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ANNOTATION 

 

Data Quality Management in ETL Process under Resource Constraints // Qualification 

paper of the educational level "Master" // Kashosi Aser // Ternopil Ivan Puluj National 

Technical University, Faculty of Computer Information System and Software 

Engineering, Department of Computer Science // Ternopil, 2022 // P.    , Tables –    , 

Fig.     – , Diagrams –    , Annexes. –   , References – . 

 

Keywords:  Data Quality, ETL, Big Data, Data Management Platform, Stratified 

Sampling 

 

Currently, access to data is necessary for many companies, particularly those 

engaged in marketing, to make decisions that will improve the quality of their services 

and businesses. They frequently find the knowledge they need from several sources in a 

variety of formats. Following a dedication to the quality of information offered to data 

consumers, a system will be implemented to consolidate all these data sources for 

analysis and decision-making. 

This study addresses the evaluation of data quality (DQ) in an ETL process 

developed to support a marketing data management platform. More specifically, this 

study addressed the problem of evaluating the quality of data with a high-volume trait. 

Addressing the problem of DQ assessment at high ingestion rates is beyond the scope 

of this study, which focuses on data quality assessment with limitations to vertical or 

horizontal scaling of the ingestion system. 

We also analyze the use of the model developed on real data to assume an 

improvement in the quality of the data in the ETL. The methodology used consisted of 

studying each feature related to the characterization of high-quality data and analyzing 

the impact of those in an ETL concerned with voluminous data. We propose algorithms 

for improving a more generalizable integration DQ assessment. We conducted a 

practical implementation study of the different criteria and characteristics proposed to 

evaluate the impact of the data collected throughout the process of data Extraction, 

Transformation, and Loading. 
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We highlight a quality assessment framework that models the different necessary 

parts of the process, including data sources, metrics characterizing data quality, data 

destination, and the analysis and performance of the algorithms used in the assessment 

process. The ETL practical implementation in this research is based on a Direct Acyclic 

Graph (DAG) model, with the main purpose of extracting, transforming, and 

transmitting data from this first service to the rest of the Marketing Data Management 

Platform infrastructure, which is considered as the end user. The evaluation and quality 

are based on the development of algorithms that take source data as input in combination 

with predefined properties encompassing the expected result of the ETL transformation 

to produce the evaluation result. 

The evaluation findings may be used to support or contradict the standards for 

quality. Decisions are made in the event of a DQ failure to improve and enhance the 

data. We suggest including data checks at the very end of the ETL data manipulation 

process as well as a model for data volume reduction using algorithms that are intended 

to make the procedure more generic to enable quick review. The quality of the data 

evaluated during the test is a statistical representation of the ingested dataset, which 

provides an accurate profile that enables user applications to retrieve high-quality data 

without delay. The main contributions of this thesis are: i) the development of an ETL 

service in a Marketing Data Management Platform and ii) an examination of data 

reduction models with a view to assessing data quality.  

Chapter 1 presents a literature review of this research and describes the basic 

concepts and their definitions in other research, including sampling, ETL, Data Quality 

and Big Data. 

Chapter 2 We present the manner in which the ETL system fits into the framework 

of the data-management platform and how the entire architecture is modelled. 

Chapter 3 presents the outcomes of the experiment. The experimental findings, 

which were obtained using various types of actual data, are presented in this chapter. 

The performance over time and the effect of the startified sample are depicted in graphs. 

The closing part presents the conclusions of this thesis and discusses the 

prospective research.  
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LIST OF SYMBOLS, SYMBOLS, UNITS, ABBREVIATIONS AND 

TERMS 

 

DQ – Data quality  

ETL – Extract transform and load 

DMP – Data management platform  

DAG – Directed acyclic graphs  

BD – Big data 

TPC – Transaction Processing Performance Council  

DI – Data integration 

ISO – International Organization for Standardization 

IEC – International Electrotechnical Commission 

BSP – Bulk Synchronous Parallel 

SVD – Singular value decomposition 

PCA – Principal components analysis 

DB – Database 

CPU – Central processing unit 
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INTRODUCTION 

 

The presence of the Internet, social networks, and other technologies, such as the 

Internet of Things (IoT), has promoted the proliferation of Big Data in all economic 

sectors. Businesses have the advantage of access to a large volume of data, allowing for 

more accurate decision-making. This resulted in a caveat, which was the presence of 

heterogeneous data sources.  Data from different sources must be processed and modeled 

to obtain a standard formulation to better extract information. 

