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Alterations in neurotransmission have been implicated in nu-
merous CNS disorders including Alzheimer disease, Parkinson 
disease, Huntington disease, amyotrophic lateral sclerosis, de-
pression, anxiety, addiction, epilepsy and schizophrenia.13 As 
the number of transgenic animal models designed to mimic hu-
man pathophysiology of CNS disorders exponentially increases, 
it has become paramount to quantify changes in neurotrans-
mitter levels during the progression from healthy to diseased 
phenotype. Unfortunately, few techniques support the mea-
surement of real-time changes in neurotransmitter levels over 
multiple days, as is essential for ethological or pharmacother-
apy studies. Microdialysis typically is used for these research 
paradigms, but its poor temporal and spatial resolution, makes 
this technique inadequate for measuring the rapid dynamics 
(milliseconds to seconds) of fast signaling neurotransmitters, 
such as glutamate and acetylcholine.37,63,66 As such, advances 
in enzymatic biosensors coupled with electrochemical record-
ing techniques have closed the gap in our understanding of 
neurotransmission.16,19,24,25,27,30,32,35,36,41,47,49,67 Here we discuss the 
benefits, methods, and animal welfare considerations of using 
platinum microelectrodes on a ceramic substrate for enzyme-
based electrochemical recording techniques for real-time in vivo 
neurotransmitter recordings in both anesthetized and awake, 
freely moving rodents.

Microdialysis Compared with Electrochemical 
Biosensors

Since the early 1980s, microdialysis has been used routinely 
to sample neurotransmitters and neuromodulators in the ex-
tracellular space of the CNS. This technique uses a semiperme-
able membrane that acts as a capillary to control the diffusion 
of extracellular neurotransmitters along their concentration gra-
dients,17,37,65 which subsequently are measured using offline tech-
niques such as HPLC coupled with electrochemical detection. 
Because microdialysis is a sample collection system, the entire 
interstitial fluid around the probe is obtained to enable offline 
determination of multiple analytes at femtomolar concentrations. 
Typically, microdialysis samples are collected every 5 to 20 min, 
although advances in the detection methods coupled with on-
line HPLC have allowed for subminute sampling rates.38,40,57,64 
However, these approaches are complicated, labor-intensive, and 
expensive and therefore are impractical for routine use by many 
laboratories.

Although minute sampling rates may be sufficient to study 
most catecholaminergic neurotransmissions, the temporal resolu-
tion of microdialysis is too slow to detect the millisecond release 
and uptake of many excitatory or inhibitory neurotransmitters. 
This is the first of several limitations of microdialysis. Second is 
the low spatial resolution of the dialysis probes. A typical dialysis 
probe has a diameter of 150 to 400 µm with an average length of 
1 to 4 mm— significantly larger than the synaptic cleft—thereby 
precluding analyte sampling close to the synapse. The large size 
of the dialysis probe coupled with the rapid uptake of glutamate 
into astroglial transporters hampers accurate measurement of 
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specific neurotransmitters. These procedures have been thor-
oughly detailed elsewhere.28,31 Few neurochemicals are electro-
chemically active at potentials of ≤ +0.7 V on platinum surfaces 
compared with a Ag/AgCl reference electrode, and those that 
are detectable are often not the molecule of interest. Furthermore, 
compounds such as ascorbic acid, DOPAC, 5-hydroxyindolacetic 
acid, and uric acid are present in the extracellular fluid in 100- to 
1000-fold higher concentrations than are biogenic amines and 
amino-acid transmitters.1,42,43 To discriminate against these mol-
ecules and improve the selectivity for the analyte of interest, 
various protective films can be applied onto the MEA surface. 
Nafion is an anionic Teflon derivative whose negatively charged 
sulfonic acid groups repel anionic interferents (such as ascorbic 
acid, DOPAC, 5-hydroxyindolacetic acid, and uric acid) and con-
centrate cationic analytes (such as dopamine, serotonin, and nor-
epinephrine) at the platinum recording surfaces. The preparation 
of Nafion on the MEA makes this film a reliable choice of measur-
ing neurotransmitters over multiple days (7 to 10 d) in awake, 
freely moving rats and mice.29,59 However, because Nafion slightly 
concentrates biogenic amines to the recording surface,1 m-phen-
ylenediamine can be used in CNS regions with high tissue lev-
els of monoamines. m-Phenylenediamine is electropolymerized 
onto the MEA, and the selectivity is likely achieved by forming a 
size exclusion layer that prevents larger molecules (ascorbic acid, 
dopamine, and DOPAC) from reaching the recording surface, 
whereas smaller molecules (nitric oxide and hydrogen peroxide, 
H2O2) are able to pass through the matrix.20,41 Finally, when mea-
suring analytes that exist in millimolar concentrations (glucose 
and lactate), an additional polyurethane layer is applied. Polyure-
thane improves the linearity of the MEA for high concentrations 
of glucose or lactate yet provides an additional exclusion layer 
that prevents the diffusion of biogenic amines, thereby making 
the MEA nearly interferent free.9

