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Abstract—The paper proposes an implementation of the mes-
sage passing algorithm adapted to iterative channel detection.
The algorithm uses soft messages associated to non binary
symbols in order to cancel cycles in the equivalent Tanner graphs,
achieving optimal performance after a low number of iterations.
This architecture, suited to very fast channel detectors, is applied
to magnetic recording channels and adapted to the non stationary
nature of the magnetic media noise.
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I. INTRODUCTION

In the last ten years storage technology has played a funda-

mental role in the progress of all the software and hardware

applications in information technology. In this context, mag-

netic recording is the fundamental technology of information

storage. Hard disk drives provide the features essential to this

technology, particularly in terms of capacity, cost, access time

and reliability of the stored data. Capacity growth of hard disks

has followed and, at the same time, promoted the increasing

demand for “room” in modern computer applications. From

a signal processing point of view, the problem is challenging

for two main reasons: (i) the length of the discrete equivalent

channel impulse response of the magnetic channel (i.e. with

considerable amount of inter-symbol interference) and (ii) the

noise statistics, which is colored and data dependent since

generated more by the precision of the writing/reading heads

rather than by the additive gaussian electronic noise.

This paper presents a class of detectors based on the

message passing algorithm (MP) and characterized by very

low latency and an attractive parallel implementation. This

solution, originally implemented for additive white Gaussian

noise (AWGN), is then improved by matching more precisely

the noise autocorrelation at the input of the detector, affected

by the necessity of a partial response pre-equalization and

data-dependent noise.

The solution adopted in this work is inspired by the ap-

proach presented in [1] and used for decoding binary infor-

mation passed through a channel characterized by a discrete

equivalent response. In [1], the authors adapt the message-

passing principle, conceived for Low Density Parity Check
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(LDPC) codes [2] [3], to the computation of soft information

associated to bits that are convolved with a channel response

function. Tanner graphs associated to channels with memory

show that performance of this detector is greatly affected by

the presence of cycles and the numerical results confirm this

aspect of the application. In fact presence of cycles is intrinsic

to the structure of channel detection since the memory taps

of the impulse response operate on successive samples of

the input data (a random interleaver cannot be used as in

error correcting codes). This problem is addressed in [1] by

means of an alternative parallel implementation of the soft

detector based on message passing of state information in a

forward and backward way, like in the BCJR algorithm [4],

[5]. This paper deals with an alternative view of the problem

and uses a non-binary implementation of the message passing

algorithm for mitigating and cancelling the cycle impact. The

non-binary version of the algorithm increases complexity in

the message generation, maintaining its convenient parallel

structure, suitable for integration with turbo and LDPC codes.

In addition, the soft messages associated to non-binary sym-

bols will be derived taking into account the statistics of the

colored data dependent noise improving substantially detection

performance.

The paper is organized as it follows. Sect. II introduces

the system model and Sect. III describes the principle and

the computations involved in the message passing algorithm

extended to the non-binary case. Then, in Sect. IV, we inves-

tigate the application of noise predictors in this detector either

for stationary or data-dependent noise. Numerical results on

some significative examples are reported for all the proposed

receiver architectures in Sect. V. Finally, Sect. VI concludes

the paper.

II. SYSTEM MODEL

A magnetic recording system can be assimilated to a

transmission system with data-dependent noise. In a mag-

netic recording channel, a reading/writing head, sensitive to

the media polarization, converts the magnetic signal into an

electrical one and viceversa. The signal deriving from a single

magnetization transition can be modelled by the Lorentzian

pulse
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Fig. 1. Lorentzian pulses with different PW50
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Fig. 2. First order Taylor model of media noise, transmitter and matched
filter.
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(

t
w

)2 (1)

where w = PW50
2 , PW50 being the pulse width at 50% of

the peak value. Fig. 1 depicts some Lorentzian pulses, with

normalized energy and different PW50s with respect to the

bit (or sampling) time T (PW50/T is usually referred as D,

the data density over the track).

