorsal interosseous muscle
evealed particularly interesting results. Minimizing the complexity of
he data collection setup using a single muscle and a reduced feature set
as several practical benefits. A more convenient data collection setup
elps pave the way for remote examination at patients’ residences,
8

ncreasing the data available for clinicians towards better diagnosis,
rognosis, and shared decision-making on ALS.

Previous studies relied on conventional temporal, statistical, and
pectral-domain feature sets. Our proposed morphological feature set
as proved competitive classification performance and can lead to more
nterpretable predictions from the classifier since the design of such
eatures was inspired by the clinical interpretation of EMG data. It is
orth mentioning that the morphological feature set relies on a prior
ecomposition of the sEMG to identify the surface potentials generated
y MUs. The decomposition of sEMG is non-trivial, and despite relying
n a simple approach, identified as a current shortcoming, the results
ere still promising. Our work also aims to spark future research on
utomated analysis methods to exploit the practical utility of sEMG.
he proposed features were included as an add-on to TSFEL.

In future work, we will improve the method used for sEMG de-
omposition. Since the results showed the feasibility of our approach,
e will research the integration of explainable artificial intelligence
ethods to measure the feature relevance and explain the classifier
redictions. It is expected that the proposed feature set should help
esign transparent and trustworthy automated decision support sys-
ems. Furthermore, it would be interesting to conduct a longitudinal
valuation study in the context of ALS prognosis.

Table A.1
Description of the feature sets.

Domain Features

Time

Absolute energy
Absolute value of summation of exponential root
Absolute value of summation of square root
Area under the curve
Autocorrelation
Autoregressive coefficients
Average amplitude change
Cardinality
Centroid
Difference absolute mean value
Difference absolute standard deviation value
Difference variance value
Enhanced wavelength
Entropy
Integrated EMG
Log detector
Log difference absolute standard deviation
Log difference absolute mean value
Log Teager Kaiser energy operator
Mean absolute difference
Mean difference
Mean absolute value slope
Mean value of square root
Median absolute difference
Median difference
Myopulse percentage rate
Negative turning points
New zero crossing
Neighborhood peaks
Peak to peak distance
Positive turning points
Signal distance
Slope
Slope sign change
Sum absolute difference

Time

Temporal moment
Total energy
V-Order
Waveform length
Willison amplitude
Zero crossing rate

(continued on next page)
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Table A.1 (continued).
Domain Features

Spectral

Fundamental frequency
Human range energy
Linear prediction cepstral coefficients
Mel-frequency cepstral coefficients
Maximum power spectrum
Maximum frequency
Median frequency
Power bandwidth
Spectral centroid
Spectral decrease
Spectral distance
Spectral entropy
Spectral kurtosis
Spectral positive turning points
Spectral roll-off
Spectral roll-on
Spectral skewness
Spectral slope
Spectral spread
Spectral variation
Wavelet absolute mean
Wavelet energy
Wavelet entropy
Wavelet standard deviation
Wavelet variance

Statistical

Average energy
Values of the empirical cumulative distribution function (ECDF)
ECDF percentile
Coefficient of variation
ECDF percentile count
ECDF slope
Enhanced mean absolute value
Histogram
Interquartile range
Kurtosis
Log coefficient of variation
Maximum
Mean
Mean absolute deviation
Mean absolute value
Median
Median absolute deviation
Minimum
Modified mean absolute value type 1
Modified mean absolute value type 2
Root mean square
Skewness
Standard deviation
Variance

Fractal

Fractal Dimension
Maximum Fractal Length
Multiscale entropy
Lempel–Ziv Complexity
Detrended Fluctuation Analysis
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