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Abstract  

In this workshop we will learn how to draw a cubical perspective by hand and how to visualize the resulting drawing 

as a VR panorama, creating a kind of virtual perspective box. We will do this by viewing cubical perspective as a 

special case of spherical perspective and considering how spherical geodesics project on the cube. 

 

Introduction 

Spherical perspectives are handmade drawings that capture all the visual information around the eye of an 

observer, and render it onto a compact region of the plane [5]. These drawings are characterized by 

rendering spatial lines into plane curves, and by having exactly two vanishing points for each line. Spherical 

perspectives are becoming popular among artists and architects [9] in part because they can be turned into 

immersive visualizations as VR panoramas. In Bridges 2018, A. B. Araújo delivered a workshop on how 

to draw handmade equirectangular spherical perspectives using a dynamic grid method that exploits the 

translational symmetries of that perspective [3]. In Bridges 2019, the same author presented a different 

method to draw in the azimuthal equidistant (“360-degree fisheye”) perspective [2], making use of its 

rotational symmetries. In the present workshop the authors propose a different approach to obtain an 

immersive drawing: a cubical perspective. We will see that cubical perspective can be seen as a special 

case of spherical perspective, which although devoid of the nice symmetry group actions of the 

equirectangular or fisheye cases, compensates for this through its connection with classical perspective, 

which simplifies the rendering of line images. 

 

Cubical Perspective as a Spherical Perspective 

A cubical perspective is a plane drawing obtained as follows: place the observer’s eye at a point 𝑂 in space, 

at the center of a cube; project the points of the 3D environment radially onto 𝑂 and mark where the 

projection’s rays touch the cube’s faces. You get an immersive anamorphosis, that is, a 2D drawing on the 

cube’s surface that looks exactly like the original 3D scene if you see it from 𝑂. Now cut and flatten the 

cube (Figure 1). You obtain a flat drawing that is no longer a trompe l’oeil but still codifies the same visual 

information as the original anamorphosis. This flat drawing is called a cubical perspective. It can be seen 

as a mechanism for storing on a compact subset of the plane the visual information of the immersive 

anamorphosis. Now consider how you would do this procedure in reverse. Could you, from the coordinates 

of the 3D environment, make the flat cubical perspective drawing that you might then fold onto a cube to 

see from within? How would you perform these operations efficiently by hand? That’s what we call solving 

a perspective: obtaining all line images and vanishing points on the flat drawing from a given (usually 

small) sampling of the 3D data. You might of course just solve a set of 6 classical perspectives [8], one for 

each face of the cube, as you would normally do to construct a classical perspective box [10], [11]. 

However, as first shown in [6], it is far more elegant to think of this as solving a single spherical perspective. 

A spherical perspective, as formalized in [4] is a conical projection onto a sphere followed by a 

flattening onto the plane via a cartographic mapping verifying certain continuity conditions - basically 

projecting onto a compact connected set and being a homeomorphism almost everywhere. The flattening 

step can of course vary a lot, since every cartographic projection defines a different perspective, hence the 

various spherical perspectives of one same scene can be extremely varied in appearance. But since the first 
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step – anamorphosis – is uniquely defined, every spherical perspective verifies the principle of radial 

occlusion, that is, 3D points in the same ray from the eye will project onto the same point of the plane. This 

principle, all by itself, guarantees that each line will have exactly two vanishing points [4], [5]. 

 

Figure 1: An elaborate example of a cubical perspective (handmade vectorial drawing by L. F. Olivero). 

A 3D scene is projected onto a cube which then is cut and flattened. Scan the QR-code to see the VR 

panorama online. 

 

 

Figure 2: A spatial line AB projects on the sphere as a meridian (half a geodesic). Flattening the cube 

turns the geodesic onto a connected set of line segments that may change direction at the cube’s edges. 
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It is easy to see that cubical perspective is a special case of a spherical perspective: just consider a sphere 

concentric with the cube; project radially from the sphere to the cube and then cut open the cube; since the 

first projection is a homeomorphism, then the entailment results in a flattening of the sphere in the 

conditions of [4], hence cubical perspective is just a special type of spherical perspective. 

Now, in order to solve a general spherical perspective, A. B. Araújo [4], [5] proposes a general strategy 

that consists in classifying all the geodesics of a specific perspective and then finding a method for rendering 

them by hand, with special attention to the symmetries coming from the duality of vanishing 

points/antipodes, and the natural symmetries of each flattening. This strategy was the basis of the methods 

proposed in both spherical perspectives mentioned above. 