A single recorded bit over the track generates two opposite

transitions, one for each edge of the magnetic portion of the

polarized track and the resulting signal is named dbit,

dbit(t, w) = l(t, w) − l(t − T,w). (2)

The writing/reading process, affected by additive gaussian

noise (AWGN), corresponds to the top path of Fig. 2, where

a matched filter is implemented at the receiver side. Never-

theless, non linear phenomena related to the non-ideal po-

larization on the medium, generate additional impairments in

the read signal that can be assimilated to some width and

time jitter of the Lorentzian pulses [6]. These errors, either

in timing or pulse width, are comprehensively referred as

media noise and they are usually dominant w.r.t. the additive

white gaussian noise. In the system model, media noise effects

correspond to the other two paths in Fig. 2 since they can be

approximated by a first order Taylor expansion [6]:

l(t+∆t, w+∆w) ≈ l(t, w)+∆t·lt(t, w)+∆w ·lw(t, w) (3)
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Fig. 3. Discrete equivalent channel model and equalizer C(z).

where

lt(t, w) =
d

dt
l(t, w)

lw(t, w) =
d

dw
l(t, w).

So, we can re-write the equivalent digital model, including

the matched filter at the receiver into the three others pulse

responses (Fig. 3). Fixing the parameter w (or D) we define

Rl,k = l(t, w) ∗ l(−t, w)|kT

Rlt,k = lt(t, w) ∗ l(−t, w)|kT

Rlw,k = lw(t, w) ∗ l(−t, w)|kT . (4)

In the sequel, for those simulations that includes the impact of

media noise, we suppose the overall noise composed at 90% by

the jitter and width noise (with equal power after the matched

filter), and the remaining 10% by AWGN. The density D on

the magnetic track is set to 2.8 and the signal-to-noise ratio

(SNR) is defined according to [7].

After the matched filter and the sampler, the long discrete

equivalent response of the system is usually equalized to a

target response, or Partial Response (PR) [8], in order to

reduce the complexity of the sequence detector (Fig. 3). It is

well known that this approach is suboptimal, because noise is

enhanced and it is no longer white. In the magnetic recording

literature, the following target responses, that approximate the

equivalent discrete response at low and high frequencies, are

widespread:

hDI(z) = (1 − z−1) (5)

hPR4(z) = (1 − z−1)(1 + z−1)

hEPR4(z) = (1 − z−1)(1 + z−1)2

hEEPR4(z) = (1 − z−1)(1 + z−1)3

Denoting as LPR the length of the partial channel response

(LPR = 2, 3, 4, 5), as xk2

k1
(rk2

k1
) the column vector of input

(received) symbols from discrete times k1 to k2, we can

express the received samples as

rk
k−Nc+1 =











rk

rk−1

...

rk−Nc+1











= Gxk
k−Nc−Lg+1 + nk

k−Nc+1 (6)

where the matrix G (Nc × (Lg+Nc)) implements the discrete

convolution with the overall discrete equivalent channel and

Nc is the equalizer length. The overall response after the

equalizer C(z) is forced to approximate a generic target
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function h (5) by means of a Minimum Mean Square Error

(MMSE) approach (cT = hT RxxG
T

(

GRxxG
T + R′

nn

)−1

with Rxx equal to the input autocorrelation).

This approach enhances the noise power and does not

whiten it but it is attractive because it allows trellises with a

smaller number of states and adapts the pre-equalizer formula

to the input noise correlation matrix (the element R′
nn,k is

equal to N0/2 · Rl,k (4) in case of presence of only AWGN

noise or to the average of the autocorrelations from all the

noise contributions N0/2 · Rl,k + Rntnt,k + Rnwnw,k in case

of data-dependent media noise).

III. PARALLEL CHANNEL DETECTION

In a standard magnetic recording system, the pre-

equalization stage is followed by a standard Maximum Like-

lihood Sequence Estimator (MLSE) or by a SISO (Soft Input

Soft Output) algorithm for Maximum a Posteriori (MAP)

detection as e.g. the BCJR algorithm [4] used extensively in

soft and iterative decoding schemes. As anticipated in the

introduction, here we propose a different structure of the

sequence detector, based on a non-binary message passing

algorithm, that solves the problem of short cycles over the

inherent graph. In addition an enhanced version is capable

of exploiting noise correlation, improving performance and

allowing the possible employment of shorter PR responses, as

it will be clear in the following sections. Nevertheless, a further

theoretical research for PRs optimized for a better match with

our equalizers can be an interesting research field in the future.

Message passing algorithms due their notoriety to Low-

Density-Parity-Check (LDPC) codes [2], typically decoded by

means of iterative algorithms over graphs [9], exchanging mes-

sages carrying likelihoods concerning variables. An analogous

strategy can be applied to channel detection. Let us consider

a block of N binary symbols xk ∈ {−1, 1} fed into a channel

that can be viewed as a state machine returning the output

samples yk (in each binary representation the bit 0 corresponds

to the level −1): the outputs belong to a finite alphabet and

they are related to the inputs by

yk =

LP R−1
∑

i=0

hi · xk−i (7)

where {hi} is the impulse response of a generic channel with

memory LPR − 1. We remark that, in our system model, the

received samples rk = yk + nk contain the contribution of

additive and media noise.

