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The retina, as part of the central nervous system (CNS), can be the perfect target for

in vivo, in situ, and noninvasive neuropathology diagnosis and assessment of therapeutic

efficacy. It has long been established that several age-related brain changes are more

pronounced in Alzheimer’s disease (AD). Nevertheless, in the retina such link is still

under-explored. This study investigates the differences in the aging of the CNS through

the retina of 3×Tg-AD and wild-type mice. A dedicated optical coherence tomograph

imaged mice’s retinas for 16 months. Two neural networks were developed to model

independently each group’s ages andwere then applied to an independent set containing

images from both groups. Our analysis shows amean absolute error of 0.875±1.1×10−2

and 1.112 ± 1.4 × 10−2 months, depending on training group. Our deep learning

approach appears to be a reliable retinal OCT aging marker. We show that retina aging

is distinct in the two classes: the presence of the three mutated human genes in the

mouse genome has an impact on the aging of the retina. For mice over 4 months-old,

transgenic mice consistently present a negative retina age-gap when compared to wild-

type mice, regardless of training set. This appears to contradict AD observations in the

brain. However, the ‘black-box” nature of deep-learning implies that one cannot infer

reasoning. We can only speculate that some healthy age-dependent neural adaptations

may be altered in transgenic animals.

Keywords: aging, artificial intelligence, age-gap, Alzheimer’s disease, deep learning, animal model, retina, optical

coherence tomography

1. INTRODUCTION

We are currently under a neurological epidemic. Over a third of all Europeans suffer from some
form of brain disease. In 2010, it was estimated that there were about 40–50 million people with
dementia worldwide (Nichols et al., 2019). Alzheimer’s disease (AD) accounts for 50–75% of all
cases of dementia (Prince et al., 2016). This is a persistent, long-lasting condition that has an
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enormous impact on the patients’ lives and their loved ones.
Worst of all, these numbers are not slowing down. With
improved care in many countries and increasing life expectancy,
numbers are expected to climb over the coming decades. The
rising prevalence and mounting economic burden poses a large
and growing threat to every government in the world.

Brain imaging can be expensive, invasive, and challenging.
However, the retina and the optic nerve are also part of
the central nervous system (CNS), sharing their embryonic
origin with the brain. There are many similarities between
the eye and the brain, in their anatomy, vascularization, and
mechanisms. As so, the eye is a readily available, inexpensive
window to assess neuropathology. Post-mortem data shows
amyloid-beta deposits in and aroundmelanopsin retinal ganglion
cells for AD subjects (La Morgia et al., 2016). Moreover, the
presence of hyperphosphorylated tau in the innermost layers of
the retina in mice has been demonstrated (Schön et al., 2012).
Grimaldi et al. (2018) showed that amyloid-beta plaques, hyper-
phosphorylated tau tangles, ganglion neuron degeneration,
astrogliosis, and microglial activation were already detectable at
a pre-symptomatic stage in the 3×Tg-AD mice model. Recently,
it has been observed that several microRNAs were deferentially
expressed in the retina of 3×Tg-ADmice when compared to age-
matched wild-type (WT) mice (Burgaletto et al., 2021). Imaging
methods such as optical coherence tomography (OCT) can image
the retina in vivo, in situ, and noninvasively. AD related retinal
OCT changes have already been reported in both humans and
animal models of the disease (Hart et al., 2016; Harper et al.,
2020).

Animal models are essential tools in the study of
human pathology. These allow us to better understand the
pathophysiology and guide us in the development of novel
therapeutics. Triple transgenic (3×Tg-AD) mice harbor three
human mutant genes: the Swedish amyloid precursor protein
(APPswe), presenilin 1 (PSEN1), and microtubule-associated
protein tau (MAPT), which are associated with familial AD
(Oddo et al., 2003). The observed progression timeline and
localization appear to mimic observations in humans. As so, this
animal model has been an important tool in the study of the
disease.