This need to unify data from various sources is at the core of collection systems 

and decision-making. Over the years, the ETL process has been used to address this need 

for a single source of truth containing well-formatted, standardized, and reliable data on 

which to perform the analyses. The Transaction Processing Performance Council (TPC) 

defined ETL as a method of integrating data from various sources in various forms and 

transforming the data into a uniform model to be placed in a data warehouse. The TPC 

chose to use the term Data Integration (DI) instead of the abbreviation ETL to give this 

procedure a more complete nomenclature [3]. Thus, ETL abstracts the heterogeneity of 

data sources and provides the end user with a single access point to the storage system 

to submit their queries. According to Sreemathy et al. [6], the entire development 

process is conducted to meet the objectives of enterprise performance management, 

application challenge development, finance, and other enterprise management sources. 

Souissi and Benayed determined that the core element of a business intelligence system 

that helps managers in their decision-making is the DI [4]. 

With the growth of big data, ETL has not remained static. This has been described 

as the ability to have all datasets available at the time of decision making in areas such 

as the oil and gas industry [1]. 

De Mauro et al. After reviewing the existing research in terms of defining Big 

Data, they concluded that the core of the concept is not only expressed by the three Vs 

of velocity, volume, and variety, but also by technology and analytical methods to clarify 

some necessary requirements in terms of information usage. They furthered their ideas 

by adding the concept of transformation into insights and the subsequent creation of 

economic value as the main way for Big Data to impact businesses [2]. These concepts 

agree that Big Data represent information assets characterized by the three Vs and 
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mainly require technological capabilities and resources to enable more advanced 

transformation to acquire value from the information thus collected. In this research, we 

argue that the concept of data quality in the processes of this ETL system fulfills the 

necessary conditions to apply research on Big Data. It is essential to develop algorithms 

and a correct and robust model because of the amount or volume of data collected and 

the required technological resources.  

The conceptualization of data quality (DQ) has been a subject of research over the 

years. One of the major studies was conducted by Wang and Strong [18], in which they 

take the direction of conceptualized data quality as an inherently good product that is 

tailored to the context of the task clearly represented and made accessible to data 

consumers. 

The necessity for a data integration phase inside the decision system is supported 

by a number of factors, including diverse data formats, confusion or difficulty in reading 

data formats, legacy systems utilizing outdated databases, and changing the data source 

structure over time. What is argued in [19] to make Data Quality assessment difficult is 

the characteristics of the data sources. 

According to Dakrory, Mahmoud, and Ali, the purpose of checking the data 

quality in the ETL is to guarantee the accuracy of the methods and determine whether 

or not they need to be changed in order to address the problems. Automating the test 

procedures to verify the data quality parameters was the goal of their study [20]. 

In this study, the evaluation of data quality in the ETL service ensures the 

reliability of the data collected in the Data Management Platform. A variety of data 

sources results in a diverse range of formats and intricate data structures, making data 

integration more challenging. Historically, businesses have used only data produced by 

their internal business systems, such as sales and inventory data. However, the extent of 

data that businesses currently collect and analyze is beyond this range. The sources of 

Big Data are highly diverse. The sheer amount of data makes it challenging to determine 

data quality in a timely manner. 

It is challenging to gather, clean, integrate, and obtain the required high-quality 

data within a reasonable amount of time. Big data is subject to a significant amount of 

unstructured data; hence, converting unstructured data into structured data and 

processing the data requires a significant amount of time. [21] 
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Scientific novelty: Our contribution is to apply a stratified algorithm for data 

quality assessment, while defining the selection criteria that enable the use of this 

approach in resource-poor ETL systems. 

In a real scenario where not, all data could be stored, the main result of this part 

of the research was to enable data quality assessment. We also investigate the elements 

that influence the selection of the reduction model. This study also sheds light on the 

various problems related to sampling for DQ assessment that still need to be solved. 

We also discuss the practical results of using this model. In order to reuse the 

ideas that emerged in this data management platform framework and make them suitable 

for any application that uses ETL, we structured the entire system in terms of directed 

acyclic graphs (DAG). 
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CHAPTER 1. LITERATURE REVIEW 

 

1.1 ETL 

 

Consider a case study in which a marketing agency launches an advertising 

campaign for a company or individual associated with the agency. The agency plans to 

launch the campaign through a network of advertisers. A marketing agency obtains data 

from various heterogeneous sources to identify the market and conduct a comprehensive 

study. The objective of this step is to have a unified dataset that allows the campaign to 

be limited to specific sectors to better target customers. Next, the marketing agency 

offers a subscription to affiliates that allows them to receive regular updates on customer 

data (see Figure 1.1). The marketing agency is also in contact with the advertising 

network to inform them about the cost of the campaign and any other details before 

asking for feedback. 