For illustrating our approach, Fig. 4 shows the equivalent

Tanner graph for a channel with memory LPR − 1 equal to

3: the triangles are the function (or channel) nodes where a

posteriori likelihoods are updated at each iteration step and

circles are the variable nodes (i.e. the input bits). The presence

of cycles of length 4 or more is clear (bold lines in Fig. 4).

Fig. 5 shows how a non-binary implementation of the same

algorithm mitigates the presence of cycles with M = 2 and

cancels all the cycles with M = LPR − 1 = 3. At the same

time, it is clear that the cardinality of the messages passed

between the graph nodes grows correspondingly from 2 to 2M .

Hence the non binary algorithm has to manage soft messages

that are not real numbers (representing, e.g., the P (xk = 1))
but vectors that contain the probability density functions of

the symbols xn. At each iteration, data variable nodes and

channel nodes simultaneously send new likelihood messages

to their neighbors, computed exploiting the messages received

at the previous step. By this procedure, agreeing messages will

enforce their likelihoods overcoming the possible incorrect

initial estimations.

Starting from the binary implementation (Fig. 4), we define

with Rp→n the message going from the channel generic node

p to the variable node n and viceversa for Qn→p. Focusing on

channel nodes, the algorithm computes one different message

for each connected destination variable node. At channel

nodes, this is done because, with the aim of computing Rp→n

to be sent to variable node n, the channel node gathers infor-

mation coming from each connected node, with the exception

of n itself (otherwise, variable nodes would self-influence
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Fig. 4. Binary message passing graph for a channel with memory equal to
3.
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R0 � 0 R1 � 1 
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Fig. 5. Non-binary (M = 2, 3) message passing graph for a channel with
memory equal to 3.
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themselves):

R(1)
p→n = P (xn = 1|rp)

=
∑

j1,...,jν

P (xn = 1,x
p\n
p−ν = [j1, . . . , jν ] |rp)

=
∑

j1,...,jν

P (rp, xn = 1|x
p\n
p−ν = [j1, . . . , jν ])

P (rp)
·

·P (x
p\n
p−ν = [j1, . . . , jν ])

=
∑

j1,...,jν

P (rp|xn = 1,x
p\n
p−ν = [j1, . . . , jν ])

P (rp)
·

·P (xn = 1|x
p\n
p−ν = [j1, . . . , jν ]) ·

·P (x
p\n
p−ν = [j1, . . . , jν ]) (8)

In (8) the sum is extended to all the possible binary symbols

[j1, . . . , jν ] within the memory of the channel (ν = LPR − 1)

and sub-indexes ′p − ν′ and ′p\n′ denote that the sequence

of symbols from p − ν to p does not include the n-th one.

In AWGN the first term is computed by means of a gaussian

probability density function, the second one is constant, while

the third represents the likelihood information coming from

all variable nodes, except for n, or

P (x
p\n
p−ν = [j1, . . . , jν ]) =

p\n
∏

k=p−ν

Q
(jk−p+ν+1)
k→p

A similar processing is required at variable nodes where all

the a-posteriori probabilities are combined for the following

iteration step. The messages

Q
(jk−p+ν+1)
n→p =

∏n+ν\p

k=n P (xn = jk−p+ν+1|rk)
∏

k P (xn = 1|rk) +
∏

k P (xn = 0|rk)

=

∏n+ν\p

k=n R
(jk−p+ν+1)
k→n

∏n+ν\p

k=n R
(1)
k→n +

∏n+ν\p

k=n (1 − R
(1)
k→n)

are the resulting likelihoods, as products of the incoming like-

lihoods (except for the p-th), divided by a normalization term.

This binary algorithm, although attractive, leads to consistent

remarkable degradations, as shown in [1]. These losses are due

to the short loops in the graph that, correlating the exchanged

messages, enable wrong decisions to self-influence themselves.