Enzymes provide a means to convert a molecule that is not 
inherently electroactive (and thus not measurable with this tech-
nique) into a reporter molecule (such as H2O2) that is oxidized 
at the platinum recording surfaces. The current measured from 
the oxidation of H2O2 generated during the enzymatic break-
down is directly proportional to the analyte concentration.28,31 
Table 1 provides a list of available enzymes and their potential 
uses. Some compounds require multiple enzymes to convert 
them to a reporter molecule, such as acetylcholine, adenosine, 
and GABA. A chemical crosslinking procedure is used to im-
mobilize the enzymes to the MEA recording surface, thereby 
stabilizing the enzymes and prolonging their activity. Research-
ers have used several of these enzymes, including L-glutamate 
oxidase,3,6-8,11,14,15,19,24,25,27,29,34,39,46-48,50,55,56,59-62 acetylcholinesterase,10,22,44 
choline oxidase,8,50-54 L-lactate oxidase9 and L-glucose oxidase6 for 
in vivo neurochemical measurements. Although uncoated MEAs 
have a long shelf life, we recommend using a coated MEA within 
2 wks.

Self-Referencing
The development of MEA with multiple, uniform recording 

surfaces that are patterned in a precise geometrical configura-
tion allows researchers to apply similar films or enzymes on 2 
separate, yet spatially adjacent, recording surfaces. This coating 
procedure allows for recognition of possible interfering agents 
and their removal from the analyte signal. Essentially, a self-ref-
erencing MEA can be considered the electrochemical equivalent 

glutamate release, clearance, and resting levels by microdialy-
sis.18,25,63 Third, the constant perfusion of artificial cerebral spinal 
fluid into the CNS is speculated to dilute neurotransmitter lev-
els.25 Fourth, implantation of the microdialysis probe results in 
short- and long-term cellular damage, as evidenced by the his-
tologic, physiologic, biochemical, and neurochemical changes in 
CNS tissue that can occur within a 2.8-mm circumference around 
the implant site5,12,23 and result in aberrant neurotransmitter re-
lease and uptake as far as 220 µm from the probe.4,68

As such, electrochemical techniques have been developed to 
address the limitations of microdialysis. In vivo electrochemistry 
is a simple yet powerful means for real-time, online monitoring 
of neurotransmitter overflow in the extracellular space.1,42 A po-
tentiostat controls an applied potential at the working microelec-
trode (typically an inert material such as platinum, iridium, or 
carbon) compared with a Ag/AgCl reference. With a sufficient 
potential, molecules are either oxidized or reduced, depending 
upon their intrinsic electrochemical properties, directly at the 
working electrode surface. The currents generated from Faradaic 
reactions are linear with regard to the concentration of the electro-
active molecule(s) in the tissue surrounding the microelectrode. 
For a more detailed explanation of the electrochemistry involved, 
we refer the reader to the literature.1,21,26,28,31,42,45