The focus on geodesics comes from this: solving a perspective drawing means finding the images of 

all lines and their vanishing points. Yet, the easiest way to go about it is to consider not each line directly, 

but the plane though 𝑂 that contains the line. This plane will intersect the sphere at a geodesic (great circle) 

and the line image will be half of this: a meridian between two diametrically opposite (antipodal) vanishing 

points. These vanishing points in turn are obtained thus: translate the line to 𝑂 and intersect the translated 

line with the sphere, to obtain two points. These are the vanishing points of the line. The strategy for 

rendering lines is to draw their geodesics first and then to crop them at these vanishing point pairs. 

The advantage of cubical perspective is that, although its symmetries are less useful than in other 

spherical perspectives, the rendering step is easier since the geodesics project as line segments in each face 

of the cube (since each face is just a classical perspective). A geodesic in cubic anamorphosis is just a closed 

cycle of lines around the cube, which can be comprised of either 4 or 6 segments. The problem that remains 

is to find how those segments change slope (in the flat perspective) as we cross from one face of the cube 

to another (see Figure 2). The way this is determined depends on the classification of the geodesics, which 

is done according to the number of sides in the cycle and the relative position of the given points. The 

systematic characterization of this has a relatively large number of sub-cases and we will not repeat it here, 

nor during the workshop, as it can be found in [6]. It is simpler and more useful in the context of a workshop 

to present the idea thus: when you have a spatial line whose perspective image you want to render, you will 

project some points of that line onto the faces of the cube. You will need no more than two points, chosen 

according to convenience. The problem is how to render a complete geodesic from any two given points 

on the cube. 

We need some notation here. Note that we cut open the cube according to Figure 3 and we mark 

reference points Front (𝑂𝐹), Left (𝑂𝐿), Right (𝑂𝑅), Back (𝑂𝐵), Up (𝑂𝑈) and Down (𝑂𝐷), at the center of 

each face. These are where orthogonal axes centered on 𝑂 would intersect the cube. We call horizon to both 

the plane 𝑂𝐹𝑂𝑂𝐿, and the horizontal line 𝑂𝐿𝑂𝐹 onto which it projects. 

When you have two points of a geodesic on the same face, you simply join them with a straightedge. 

To complete a cycle around the cube you need points on other faces, which you find by the following 

methods: 

1-Antipodes: For each point 𝑃 of a geodesic 𝑔 the antipode 𝑃− (the point diametrically opposite to 𝑃 

on the cube/sphere) also belongs to 𝑔. When 𝑃 is on one of the faces 𝐹, 𝐵, 𝐿, 𝑅 (resp. 𝑈,𝐷) the image of 𝑃− 

is obtained from that of 𝑃 by a vertical reflection across the horizon followed by a horizontal translation of 

two cube side lengths (resp. horizontal reflection across axis 𝑂𝑈𝑂𝐷 followed by vertical translation of two 

cube side lengths). In Figure 3 we use antipodes to extend the segment 𝐴𝐵 to a full geodesic (see caption). 

2-Identification (double points): because the cube must be cut to be flattened, a point on the edge of a 

cut will have a corresponding point on the edge that identifies with it on a connecting face. See for instance 

the double point 𝑁 in the example of Figure 5, imaged in both the top and front faces. Point 𝑁 is first 

obtained in face 𝑅 and then the geodesic is extended to face 𝑈 by identification. 

3-Edge leap: Given two points 𝐴 and 𝐵 on two adjacent faces 𝐹𝐴 and 𝐹𝐵 sharing an edge 𝑒, we wish 

to find the point 𝑆 where the geodesic 𝐴𝐵 crosses 𝑒. This may be found by the descriptive geometry diagram 

of Figure 4. The operation is described in detail in [6]. In short, the diagram represents 𝐹𝐴, 𝐹𝐵, and a plane 
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ε through 𝑂, perpendicular to both faces. On plane ε we obtain the orthographic projection 𝐶ε of the 

intersection of 𝐴𝐵 with the plane that bisects the dihedral angle 𝐹𝐴𝐹𝐵. We lift 𝐶ε to 𝐹𝐴 to obtain its image 

𝐶 on the orthographic projection of 𝐴𝐵 onto 𝐹𝐴. Finally, a line from 𝑂𝐴 through 𝐶 finds 𝑆 at edge 𝑒. The 

geodesic 𝐴𝐵 projects on 𝐹𝐴 and 𝐹𝐵 as the union of 𝐴𝑆 with 𝑆𝐵. See [6] for further details. 