 

Figure 1.1 - Case study business model 
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This tedious and complex process demonstrates the importance of the quality of 

data collected by marketing agencies. The purpose of implementing a marketing data 

management platform is to make things easier for a marketing agency that uses multiple 

software platforms to aggregate its advertising network. Second, the implementation of 

this platform helps solve the problem of the type and format of data offered by data 

providers to marketing agencies. Third, the implementation of this platform ensures the 

privacy of the collected customer data. Finally, the customer data is processed, filtered, 

merged, etc. by the platform before it is forwarded to the marketing agency affiliates. 

The above issues meet the conditions for the use of an ETL at the level of 

collecting the data provided by the Data Providers to the marketing agency. 

The data received by the marketing agency's affiliates must go through a stage 

that allows the evaluation of the quality of this data, as a quality problem will cost huge 

amounts of money and time to all parties involved. 

 

1.1.1 ETL definitions 

Data collection is fraught with difficulty. Some studies, such as [7], have 

summarized these as follows:  

First, because various sources arrange information in entirely distinct schemas, it 

is critical to transform incoming source data into a common "global" data warehouse 

schema that will eventually be utilized for querying by end-user applications. Second, 

operational data suffers from quality issues ranging from simple spelling errors in textual 

attributes to inconsistencies in values, database constraint violations, and conflicting or 

missing information; thus, this type of data "noise" must be removed so that end users 

receive data that is as clean, complete, and truthful as possible. Third, because 

information in the production systems that populate the warehouse is continually being 

updated, it is vital to routinely refresh the contents of the data warehouse to present users 

with up-to-date information. All these difficulties require the data warehouse 

development team to build the necessary software processes (either manually or through 

specialized tools) and run them at proper time intervals for the right and full data 

warehouse populating. 
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Figure 1.2 - TCP-DI ETL workflow 

 

The primary goal of DI is to collect relevant and transferrable information to assist 

in highlighting challenges and achieving the advanced vision. Extract, transform, and 

load (ETL) methodologies are critical in data integration approaches. Companies can 

utilize ETL to collect data from several sources and combine it in a single, centralized 

place.[6] 

 

1.1.2 ETL tools review 

One of the most popular ETL tools is the Informatica PowerCenter, which is 

available on premises and allows for connection to a number of database systems, while 

providing data governance control, master data management, and data masking [6]. 
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Figure 1.3 - Informatica Architecture 

 

It also allows the visualization of data by connecting them to different sources so 

that data processing can be performed. Moreover, it provides cloud-based applications 

and technologies that allow employees to benefit from this network with less effort. 

Real-time data integration, data analytics, and B2B data fusion are also available, and 

are some of the benefits offered by this tool. According to research by Sreemathy et al., 

the Informatica PowerCenter also offers a wide range of features such as data 

aggregation, semi-structured and unstructured data, and data execution preparation, 

while also having a metadata feature that helps protect information about the application 

and data operations. 

One tool that has been presented to handle a variety of Big Data is GENUS [4], 

which has been studied to handle unstructured data (text) as well as image and video 

data. The principle of data processing in GENUS is to transform the first representation 

of the data (text, image, or video) into a new representation to load it into a data 

warehouse. As an output, the tool provides a data warehouse, and in most cases, this 

data warehouse is then processed by analysis algorithms to extract information requests. 
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Figure 1.4 - GENUS Image encoding chain 

 

1.2 Data quality 

 

Wang and Strong developed two surveys [18] that were used to collect data from 

consumers to establish the desired characteristics of data quality. The first survey 

developed a list of potential traits or characteristics of data quality that the respondents 

considered when discussing data quality. The second survey assessed the importance of 

these potential data quality characteristics to consumers. An exploratory factor analysis 

was conducted using the importance scores from the second survey to produce an 

intermediate set of data quality dimensions that were meaningful to data consumers. 

 

 

Figure 1.5 - Conceptual Framework of Data Quality 
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In the first phase, subjects were asked to group these dimensions into categories 

and then identify these categories. To verify these results, another group of individuals 

was asked to classify these dimensions into categories in the first phase. 