In the non-binary implementation of the message pass-

ing algorithm, M consecutive input information bits

or output samples are grouped into symbols that we

represent as column vectors xn = x
M ·(n+1)−1
M ·n =

{xM ·n, xM ·n+1, · · · , xM ·(n+1)−1}
T , y

n
= y

M ·(n+1)−1
M ·n , rn =

r
M ·(n+1)−1
M ·n . Input symbols xn can assume 2M values denoted

x(0), · · · ,x(2M−1) and corresponding to all the combinations

of the input binary symbols. Now the notation x(j) (j =
0, · · · , 2M −1) corresponds to the M -bit binary representation

of j with the most significant bit equal to xM ·n and the least

one equal to xM ·(n+1)−1. So the exchanged likelihoods does

not refer to the single bit but to each possible combination of

variables in the cluster. In addition, with M = LPR−1, loops

in the graphs are avoided and messages always propagate in

the same direction. The computation of soft messages that go

from the p-th ‘triangle’ to the n-th ‘circle’ of the channel

graph, may be re-formulated in the following way (first stage

of the MP algorithm). Defining the general Rp→n as

Rp→n = {R(0)
p→n, R(1)

p→n, · · · , R(2M−1)
p→n }T (9)

with

R(j)
p→n = P (xn = x(j)|rp), (10)

the binary computation (8) is extended, in the cycle-free graph

(Fig. 5), to

R(j)
n→n =

1

P (rn)
·
∑

j1

P (xn = x(j)|xn−1 = x(j1)) ·

·P (rn|xn = x(j),xn−1 = x(j1))Q
(j1)
(n−1)→n

(11)

where the sum is performed to all possible combinations of

input symbols; in this case the index j1 is not limited to the

binary values 0, 1 but it is extended till to the cardinality of

the non-binary symbols 0, · · · , 2M − 1. Of course the other

vector Rn→(n−1) is computed similarly. Then the general

terms Q
(j)
k→p are generated by the ‘circle’ node k and passed to

the ‘triangle’ node p. Also these values are organized similarly

in vectors Qk→p = {Q
(0)
k→p, Q

(1)
k→p, · · · , Q

(2M−1)
k→p }T and they

represent the a-priori probabilities P (xk = x(j)) used in the

next iteration step (11). It is straightforward to see that they

are obtained by the simple forwarding (second stage of the

MP algorithm)

Q(n−1)→n = R(n−1)→(n−1) (12)

Qn→n = R(n+1)→n. (13)

A. Computation of the Non-Binary Message Vector Rn→n

It is interesting to note that the R
(j)
n→n messages (with

j = 0, · · · , 2LP R−1 − 1) in (11) can be computed with an

efficient algorithm in LPR − 1 steps. The algorithm is based

on a trellis structure that is determined by the channel mem-

ory. Skipping here the details, we observe that P (rn|xn =
x(j),xn−1 = x(j1)) is given by the product of the single terms

P (rn·M+i|xn = x(j),xn−1 = x(j1)) for i = 0, · · · , LPR − 2,

that are reused as j varies in (11). So the computation of

the entire vector Rn→n is accomplished with an algorithm

that receives the vector Q(n−1)→n as input and solves all the

input/output combinations in a number of steps equal to the

non-binary block length (M = LPR − 1), just in the common

trellis representation of the channel response (Fig. 6). In fact,

the non-binary message passing detector inherits, from the

ideal (MAP) one, the regularity of the required operations

while introducing a remarkable degree of parallelism. Table

I reports the required number of sums and multiplications per

data variable in the binary and non-binary cases. Of course all

the operations may be performed in the Log-domain as usual

in MAP and MP detectors.
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Mul Sum

Binary Niter(ν + 1)
(

ν2ν+1
− 1

)

Niter(2ν + ν)
Non-Binary Niter2ν+2 Niter2ν+1 + ν(2ν

− 2)

TABLE I
COMPUTATIONAL COSTS (PER DATA VARIABLE) FOR THE MESSAGE

PASSING ALGORITHM, IN THE BINARY AND NON-BINARY CYCLE-FREE

CASES (ν IS THE CHANNEL MEMORY LENGTH AND Niter IS THE NUMBER

OF MP ITERATIONS).

IV. ENHANCED DETECTORS FOR COLORED NOISE

The detector presented in Sect. III solves the latency

problems realizing a very fast version of a MAP (MLSE)

detector. Nevertheless, the noise correlation at the detector

input is neglected and this leads to suboptimal performance.

We remark that this problem arises even without media-noise,

because of the adoption of PR pre-equalization. The key point

for mitigating these effects is to take into account the past

noise samples in order to predict the future noise samples, and

to subtract them by the observations, as depicted in Fig. 7 [11].