These microelectrodes initially were single-carbon fiber wires 
used for the detection of dopamine, serotonin, and norepinephrine; 
however, they have had limited success for monitoring nonelec-
troactive neurotransmitters, such as γ-aminobutyric acid (GABA), 
glutamate, and acetylcholine. A new generation of microelectrodes 
therefore was developed. By using photolithographic techniques, 
researchers have been able to reproducibly pattern multiple record-
ing sites onto a single biocompatible substrate, thereby creating a 
microelectrode array (MEA). This development has become ex-
tremely important, considering that MEA measure analytes only 
from small foci (microns) of tissue directly surrounding the record-
ing surface. In addition, electrodes with multiple recordings sites 
can be arranged geometrically to measure analyte concentrations 
from 2 or more distinct brain regions28 (Figure 1 A through C). MEA 
designed by using photolithographic techniques have reproducible 
high spatial (microns) resolution and minimal damage to tissue (50 
to 100 µm).23 When coupled with constant-potential amperometry, 
the measurement of current at a constant, fixed potential, neuro-
chemical events can be monitored as rapidly as every millisecond 
or less21,45 over multiple days29,59 with the ability to simultaneously 
detect single-unit activity and local field potentials.23,69,70

In conjunction with constant-potential amperometry, MEA are 
not without their pitfalls. They have poor chemical resolution, 
such that it is difficult to distinguish between multiple electroactive 
molecules that are present in vivo. To further complicate matters, 
several interfering compounds (ascorbic acid, 3,4-dihydroxyphen-
ylacetic acid [DOPAC], 5-hydroxyindoleacetic acid, and uric acid) 
exist and can be measured at oxidation potentials similar to those of 
biogenic amines. Fortunately, these limitations can be addressed by 
using MEA surface modifications (exclusion layers and enzymes) 
as well as self-referencing techniques that allow for selective moni-
toring of specific neurochemicals, including dopamine, glutamate, 
choline, acetylcholine, glucose, lactate, and adenosine.

MEA Surface Modifications
Prior to in vivo studies, MEA are subjected to numerous clean-

ing and coating procedures to ensure successful detection of 
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methods, we are able to eliminate unknown artifacts from the 
analyte signal and enhance the signal-to-noise ratio. This proce-
dure is often referred to as ‘self-referencing,’ and demonstrations 
of these principles are provided elsewhere.6,8,11

In addition to the ability to remove interferents that contribute 
to an analyte signal, self-referencing recordings can remove pe-
riodic or random noise and account for sensor drift, which may 
occur over prolonged implantation time. This ability provides 
an obvious advantage because smaller changes in current (lower 
detection limits) can be achieved in vivo.6 In addition, self-ref-
erencing is useful during real-time (subsecond) monitoring of 
analytes in the brain. If the analyte-detecting site responds in the 
absence of a response on the control sites, the signal is considered 
to be due to analyte. For this situation, the control site is not used 
to quantify the analyte but rather to determine whether an inter-
fering signal is present.6

of performing double-beam spectroscopy. Ideally, the only differ-
ence between the 2 sites is that one responds to the analyte of in-
terest whereas the other does not. This difference is accomplished 
by coating an enzyme specific to an analyte of interest on one 
recording site and applying a chemically inactive protein to the 
other recording site (Figure 1 D). This chemically inactive site is 
often referred to as the control or sentinel site. The enzyme-coated 
site detects the analyte of interest in addition to everything else 
that the control site detects. Applying an inactive protein layer to 
the control site is necessary to minimize differences between the 
diffusional properties of molecules reaching the different record-
ing surfaces.6,8 Without this coating, the control sites may respond 
faster to interferents than do the analyte-detecting sites. Ensuring 
similar response times of the recording surface is imperative to 
remove the background and interfering signals from the analyte 
signal during offline subtraction. Using these offline subtraction 

Figure 1. MEA designs and enzyme coating. Photographs of the fully fabricated (A) anesthetized and (B) freely moving MEA. (C) Magnified images of 
tips with several electrode recording sites patterned in unique geometrical configurations. The name of each tip is shown in the upper right, whereas 
the size of the recording sites is shown at the lower left. Where applicable, the distance between groups of recording sites is labeled. (D) Self-referencing 
schematic of an MEA coated with an exclusion and an enzyme layers for measurement of glutamate. Site 1 is an active recording site with the glutamate 
oxidase –BSA–glutaraldehyde coat in blue, and site 2 is a sentinel site with the BSA–glutaraldehyde coat in pink for the R2 MEA. Yellow indicates the 
exclusion layer, either Nafion or m-phenylenediamine.
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prior to proceeding. The procedures we outline here are based on 
methods used by the authors at several different institutions in 
the United States, Europe, and Canada. All procedures were ap-
proved with their respective IACUC.