They were able to create a hierarchical structure (Figure 1.5) that encompasses 

many facets of data quality from the perspective of data consumers, as a result of their 

research using the two-survey approach. 

 

1.2.1 Data Quality Dimensions 

In this study, we considered only the following aspects of data quality: 

completeness, consistency, uniqueness, validity, timeliness, and accuracy. 

Record count validation, data duplicate checking, integrity constraint checking, 

and data boundary checking are four practical methods for validating data completeness. 

Validity and accuracy are interrelated. 

All values must be constant across all datasets and consistency guarantees this 

requirement. Field mapping, integrity constraints, aggregation of metrics, and hierarchy-

level integrity are common consistency assessments. 

Validity, accuracy, and uniqueness are three properties that are consistent with 

consistency. 

Uniqueness guarantees that stored data are free of duplicates. It also provides 

numerous alternatives for defining its use in an ETL; data duplicates, integrity, and 

constraints are checked in that order. 

The main goal of the dimension known as "validity" is to ensure that the data 

conform to the syntax (format, type, and domain) of its description. Sara, Tarek, and 

Abdelmgeid presented three practical methods for assessing the validity: integrity 

checking, checking the data type of a field, and checking the field length. 

To ensure timeliness, it is necessary to ensure that all data are stored for the 

required period. The aforementioned studies briefly described the following procedures 

for assessing timeliness: freshness of data and data access. Accuracy: The issue here is 

to ensure that each piece of information accurately represents the " real-world object or 

event described. The accuracy of the input data can be assessed using various methods, 

such as field-to-field comparison, data bounds, and integrity constraints. 
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1.2.2 Data Quality Objectives in the Context of ETL 

One of the most important features of ETL operations is the data quality. 

Adhianto, Banerjee, Fagan, et al. provided a detailed description of the elements to 

consider when evaluating the data quality of the ETL process [28]. Data accuracy is the 

proportion of data free of errors. Data completeness refers to the extent to which the 

values and entities are not missing. Data freshness is a measure of the timeliness of the 

data relative to when the target repository for the data source is updated. Data integrity 

is maintained during transactions and across data sources and the degree to which each 

user obtains a consistent version of the data. The degree to which consumers can 

understand the data they obtain is known as the data interpretability. 

Cai and Zhu claimed that the key to data quality evaluation is the analysis of each 

dimension in their effort to create a hierarchical data quality framework from the 

viewpoint of data consumers. Quantitative and qualitative methodologies comprise the 

two categories of the present approach. From the standpoint of qualitative analysis to 

describe and evaluate data resources, the qualitative evaluation technique is based on 

specific evaluation criteria and needs determined by assessment aims and user requests. 

It is best for specialists or subject matter experts to perform qualitative analysis. The 

quantitative method is a formal, impartial, and methodical approach to gathering 

information that uses numerical data. The elements of this technique, whose evaluation 

outcomes are more logical and tangible, are objectivity, generalizability, and numbers. 

After the evaluation, the data were compared with the defined baseline for data quality 

assessment. A follow-up data analysis phase and data quality report will be produced if 

the data quality meets the baseline level. Otherwise, new data must be collected if the 

quality of existing data does not meet the baseline criteria [21]. 

Other studies [20] used a logical ETL mapping document and metadata repository 

to evaluate the criteria that should be considered when assessing the data quality. The 

source database, all applicable intermediate databases, and the DW were first defined as 

references. This phase includes the metadata repository and the logical ETL mapping 

document. The path of each file extracted from the source system to its destination is 

contained in a logic mapping document. The document must be created by a business 

analyst. This document, also known as a crosswalk or interface design, is an Excel 

spreadsheet. It is a design that specifies business rules and transformations and evaluates 
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source or legacy systems. It includes the following fields: Transformation, Source 

Database, Source Table Name, Source Column Name, Destination Table Name, 

Destination Column Name, Table Type, and Slow Moving Dimension Type. Finally, a 

link is created to the metadata store. The required data were extracted from the logic-

mapping document and DW metadata and inserted into the database model. The DQ 

model contained multiple algorithms for each quality metric. Each quality parameter 

was manually assigned to a set of test routines by searching for those that could identify 

the quality issues that affected each quality parameter. 