This operation can be included into the algorithm that returns

the soft messages Rp→n (Sect. III-A) because it affects only

the computation of the terms P (rn|xn = x(j),xn−1 = x(j1)).
The evaluation of these terms is modified, w.r.t. the AWGN

assumption, by subtracting the noise portion that is predictable

from the past ones. This operation would increase the detector

memory from LPR − 1 to LPR + Lp − 1 and the single term
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Fig. 6. Algorithm for computing the vector Rn→n for M-bits blocks. At
each step, a single sample rn·M+i (i = 0, · · · , M−1) is used for computing
all the channel probabilities.

{ {

ISI
elimination

Noise prediction
and correction

h

LpL -1PR

Fig. 7. Per-state noise predictors scheme. Inter-Symbol Interference is
subtracted from each sample and then the last 3 noise samples are used for
subtracting the noise predictable part from the current sample (the rightmost
one).

may be expressed now by

P
(

rn·M+i|xn = x(j),xn−1 = x(j1),x(p), rn·M+i−1
n·M+i−Lp

)

=

1
√

2πσ2
NP

e



−

(

rn·M+i−yn·M+i−NP (x,r
n·M+i−1
n·M+i−Lp

)

)2

2σ2
NP





(14)

where x = {x(j),x(j1),x(p)}, σ2
NP is the reduced noise power

and NP (· · · ) is the predictor function, that can be derived

through the Yule-Walker equations as it will be shown in the

next two subsections, dedicated to the stationary and non-

stationary (data dependent) cases. The vector x(p) represents

the portion of past inputs necessary for completing the memory

required by the predictor operations. The increase of the

detector memory can be treated in the following ways:

1) Effective extension of the memory in the trellis algo-

rithm necessary for computing the soft messages (Sect.

III-A). The number of states is increased from 2LP R−1

to 2Lp+LP R−1.

2) Average of P
(

rn·M+i|x, rn·M+i−1
n·M+i−Lp

)

w.r.t.

to all the past symbols x(p) for obtaining

P
(

rn·M+i|xn = x(j),xn−1 = x(j1), rn·M+i−1
n·M+i−Lp

)

.

In this case the a-priori probabilities Q would be taken

in the adjacent variable nodes.

3) Use of hard decisions in the memory portion x(p)

according to the the a-priori probabilities Q in the

adjacent variable nodes.

In this paper we have chosen the first, full complexity, option

for achieving the best performance improvement.

A. Stationary Colored Noise

If we denote as nk−1
k−Lp

the sequence of Lp past noise

samples, the predictor p of length Lp which minimizes the

mean square prediction error is given by

p = R−1
nnqn (15)

where Rnn = E

[

nk−1
k−Lp

(

nk−1
k−Lp

)T
]

is the noise stationary

(Toeplitz) correlation matrix and qn = E
[

nk−1
k−Lp

nk

]

is the
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correlation vector between the current noise sample and the

past ones. This noise predictor whitens partially the noise and

it cancels its predictable part, reducing the noise power of a

factor (1 − pT qn).
We underline that the noise prediction procedure is common

to each iteration and can be implemented in an efficient way.

Here we are adopting the same prediction filter at each state

and, consequently, it becomes convenient to exchange the

order of the operations

NP (x, rj−1
j−Lp

) = pT
(

r
j−1
j−Lp

− Hx
)

= pT r
j−1
j−Lp

− pT Hx (16)

where j is a generic time index (j = n · M + i in (14)), H

implements the partial response convolution with the generic

channel h and x = {x(j),x(j1),x(p)} is the binary sequence

including all the memory necessary for the predictor. We

observe that the product pT r
j−1
j−Lp

can be computed once for

all the detector operations, while pT Hx can be pre-computed,

as it does not depend on the received signal.

B. Data-Dependent (non-Stationary) Colored Noise

In the previous section, the noise correlation matrix has

been considered independent from the data sequence. In the

case of magnetic channels, affected by media noise, this is

only an approximation. In order to enhance performances, it

is possible to write per-state predictors, taking into account a

more precise correlation matrix, according to the state of the

algorithm for Rn→n computation. This opportunity has been

already investigated for MLSE detectors [11], [12] and MP

binary detectors [13]. Here we extend this solution to the MP

non-binary detector investigating the additional performance

improvement. Per-state predictors require a different formu-

lation of the Yule-Walker equations, given the non-stationary

nature of the noise. We obtain a solution

p(x) = (Rnn(x))
−1

qn(x) (17)

with x = {x(j),x(j1),x(p)}, that depends on the specific

memory content. Notice that Rnn(x) is no longer a Toeplitz

matrix and also the whitened noise variance

σ2
NP (x) = σ2

(

1 − p(x)T qn(x)
)

(18)

depends on the past symbols. As a consequence, the probabil-

ity computation (14) will be re-formulated accordingly.