In this work, we take advantage of the broad spectrum of
deep learning (DL) to take a global look at retinal aging in age-
matched 3×Tg-AD vsWTmice. It has long been established that
several age-related changes in the brain are more pronounced in
AD (Fox and Schott, 2004; Sperling, 2007; Toepper, 2017). While
the same has been theorized for the decrease in retinal thickness,
results have been inconsistent, with both thickening and thinning
being reported. In Ferreira et al. (2021), differences were found
in all but the outer nuclear layer (ONL), including thickening
of the retinal nerve fiber layer—ganglion cell layer (RNFL-GCL)
complex, and thinning of all the remaining layers. Chidlow
et al. (2017) found no differences in retinal layer thickness when
investigating early stages in a mouse model of AD. Similarly,
Song et al. (2020) found significant thinning of the RNFL only.DL
has already demonstrated potential in medical image analysis in
multiple fields. Here, using DL as a modeling tool, allows us
to take an unrestricted approach to retinal age evaluation, not

focused on layer thickness, but instead theoretically considering
all the existing information from the OCT scan.

2. MATERIALS AND METHODS

2.1. Ethics Statement
This study was approved by the Animal Welfare Committee
of the Coimbra Institute for Clinical and Biomedical Research
(iCBR), Faculty of Medicine, University of Coimbra (approval
ORBEA 16/2015, addendum 6/2018). All procedures involving
mice were conducted as per statement for animal use by the
Association for Research in Vision and Ophthalmology, and in
agreement with the European Community Directive Guidelines
for the care and use of nonhuman animals for scientific purposes
(2010/63/EU), transposed into the Portuguese law in 2013
(DL113/2013).

2.2. Data
In total, 57 WT C57BL6/129S and 60 3×Tg-AD age-matched
male mice were used. Mice were randomly split into two sets:
DS1, containing 80.0% of the population, and DS2, containing
the remainder 20.0%. The same ratio of transgenic mice was
forced in both sets. For each mouse, volumes were acquired from
both eyes at the ages of 1, 2, 3, 4, 8, 12, and 16 months old
using a Micron IV OCT System (Phoenix Technology Group,
Pleasanton, CA, USA), resulting in 1,444 volumes of 512 B-
scans each (2D images composed of 512 one-dimensional scans
over depth, see Figure 1), imaged at a predefined retinal region
(directly above the optic disc). From these, regularly spaced B-
scans (5 B-scans apart) were selected, totaling 14.730 B-scans
(512× 1,024 pixels). Each selected B-scan was cropped to obtain
a region (512 × 512 pixels) centered at the retina whose location
was automatically determined. Each B-scan is normalized to have
zero mean, and unit-variance.

All mice were housed and maintained on a 12 h light/dark
cycle with free access to food and water at the vivarium of the
Coimbra Institute for Clinical and Biomedical Research (iCBR),
Faculty of Medicine, University of Coimbra.

Before OCT acquisition, each mice was anesthetized using
a mixture of 80 mg/kg of ketamine (Nimatek; Dechra) and 5
mg/kg xylazine (Sedaxylan; Dechra). Mice pupils were dilated
using a solution of 0.5% tropicamide (Tropicil; Edol) and 2.5%
phenylephrine (Davinefrina; Dávi). Additionally, oxibuprocaine
(Anestocil; Edol), a local anesthetic, was used. Eyes were regularly
lubricated using eye drops (1% carmellose: Celluvisc; Allergan).

The OCT system used has an imaging depth of 1.4 mm
and axial resolution of 3 µm, as determined by the bandwidth
and central wavelength, respectively 160 and 830 nm, of the
superluminescent diode used. All acquisitions were performed
by the same operator. To guarantee a well spread-out B-scan
selection, some limitations were imposed on the random process:
minimum separation between B-scans and minimum number of
selected B-scans per volume. Detailed data characterization can
be found in the Supplementary Material. B-scans are saved as
non-compressed TIFF file images.
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2.3. Age Modeling
Deep-learning is not limited to any pre-existing knowledge.
Instead, layer-to-layer more and more complex representations
are created, and theoretically, no abstract representation is off
limits. As so, it is our tool of choice to model and compare the
retinal aging in both groups.

We trained and tuned two different models, each trained with
only data from one group: one using only B-scans fromDS1WTs
(M1), and the other using only B-scans fromDS1 transgenic mice
(M2). Both models were then used to predict age in DS2 B-scans,
which included B-scans from bothWT and transgenic mice. This
setup allows us to evaluate the consistency of our results and
eliminate training bias. Figure 2 summarizes the study workflow.