 

1.2.3 ISO Data Quality Standards 

According to ISO/IEC 25012, the degree to which the data meets the 

specifications set by the product-owning organization can be interpreted as the quality 

of the data product. In particular, these requirements are those that the data quality model 

reflects through its attributes (accuracy, completeness, consistency, credibility, 

timeliness, accessibility, etc.). 

 

Table 1.1 - ISO/IEC 25012 Inherent Data Quality Characteristics 

Characteristic Definition 

Accuracy The degree to which data has attributes that correctly represent the true 

value of the intended attribute of a concept or event in a specific context 

of use. 

Completeness The degree to which subject data associated with an entity has values 

for all expected attributes and related entity instances in a specific 

context of use. 

Consistency The degree to which data has attributes that are free from contradiction 

and are coherent with other data in a specific context of use. It can be 

either or both among data regarding one entity and across similar data 

for comparable entities. 

Credibility The degree to which data has attributes that are regarded as true and 

believable by users in a specific context of use. Credibility includes the 

concept of authenticity (the truthfulness of origins, attributions, 

commitments). 

Currentness The degree to which data has attributes that are of the right age in a 

specific context of use. 
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DQ characteristics are divided into two main categories by ISO /IEC 25012: 

In certain circumstances, inherent data quality refers to the extent to which data 

quality characteristics have the inherent ability to satisfy both explicit and implicit 

requirements. Inherent data quality refers to the data itself, specifically the data 

domain values and possible constraints (e.g., business rules that determine the quality 

required for the characteristic in a particular application), the relationships between data 

values (e.g., consistency), and the metadata. 

System-dependent data quality: this term describes the extent to which data 

quality is achieved and maintained within a computer system when the data is used 

according to specified guidelines. According to this view, the technological domain in 

which the data is used determines the quality of the data. This is achieved through the 

capabilities of the computer system's components, such as hardware devices (e.g., to 

make data accessible or to achieve the necessary precision), computer system software 

(e.g., backup software to achieve recoverability), and other software (e.g., migration 

tools to achieve portability). 

 

1.3 Tcp-di benchmark 

Although it is important to have a highly effective DI system, there has never been 

an industry standard for evaluating and contrasting its effectiveness. TPC recognized 

this gap and published TPC-DI, a groundbreaking standard for data integration. 

In January 2014, (TPC) released the first iteration of its data integration 

benchmark, TPC-DI. Their research uses the data integration practices of a fictitious 

retail brokerage firm to simulate TPC-DI. This involves feeding a decision support 

system with converted data from various unconnected systems, such as a trading system, 

internal HR, and customer relationship management (CRM) systems. [3] 

Using the cardinality of a certain modeled element in the dataset as the scaling 

factor, SF helps to understand the amount of data from a particular scaling factor, such 

as the number of clients or ticker symbols, according to the research in [3] on dataset 

scaling in TCP-DI.  

Therefore, sizeF(SF), where SF is an array-specific factor F, can be used to 

describe the size F of the input file F at scaling factor SF.  
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Changes are made to the dimension table when a record with the business key is 

missing; the inserted record must be given a separate surrogate key value and contain it. 

TCP-DI modeling research indicates that it is not possible to start processing a 

phase until the previous phase is complete to represent the execution rules; the 

initialization phase is not timed [3]. During the preparation phase, the system must be 

configured, all the required software components must be installed, and the staging area 

must be set up. In terms of performance, specifically in terms of scalability, the 

discussion notes that a workload implementation may have bottlenecks or the system on 

which it is run may have limitations that restrict its scalability; however, the workload 

definition should not contain requirements that inherently prevent the scalability of 

implementations. 

With respect to performance, the benchmark Runtime Estimate in this research 

predicted that it would take between 5 and 10 h to complete a full-volume benchmark. 

 

1.4 Big data 

To establish our context, we have briefly defined what the characteristics of data 

are and why this data is called Big Data. In this section, we will revisit this knowledge 

by defining in more detail the revisited research that over the years has defined new 

metrics to consider when defining and characterising Big Data. 

 

1.4.1 Vs and BIG Data 

Several studies [8, 9, 10] have been conducted to describe the descriptive 

characteristics of Big Data. After the introduction of the 3V known as Big Data in the 

past, Nagham and Laden addressed in their research the concept of seven Vs without 

forgetting the mention of research done by Khan, Uddin, and Gupta to describe 

volatility, validity, value, veracity as well as variety, velocity, and volume as the seven 

characteristics of Big Data. Validity is the use of data for specific and precise purposes. 