4. Half-leap: Given the image 𝐴𝐵 of an arc of a geodesic 𝑔 on a cube face 𝐻, the following construction 

(from [6]) obtains two further points of the image of 𝑔: Let 𝑙 = 𝐴𝐵. Let 𝑙𝑂 be the translation of 𝑙 to 𝑂. Then 

𝑙𝑂 is in the plane of 𝑔 and intersects the cube at a pair of antipodal points 𝑀, 𝑀− in the image of 𝑔. These 

points lie in the midlines of two antipodal faces adjacent to 𝐻. In Figure 5 we use this construction to obtain 

point 𝑀 and close the 6-cycle generated by the segment 𝐴𝐵. Line 𝐴𝐵 is translated to the center 𝑂𝐹 to find 

the height of the projection of 𝑀 onto the vertical midline of the face 𝑅 of the cube. This is applied again 

in Figure 6 to obtain 𝑀 and thus extend the projection of a line 𝑙 on face 𝐹 to its image on face 𝑅. 

The operation to use depends on the relative position of the points you already have. Though a full 

classification has been presented in [6], we will dodge the litany of cases through inspection: at each step 

we just check what operations can be used with the points available. This is more intuitive and enjoyable 

in a workshop context, even if it does not guarantee a construction with the least possible number of steps.  

 

Figure 3: The flattening of the cube. A geodesic defined by a plane AOB becomes a 4-cycle (a closed 

cycle of 4-line segments) upon flattening of the cube. Starting from points A and B, points P and Q are 

obtained at the edges of the frontal face. Then points 𝑃− and 𝑄− are obtained by taking antipodes. These 

points are enough to determine the full 4-cycle. 

 

Figure 4: Descriptive geometry construction for the transition of a geodesic across cube faces. 
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Figure 5: The flattening of a 6-cycle geodesic. Point M is obtained by the “half-leap” construction: line 

𝐴𝐵 is translated to 𝑂 and it hits the vertical through 𝑂𝑅 at point 𝑀 which must belong to the geodesic. 

 

Figure 6: A stairway climbing from a vanishing point V under the frontal reference point 𝑂𝐹 to its 

antipode 𝑉− above 𝑂𝐵 (drawn by A. B. Araújo). We draw the steps by bouncing verticals and horizontals 

between two sloping lines 𝑙 and 𝑠 going to 𝑉. Drawing cropped to show only faces 𝐹, 𝑅, 𝐵. Scan the QR-

code to see the VR panorama online. 

 

Practical Work 

The workshop should have 20 participants or less, and the recommended age is 16 or older. Participants 

will be given a template with a flattened cube (as in Figure 3), pencils, erasers, and rulers. A compass will 

not be needed as we will use compositions of reflections to avoid rotations. This is also practical for outdoor 

sketching, where compasses are awkward to use. The workshop will proceed as follows: 

1. Brief introduction to spherical perspectives, geodesics and vanishing points. Description of the 

equirectangular and fisheye cases. Contrast with cubical case. Examples of applications and artworks. 

2. Projection of points from orthographic diagrams. Explanation of the surveying process for making 

a plan and elevation diagram of a room (the room where the workshop takes place may be used if adequate, 

but we will bring a template of an imaginary room that lends itself to the exercises). 

3. Construction of the cubical perspective of the room from its plan and elevation drawing. We will 

assume the walls to be parallel to the cubes faces and see how lines go to the principal vanishing points at 

the centers of the faces, and how slope changes discontinuously at the edges of each face. Discussion of 

vanishing point duality in spherical perspective.  

4. Construction of an imaginary wall at an arbitrary angle to the cube’s faces (or an arbitrary rotation 

of the observer’s referential). Finding the transition point of a line (for instance the top edge of the wall) 
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joining two known points in adjacent faces. This uses the method from Figure 4. Experiments with the use 

of antipodal points and identification points for continuation of a 4-cycle geodesic. 

5. Construction of repeating patterns using vanishing points. Tilings of the floor and walls. Making 

measurements and placing objects in the scene. Free sketching of small objects directly onto the perspective 

drawing once the overall large-scale schema is obtained. 

6. Construction of slopes and stairs using vanishing points (see Figure 6). Use of the half-leap points 

in 6-cycle geodesics.  

7. Brief instruction on how to render the obtained drawing as a VR panorama. This is a matter of 

scanning and cropping the picture and sending it to a suitable website (such as [1]) or desktop application 

(such as [7]). As these resources keep evolving, and updated list will be provided in the workshop.  

 

Summary and Conclusions 

Cubical perspective is a nice special case of spherical perspective, that compensates its lack of symmetries 

with the familiar rendering of linear perspective, allowing for easy insertion of freehand drawn objects into 

a scene. It is therefore a good tool for artists and an interesting exercise for geometers. 
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