Nonsurvival surgical procedure for recordings in anesthetized 
rodents Recording in anesthetized animals are ideal for perform-
ing dose–response studies in multiple CNS regions of a single 
animal. MEA can be reused multiple times for these experiments, 
helping to reduce costs. However investigators must remember 
that anesthetics can directly affect receptors. For example, ket-
amine, a noncompetitive n-methyl-d-aspartate receptor antago-
nist, would not be an ideal anesthetic for glutamatergic studies.2,58

Rodents are anesthetized with urethane (1.25 g/kg IP) or an-
other IACUC-approved anesthetic, such as isoflurane. When the 
animal no longer responds to sensory stimuli, it is placed in a ste-
reotaxic frame (Kopf Instruments, Tujunga, CA) and monitored 
for responsiveness throughout the experiment approximately 
every 10 to 15 min. A Deltaphase Isothermal Pad (Braintree Sci-
entific, Braintree, MA) is placed between the metal frame and 
the animal to maintain its body temperature at 37 °C. In the case 
of mice, these heating pads are bulky, so a water pad connected 
to a heated water bath (Stryker, Kalamazoo, MI) can be used to 
maintain body temperature. All surgical tools must be sterilized 
prior to surgery, typically by autoclave. The fur over the skull 
is shaved, wiped with a povidone–iodine solution, and a heat-
sterilized scalpel is used to make a small incision along the mid-
line of the scalp. The skin is reflected by using bulldog clamps 
(Fine Science Tools, Foster City, CA). Once the skull is exposed, 
a rotary tool (Dremel, Mount Prospect, IL) with bit size 107 (rats) 
or 105 (mice) is used to perform a craniotomy large enough to 
lower the MEA (Quanteon) into the CNS region of interest. With 
heat-sterilized forceps, the overlying dura is pulled laterally to 
expose the surface of the brain. Finally, a small hole is drilled in 

MEA Calibration
Microfabricated MEA generally have highly reproducible re-

cording surfaces; however, manufacturing procedures may cause 
slight variations to each recording surface that could alter their 
responses to analytes. In addition, current-exclusion and enzyme-
coating procedures can result in different layer thicknesses; there-
fore, each MEA must be calibrated in vitro prior to experimentation 
to determine standard curves. Essentially, the calibration is used to 
equate a change in current from the oxidation of H2O2 to a propor-
tional change in analyte concentration from the oxidase enzyme 
generating H2O2 at physiologic temperature (37 °C) and pH (7.4). 
The current, in picoamperes, is measured by a potentiostat, such 
as the Fast Analytical Sensing Technology (FAST) 16mkIII system 
(Quanteon, Nicholasville, KY), and generates a standard curve 
for each recording site. In addition, known interferents such as 
ascorbic acid, are added during the calibration to test the selec-
tivity of the recording sites to the analyte of interest compared 
with interferents. Finally, compounds used for pharmacodynamic 
studies should be tested in vitro to ensure they are not inherently 
electrochemically active, a situation that would falsely contribute 
to neurotransmitter levels during recordings. Once calibration is 
complete, the standard curve is used to determine the concentra-
tion of the measured analyte from the change in current during in 
vivo experimentation.

MEA Implantation and  
Neurotransmitter Recording

These MEA were designed for routine recordings of neuro-
transmission in the CNS of anesthetized or awake, freely moving 
rats and mice. The following section outlines the procedure for 
the preparation and surgical implantation of the MEA for in vivo 
CNS recordings. All protocols should be approved by the IACUC 

Table 1. Enzymes

Substrate Product

Acetylcholinesterase Acetylcholine Choline, acetic acid
Alcohol oxidase Alcohol, O2 H2O2, aldehyde
Ascorbate oxidase Ascorbate, O2 Dehydroascorbate
Aspartate oxidase Aspartate, O2 H2O2, NH4