This characteristic is similar to veracity, but is defined separately. The purpose of 

validity is to ensure absolute confidence in the use of data. As for volatility, this is related 

to the time of data storage being allowed to provide an overall idea in relation to the 

archived data and current data. Further research by Rajan, speaks of 10 V are required 

to characterize Big Data, including volume, veracity, velocity, variety, variability, 
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volatility, validity, visualization, vulnerability, and value. This definition led to 

complementary research and introduced this concept to the analytical side of BD. 

 

1.4.2 Batch processing and Big Data 

Batch processing refers to modifications carried out on large blocks of data 

according to Benjelloun et al. Each block is processed independently and separated over 

time. When the data have previously been saved over time, this type of processing is 

performed. In essence, batch processing manages beginning and ending jobs [11, 13]. 

Jobs for batch processing frequently run simultaneously and in succession. Its key 

benefit is the efficient division of large tasks into smaller tasks. Additionally, it may 

operate offline, using fewer resources and putting less strain on the CPU. The processor 

is aware of how long a task will take to complete, what task will come next, and whether 

execution may be delayed. 

MapReduce is the best-known model for this type of processing [12, 13]. The 

following is a formal definition of MapReduce: The paradigm essentially employs a 

divide-and-conquer strategy. There are many different commercial use cases that may 

be addressed using the programming technique known as MapReduce. Breaking the job 

up into a number of distinct tasks is intended to process massive amounts of data in 

parallel. The mapper organizes the keys after converting the input data into key-value 

pairs. Subsequently, based on the key, the reducer combines the data into a single output 

[13, 14, 15]. 

The user may automatically distribute large datasets by implementing the two 

primitives, map, and reduce. Without worrying about task communication or failure 

recovery, the user can process the data [13, 15]. In addition, it permits data segmentation, 

resulting in scalability and improved performance. 

Chandio, Academy, Tziritas, et al. have been able to determine the importance of 

the parallel computing paradigm in the context of cloud computing. This paradigm is 

crucial for solving complex and intractable computer problems. 

Bulk Synchronous Parallel (BSP) and Directed Acyclic Graph (DAG) are two 

current parallel computing paradigms used in cloud computing environments as 

alternatives to MapReduce. The tasks handled within the framework of these paradigms 

are computation requests from the end user, and can be divided into many tasks [16]. 
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To develop a basic architecture for Big Data processing, Taleb et al. defined a 

model consisting of three stages: data generation, data acquisition, and data storage and 

analysis.  In their research, they defined data generation as the phase of creating data 

from numerous sources, such as sensors used to collect meteorological information or 

monitoring devices, publications on social media sites, etc., and in their research, they 

extended data acquisition such as data collection, data transmission, and data 

preprocessing.  With the heterogeneous characteristics of data sources, as well as an 

unprecedented amount of structured, semi-structured, and unstructured data. The 

preprocessing of Big Data consists of integration, enhancement, and enrichment, as well 

as transformation, reduction, discretization, and cleaning of data. Data storage is more 

related to the infrastructure of the data center where there is storage, and it is spread over 

several clusters and data centers. A typical example is the use of the Hadoop ecosystem 

to guarantee the reliability and efficiency of fault-tolerant storage through replication. 

Data analysis involves the application of algorithms, data mining, and machine learning 

for the processing and extraction of information required to make decisions [17]. 

 

1.5 Sampling for big data 

Enormous fault-tolerant storage structures, parallel and graphical processing 

models, such as MapReduce, Pregel, and Giraph, have been developed as creative 

solutions to the proliferation of large datasets. However, not every environment can 

handle this level of resources and not every query requires a perfect answer. This 

encourages sampling to provide summary datasets that facilitate quick searches and 

extend the usable life of the stored data. To be effective, sampling must balance the 

conflicts between resource limitations, data characteristics, and the necessary query 

accuracy. To enhance the value of the final sample, state-of-the-art sampling goes 

significantly beyond the uniform selection of items [25]. 

In big data applications, sampling has become a common method for processing 

massive volumes of data for real-time analysis. When dealing with enormous datasets, 

two traditional approaches may be considered: dividing the data into smaller sections 

for independent study and lowering the number of data columns. An improved UV 

decomposition method can be used to divide large datasets [26]. 
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In their research [27], Zhang, Zhao, Pang et al. showed that the UV decomposition 

method cannot reduce large datasets when the dataset is very large.  