V. SIMULATION RESULTS

This section reports the simulation results for the different

proposed detection strategies. As mentioned in Sect. II, we

assume a data density D equal to 2.8, with a media noise

fraction equal to 90%. In the conventional MLSE detector,

the number of steps is equal to the length of the data block,

4096 bits, while in the MP detector the bits are processed si-

multaneously in a number of iterations that is equal or smaller

than 6. So we compare performance of our parallel non-binary

detector with the corresponding serial MLSE implementation.

We have simulated the targets hDI and hEPR4, reported in

(5), with three different noise assumptions at the receivers:
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Fig. 8. MLSE (serial implementation) and MP (parallel implementation)
performance, with LPR = 2.
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Fig. 9. MLSE (serial implementation) and MP (parallel implementation)
performance, with LPR = 4.

fully additive white noise, colored stationary noise and colored

data-dependent noise.

When the noise is assumed additive and white, optimal

MLSE performance is achieved in a number of iterations that

is independent and much lower than the block length, as can

be seen in Figs. 8 - 9.

When the receiver takes into account the noise correlation,

the use of predictors reduces the overall noise impact on

performance: Figs. 10 and 11 report the Bit Error Rate

(BER) of MP detectors embedding different predictors (at

the fifth iteration), with LPR = 2 (the dicode channel) and

LPR = 4 (EPR4 class) respectively. Fig. 11 is restricted to

even predictors, because the resulting autocorrelation function

in this case has the samples in k = ±1 close to zero and

performance of odd predictors is very close to the shorter even

ones. We can observe that performance of the former (shorter)

PR is about 0.75 dB from the latter (at BER = 10−4), a

performance gap that is much smaller than 4 dB, obtained

without predictors. This could suggest new PR design criteria

that, differently from [10], take into account both the message

passing algorithm and the inherent noise whitening process.
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Fig. 10. MP performance (after the fifth iteration) with different noise
predictors and LPR = 2.
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Fig. 11. MP performance (after the fifth iteration) with different noise
predictors and LPR = 4.

The final goal should be to effectively reduce the overall

memory length, equal to LPR +Lp −1, jointly determined by

the PR equalization and the noise predictor length.

Then Figs. 12 and 13 adopt per-state predictors, thus taking

into account the actual data dependent noise nature. This

more sophisticated approach leads to higher computational

costs since the simplification in (16) no longer holds, but it

guarantees additional gains (about 1 dB for LPR = 2 and 0.5
dB for LPR = 4) w.r.t. the previous solutions. Furthermore,

noise prediction reduces the number of iterations required to

approach the ideal detector performance: in Fig. 14 we can

observe that predictors of order Lp = 4 allow a reduction of

the number of iterations from 6 (Lp = 0) or 3 (Lp = 2) to 2.

Finally we have also verified that including also future samples

into the prediction process provides a negligible additional

advantage (Fig. 15).

VI. CONCLUSIONS

In the context of channel detection, the paper presents an

extension of the message-passing algorithm to the non-binary

case, showing a way for cancelling cycles that limit perfor-
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Fig. 12. MP performance, adopting the constant predictor or per-state
predictors, with LPR = 2.
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Fig. 13. MP performance, adopting the constant predictor or per-state
predictors, with LPR = 4.
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Fig. 14. MP performance: required number of iterations for approaching
MLSE performance, when adopting per-state predictors (either in MLSE or
MP). The channel has LPR = 2 and IT is the number of iterations.
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Fig. 15. Message passing performance when considering future samples,
with LPR = 2.

mance. The algorithm adopts a non-binary message passing

structure, suited to a very low-latency parallel implementation,

as an alternative to conventional serial detectors such as MAP

or MLSE. In order to enhance performance in presence of

data dependent media noise, predictors are included into the

message passing procedure, achieving remarkable performance

gains. All the simulated schemes show that noise prediction

reduces also the number of iterations required by the message

passing algorithm for achieving MLSE performance, with

a further reduction of the latency. Moreover, performance

with short partial responses do not decrease dramatically,

differently from the architectures without noise predictors.

This suggests an investigation on new partial response pre-

equalization design criteria, that minimize the overall detector

memory induced by the partial response equalization and by

noise prediction, for a prescribed BER. Finally, we remark that

the proposed algorithms can output soft extrinsic information,

useful when the channel detector is followed by LDPC or

turbo codes.
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