+, oxaloacetate
Catalase H2O2 O2

Cholesterol oxidase Cholesterol, O2 H2O2, 4-cholesten-3-one
Choline oxidase Choline, O2 H2O2, betaine
Galactose oxidase D-galactose, O2 H2O2, d-galacto-hexodialose
Glucose oxidase Glucose, O2 H2O2, gluconic acid
L-glutamate oxidase L-glutamate, O2 H2O2, α-ketoglutarate
GABase GABA, α-ketoglutarate Succinic semialdehyde, l-glutamate, NADPH, H+

Glutaminase Glutamine NH4
+, l-glutamate

Glycerol kinase Glycerol, ATP Glycerol-3-phosphate, ADP
Glycerol-3-phosphate oxidase Glycerol-3-phosphate, O2 H2O2, dihydroxyacetone phosphate
Hexokinase ATP, glucose Glucose-6-phosphate, ADP
Horseradish peroxidase H2O2 H2O, O2

Lactate oxidase Lactate, O2 H2O2, pyruvate
Lysine oxidase Lysine, O2 H2O2, NH4

+, 6-amino-2-oxohexanoic acid
Pyruvate oxidase Pyruvate, O2, phosphate H2O2, CO2, acetyl phosphate
Sarcosine oxidase Sarcosine, O2 H2O2, glycine, formaldehyde
Xanthine oxidase Xanthine, O2 H2O2, uric acid
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drilled in the skull in the quadrants adjacent to the MEA implan-
tation site, for placement of stainless steel skull screws. A fourth 
hole is drilled contralateral from the recording site for insertion 
of the Ag/AgCl reference electrode wire. Next, 3 small stainless 
steel screws (Small Parts, Logansport, IN; disinfected in 70% etha-
nol) are threaded into the skull to serve as anchors, and care is 
taken so that the screw tips do not touch brain tissue or dura. A 
small (maximum, 2 mm × 2 mm) craniotomy is performed over 
the recording area, and a calibrated MEA pedestal assembly is 
implanted based on stereotactic coordinates. The assembly is se-
cured with approximately 4 layers of dental acrylic (Lang Dental 
MFG), with care taken to cover as much of the pedestal assembly 
as possible. The dental acrylic should have a smooth texture, and 
excess acrylic should be removed from the skin surface to avoid 
postsurgical irritation, which may cause the animal to scratch its 
head frequently and potentially damage the implant. Depending 
on the length of the surgery, fluid replacement with a subcutane-
ous injection of Ringers solution might be necessary.

Once the dental acrylic has dried, the rodent is removed from 
anesthesia, and oral acetaminophen (mice: 120 mg/kg PO ev-
ery 4 h; rats: 100 mg/kg PO every 4 h)33 is given to help alleviate 
postoperative pain. The described survival surgeries typically 
last approximately 30 to 45 min. Because of this short duration, 
analgesics can be given immediately preoperatively or postop-
eratively. Because acetaminophen is given orally, rodent access to 
postoperative analgesics can be maintained if necessary, in accor-
dance with approved dosing schedule for the analgesic. However, 
subsequent doses of acetaminophen or other analgesics rarely are 
necessary with this procedure, as the rodents usually do not show 
signs of pain or distress (lack of eating, drinking, or grooming; 
hunched posture) after initial administration of acetaminophen. 
Animals are returned to their home cages and placed on a heat-
ing pad until fully recovered from anesthesia. Food and water 
are provided ad libitum. During this recovery phase, trained per-
sonnel should monitor continuously for signs of distress, and 
appropriate measures should be taken to alleviate such symp-
toms. Once fully recovered from anesthesia and in the absence of 
signs of distress, animals are returned to their housing facility and 
allowed 72 h to recover prior to initiation of behavioral testing. 
Although infection or inflammation is possible near the implanta-
tion site, we have had great success with the procedures outlined 
and have had no apparent incidence of infection or inflammation 
in chronically implanted rodents. At any time after surgery, ani-
mals developing signs of pain or distress that cannot be alleviated 
should be euthanized according to approved IACUC protocols.