Sampling is not the only option available; there are other resolution methods in 

the data reduction category, including dimensionality reduction methods, 

eigenvalue/vector decompositions, PCA, and SVD, which are often expensive and slow 

for large datasets. "Sketching" methods for summarizing data streams using hashing and 

random projections have limited scope and are difficult to capture [25]. 

 

1.5.1 A taxonomy for Big Data sampling techniques 

This section provides an overview of the sampling methods used. Although we 

cannot provide an exhaustive list, in this study, we focus on stratified sampling, which 

is used throughout the research to achieve better performance in performing DQ tasks. 

Big-data sampling approaches have been successfully used, as proven by 

Cormode and Duffiel [25]. They use them in a variety of contexts, such as social 

networks and network traffic. 

The sampling methods developed during this study can be classified into uniform 

random sampling, two-stage sampling, cluster sampling, systematic sampling, and 

stratified sampling. 

With uniform random sampling, each object of interest has a uniform probability 

of being included in a sample [32]. The number of objects was determined by the 

population size. To apply sampling, we must generate a number between one and the 

size of the population. We then select the objects where the generated number is less 

than or equal to the number of objects required for the sample plus 1 or 2. A higher 

number allows us to consider the statistical probability of selecting a smaller number of 

objects than the one actually needed [31]. 

Manjunath claimed that two-stage sampling relies on a combined subset of the 

data group and numerous objects of the same data type as its foundation. This method 

is employed when information is randomly gathered from dispersed objects or various 

time periods, and a final sample is then randomly chosen from the combined samples. 

When several diverse items need to be sampled and the size of the pooled sample is 

greater than that needed for the assessment, it is appropriate. An appropriate 

representation of the data for each item or time period was ensured by first-stage 
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sampling. To prevent any group from skewing the final sample, each sample in the first 

stage must be proportionate to its subpopulation (of records). The second round of 

sampling ensured that the combined samples were adequately represented to reflect the 

complete distribution of data [31].  

Cluster sampling is similar to database sampling, in which samples are drawn 

from fewer subsets, such as specific demographic regions. The subsamples from each 

cluster were combined to form a final sample. Rather than randomly selecting sales data 

from each shop, when collecting sales data for a chain of stores, one can select a 

subsample from a representative subset of stores from each cluster to create a cluster 

sample. This approach can only be used to represent all retail sales data if the clusters 

reflect exactly the same relative data types and process consistency. For example, if the 

files contain the same fields, the processes are the same, and the training and 

performance measures of the information produces match. 

It is recommended to use stratified random sampling when the population to be 

sampled has a distribution in units such that a small number of units exist for a subtype, 

according to the study in [31] on the use of random sampling in data testing. In the next 

chapter, we discuss the mathematical aspects and interpretation of stratified random 

sampling in more detail. 

In addition, the study discusses sampling in which every nth dataset was selected. 

Using a concrete example, we select a ratio based on the ratio between the total records 

in the database and the required SSD. The first dataset, which was selected based on the 

ratio used, was random. If the data population is truly random and organized without 

bias, systematic sampling is appropriate. 
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CHAPTER 2. SYSTEM MODELING 

 

In the first two chapters of our study, we describe the context in which we apply 

data quality assessment, that is, a data management platform with multiple services. The 

service we focus on is data integration or ETL. Second, we introduce the topic of 

sampling and its practical use for data analysis and collection. In this section, we 

illustrate the practical implementation of stratified sampling. The ultimate goal of these 

results was to integrate them into a platform developed for DQ evaluation. 

Because the platform is a commercial product, we developed a reduced prototype 

model that illustrates the integration of the algorithms developed in this way to allow 

predictions for the implementation of this system in a commercial product. In particular, 

we discuss the implementation and performance of Stratified Sampling using test data 

in an environment with limited processing resources in a reasonable time and without 

excessive memory consumption. These conditions allowed us to simulate the feeding of 

Big Data into the ETL system of the developed data management platform. 

The goal of this experiment was to ensure the validity of this approach for its 

implementation in applications that process real-world data. To this end, we evaluated 

the practical problems that arise in the selection of parameters and their impact on the 

final result. 

To demonstrate the evaluation results, we created several plots that evaluated the 

performance over time using a linear regression model that allowed us to predict the 

impact of the implementation in an environment with larger datasets and varying 

characteristics. 