We used transfer-learning, dropout regularization, and
artificial data augmentation as overfitting mitigation tools. The
base network of choice was a DenseNet (Huang et al., 2017)
pre-trained on ImageNet (Deng et al., 2009). Data augmentation
(rotation, scaling, and horizontal reflection) was applied to
training only. For each model, 20.0% of the training images were
used for hyperparameter tuning.

Age prediction is achieved using the best performing
hyperparameter combination as assessed independently for
each model in the respective tuning set (grid-search selecting
dropout, learning-rate, momentum, and training steps).
For uncertainty estimation, variational dropout was used
(Gal and Ghahramani, 2016), i.e., 50 different prediction calls

FIGURE 1 | Representative optical coherence tomography B-scans. Top to bottom, B-scans of a Wild type and a triple transgenic familiar Alzheimer’s disease

mouse model (3×Tg-AD), imaged at 1 and 16 months old, right to left, respectively.

FIGURE 2 | Training, tuning, and testing workflow. Dataset 1 (DS1) was used for training and tuning (80/20%) of two models, M1 and M2, using only wild-type and

3×Tg-AD B-scans, respectively. Dataset 2 (DS2) containing both genotypes was used for hold-out testing with both models.
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are made per image using dropout regularization to act as the
response of a group of various models that can be interpreted as
a Bayesian probability distribution. Final prediction is computed
as the average of the 50 calls, and uncertainty as its standard
deviation.

2.4. Statistics
Kolmogorov–Smirnov test was used to assess normality of age
distribution per group, at each time-point. Statistical differences
between groups (WT vs. 3×Tg-AD) were tested using the non-
parametric Mann–Whitney test, since most of the normality tests
were statistically significant. All tests were performed with the
IBM SPSS 27 software.

3. RESULTS

Kernel density estimates for each acquisition time-point,
separated per class, are shown in Figure 3, for both M1 and
M2 models (WT and 3×Tg-AD trained, respectively). Overall,
independently of training type, it was possible to predict mice age
with a reasonable degree of precision, achieving a mean absolute
error (MAE) of 0.875 ± 1.1 × 10−2 and 1.112 ± 1.4 × 10−2

months, for M1 and M2 predictions, respectively. WT training
achieved slightly better performance. As expected, in both cases,
prediction in the trained class was better than the opposite, MAE
of 0.739±1.6×10−2 (WT) vs. 1.019±1.5×10−2 (AD)months for
M1, and MAE of 0.901± 1.7× 10−2 (AD) vs. 1.310± 1.8× 10−2

(WT) months for M2.
As shown, there is a retinal age gap. There are differences

in retinal aging between the two classes for both training
conditions. However, contrarily to what we expected, after month
4, WT retinas appear to be consistently predicted as older
than 3×Tg-AD retinas. Exact p-values of the Kolmogorov–
Smirnov and Mann–Whitney tests can be found in the
Supplementary Material.

4. DISCUSSION

Even with years of research, AD timely diagnosis is still lacking.
Despite the considerable advantages of imaging methods such
as magnetic resonance imaging (MRI) and positron emission
tomography, these are not suitable as screening methods due to
their cost and lack of generalized availability. The retina offers
the incredible opportunity to directly observe the impact of AD
on neuronal tissue (Chiquita et al., 2019), rendering it attractive.
Nevertheless, this field of research is still underdeveloped. Most
approaches so far have looked at layer thickness, having gotten
mixed results, with both thickening, thinning, and no differences
being reported for individual retinal layers (Chidlow et al., 2017;
Song et al., 2020; Ferreira et al., 2021).While important, thickness
analysis forgoes a wealth of information that can be captured by
OCT.

In this work, we evaluated how the aging of the retina is
affected in an animal model of AD. Animal models were a natural
choice, since matching pathology duration was mandatory, and
medical data is often difficult to gather in the quantities needed
for effective DL utilization. These models have been of pivotal
importance in the study of AD. Nevertheless, further studies with
human data will be required to check whether the findings in
humans are like those obtained here.

We modeled the aging of the mouse retina and its aging
when a pathological condition affects the CNS, and used an
independent dataset to test the two resulting models. Because
each model was trained with a different group (WT or 3×Tg-
AD), we are able to eliminate training bias.