Rodents are typically group housed before surgery, but are 
single-housed after surgery. This is done to avoid interactions 
with other animals that may interfere with healing of the skin 
surrounding the implant site. After surgery, rodents are housed 
in traditional solid-bottom rodent cages with bedding, and no 
changes in housing are necessary, including those involving the 
feeder and wire-bar lid. Additional bedding or enrichment can be 
added if deemed necessary for the experiment or for animal well 
being, but is not necessary for recovery.

Conclusion
Electrochemistry is a powerful technique for studying online, 

real-time neurotransmission in anesthetized and awake freely 
moving rats and mice. This technique has helped researchers elu-
cidate altered neurochemical signaling in numerous models of 

a remote location from the recording site for an Ag/AgCl refer-
ence electrode (A-M Systems, Sequim, WA). The coated tip of the 
Ag/AgCl reference electrode (disinfected in 70% ethanol prior 
to coating) is inserted into the brain and held in place by using 
dental acrylic (Lang Dental MFG, Wheeling, IL). The MEA is at-
tached to the stereotaxic arm via an electrode manipulator (Kopf 
Instruments), and a micromanipulator (Narishige International, 
East Meadow, NY) can be used to precisely raise or lower the 
MEA in the CNS.

Throughout the experiment, the animal should be evaluated 
for anesthetic depth and physiologic functions, and appropriate 
actions should be taken to prevent animal discomfort. Depend-
ing on the length of the surgery or experiment—typically 1 to 6 
h depending on the anesthesia used and experimental design—
fluid replacement with a subcutaneous injection of Ringers so-
lution might be necessary. Once the experiment has concluded, 
the animal should be euthanized according to approved IACUC 
protocols.

Survival surgical procedure for recordings in awake, freely 
moving rodents Survival surgeries for long-term (multiple days) 
neurotransmitter recordings typically use chronically implanted 
MEA23-25,29,30,59 and are necessary for ethologic testing to correlate 
phenotypic and neurotransmitter alterations during behavior-re-
lated tasks. Some behavioral paradigms, such as the Morris water 
maze, are ill-suited for these types of recordings. In our experi-
ence, MEA have successfully been implanted in rodents without 
noticeable changes in normal behavior (eating, grooming), with 
minimal damage to the surrounding tissue,23 and without infec-
tion or irritation at the implant site for as long as 12 mo. However, 
in vivo MEA viability varies depending on the characteristic be-
ing tested. For example, glutamate has been reliably measured 
for at least 14 d after implantation.23 Positive responses to local 
application of H2O2 (tests MEA viability but not enzyme-coating 
function) have been observed for at least 90 d after implantation.59 
Finally, electrophsyiologic studies have used MEA to record local 
field potentials for as long as 180 d after implantation.23 The data 
indicate that the enzyme coating on the MEA deteriorates long 
before the MEA stops functioning.

During the week prior to surgery, rodents are acclimated to 
the recording chamber for 1 h each on 5 separate days to help 
prevent stress or anxiety due to introduction to novel stimuli dur-
ing recordings. On the day of surgery, the MEA is calibrated and 
prepared for chronic implantation. All surgical instruments are 
autoclaved prior to initial use and heat-sterilized in a glass-bead 
sterilizer during surgery, and the operative work site is disin-
fected with 70% ethanol. All surgeries are performed in a Vertical 
Laminar Flow Workstation with HEPA filtration (Microzone, Ot-
tawa, Canada). Rats or mice are anesthetized with approximately 
2% isoflurane and placed in a stereotaxic apparatus fitted with a 
gas anesthesia head holder and mask and nonrupture ear bars 
(Kopf Instruments). Animal body temperature is maintained at 37 
°C by using a Deltaphase isothermal heating pad (BrainTree Sci-
entific), and the animals’ eyes are lubricated with artificial tears 
(The Butler Company, Columbus, OH) to help maintain moisture 
and prevent infection. Prior to incision, the fur directly over the 
skull is shaved, and the skin directly on top of the animal’s head 
is wiped with povidone–iodine solution to clean the incision area 
and to reduce the likelihood of infection. A scalpel is used to make 
a single incision along the midline, and the skin is reflected us-
ing bulldog clamps (Fine Science Tools). Then 3 small holes are 
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