We were able to predict the age of the retina with a low
average error independently of training on WT or 3×Tg-AD B-
scans. Thus, DL was used to create a reliable retinal OCT aging
marker. We have also shown that retina aging is distinct in the
two classes. Our results clearly indicate that the presence of the
three mutated human genes in the mouse genome has an impact

FIGURE 3 | Kernel density estimates of the predicted age, separated per class (wild-type vs. 3×Tg-AD), for each acquisition time-point. From left to right, results for

the wild-type and the 3×Tg-AD trained models. Median (dashed), and first and third quartiles are shown. *p < 0.05, **p < 0.01. Asterisk color indicates a higher

median value.
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on the aging of the retina. However, our results also suggest
that, in some sense, there is a complex underlying biological
cause resulting in age-dependent alterations. Unexpectedly,
after month 4, retinas from wild-type mice appear to be
consistently predicted as older than retinas from transgenic mice,
independently of the training group. This appears to contradict
what has been observed for AD, where some age-related changes
such as, neural tissue thinning, neural activity and functional
connectivity impairments were shown to be more pronounced
in AD (Fox and Schott, 2004; Sperling, 2007; Toepper, 2017;
Chiquita et al., 2019). It also appears to contradict findings
in Li et al. (2017) and Löwe et al. (2016), where AD patients
presented a positive brain-age gap (greater brain aging), and
findings in Gaser et al. (2013), where brain-predicted age was a
significant predictor of dementia progression within 3 years of
baseline MRI scan.

In prior studies using the same 3×Tg-AD strain, unpublished
results from our research group failed to identify differences
in neuroinflammatory markers and neural cell death, among
others, rendering findings herein even more interesting. It
was previously shown that aging affects differently the gene
expression in male and female mice brains (Zhao et al.,
2016). Male mice presented significant brain alterations at older
ages (12–15 months of age) compared to female mice (6–
9 months of age). In Subramaniapillai et al. (2021), among
adult humans with family history of Alzheimer’s disease and
APOE4 genetic risk, women appear to have more advanced
brain aging than men. Nevertheless, the DL-based method
used here, allowed the detection of age-related changes in the
retina of younger male mice, suggesting that our approach is
a powerful tool in predicting age-associated effects at earlier
time points.

Agemodeling alone showed statistically significant differences
between 3×Tg-AD and WT mice 8 months old or older, even
though the model was never trained with the two classes.
It is possible that a dedicated approach could successfully
distinguish the two strains, perhaps even at an earlier stage.
Indeed, in Grimaldi et al. (2018), changes were seen as soon as
1–2 months after birth. The OCT is sensitive to very slight
refractive index alterations along the light path. Thus, any
changes in retinal content and structure ultimately influence
the refractive index of the tissue, leading to changes in
captured scans. If these findings are realized and verified
in humans, OCT could become a powerful screening tool
for AD.

The “black-box” nature of DL implies that one cannot infer
the reasoning of each classification decision. For reference,
we did apply deep Taylor decomposition to break down
the final decision into individual contributions by relevance
backpropagation (Montavon et al., 2017). Results are shown
in the Supplementary Material. Nevertheless, although these
methods provide an important insight, they are still limited,
as we are still left unaware of how the revealed patterns link
with age.

Several age-dependent cellular and molecular changes have
been described in mouse retinas, such as, photoreceptor
mislocalization (Sugita et al., 2020) and vascular and RPE changes

(Hermenean et al., 2021). Regarding metrics captured by OCT,
although some studies have found age-dependent alterations
in mouse retinas, such as auto-fluorescence (Ferdous et al.,
2021) and scattering diversity (Gardner et al., 2020), these
cannot be directly compared with our results. Therefore, we
can only speculate that some healthy age-dependent neural
adaptations may be altered in transgenic animals. Indeed,
delayed neural development has been suggested to occur in
an AD mouse model (Rusznak et al., 2016). In addition,
complex interactions between inserted mutated genes and
genetic background may take place, which further hampers
biological interpretations. Further functional and molecular tests
will be needed to understand which factors contribute to our
observations, namely the alteration in the retina aging of 3×Tg-
AD mice.
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