The following subsections provide an overview of the architecture of the data 

management platform, particularly the ETL part of the system studied in this thesis. The 

second subsection focuses on the test environment using stratified samples to generate 

the test data to which the representative DQ assessment is to be applied. 
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2.1 ETL model 

 

In Figure 2.1, we see the data flow over several edges, with the incoming edge 

having the task of extracting data from external systems and the outgoing edge having 

the task of DQ assessment. Most of the data quality assessment functions described in 

the previous chapters are implemented in the last task before the data are loaded into the 

data warehouse. 

 

Figure 2.1 - ETL model 

 

The architecture is divided into several tasks, which are implemented in Airflow 

as DAG to allow more controlled execution. The Airflow tool itself is deployed in a 

Kubernetes namespace that provides fault tolerance and scalability to the system. The 

metadata related to all the tasks of the system were collected in a relational database 

(PostgreSQL). Figure 2.1 shows the overall architecture of the tasks to be executed, 

making an abstraction of the staging areas between tasks. At the end of the pipeline, the 

expected result in the data warehouse is a standardized set of parquet files that can be 

used by the rest of the data management platform. 
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Figure 2.2 - DQ Assessment Task Detailed Sequence Diagram 

 

The first phase is the one on which the main basis of our research is based. It 

consists of sampling data to allow us to use fewer resources in the next phase. After 

sampling, the samples were subjected to quality testing (see Figure 2.2). This second 

step is done with the help of the Great Expectations tool to ensure the quality of the data. 

The last phase allowed us to obtain a full report on the quality of our system and 

the results of the DQ assessment. This is crucial to have a history and to identify the 

primary causes of the failure or success of data quality tests. Therefore, metadata are 

collected at the end of the data pipeline in the Metastore. 
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2.2 System architecture overview 

 

Figure 2.3 represent the overall system architecture 

 

Figure 2.3 - Architecture overview 
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2.2.1 Metadata store 

The Postgres database served as the metadata store in this study. In his quest to 

create a database system that would work for every application, Michael Stonebraker's 

most challenging project was Postgres [22]. 

When Postgres was still in its early design stages in 1990, there were 

approximately 90,000 lines of C code. The system was used by its "bold and brave" 

early users [23]. It was created over the course of three years by a team of five part-time 

students, working under the supervision of a full-time head programmer. Two students 

in Stonebraker's group, Andrew Yu and Jolly Chen, changed the system's parser to 

accept an extended variation of SQL rather than the original Postquel language as the 

Postgres research project came close. Postgres95 was the first Postgres release to support 

SQL followed by PostgreSQL [22]. 

 

Figure 2.4 - PostgreSQL system overview 

 

According to research [34], database files are accessed through a shared buffer 

pool. Consequently, the two backends never see inconsistent views of the same file. The 

Unix kernel frequently includes an additional buffer. Transactions are expected to be 

atomic, consistent, isolated, and long-lived. Because Postgres does not allow distributed 

transactions, all statements in a transaction are executed by a single backend. Currently, 

nested transactions are not processed. Actual insertions/deletions/updates of tuples are 

annotated as having been performed by transaction N and when completed. 
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Backends working in parallel ignore changes, knowing that transaction N has not 

yet been completed. All of these changes become logically visible at the same moment 

when the transaction is completed. The pg_log control file contains two status bits per 

transaction ID, where statuses in progress, committed, and aborted are possible. Setting 

these two bits to commit is an atomic operation, indicating that a transaction is 

committed. 

Normally, an aborted transaction changes the status of the pg protocol. However, 

even if the process terminates early, nothing will be lost. When a backend checks the 

status of this transaction, it finds that it is listed as in process but not running on any 

backend, which means it has crashed and will update the pg_log entry in its name to 

aborted. No changes to any table file are required during abort [34]. 

Lane continued to say that Postgres transactions are guaranteed to be atomic only 

when a disk page is written as an action. This is the case for most current disks when a 

page is in the physical sector, but most users use disk pages set to 8 K or more, which 

raises the question of whether writing a page is all or nothing. In any case, the pg_log is 

safe because we only invert bits in the file, and both bits of the transaction state must be 

in the same sector. However, if we move tuples in a data page, there is a risk of data 

corruption if a power failure interrupts the page write halfway through (perhaps only a 

few sectors of the component are written) [34]. 

 

2.2.2 Horizontal autoscaling environment 

A Kubernetes cluster is composed of a collection of worker computers known as 

nodes that execute containerized apps. Each cluster has at least one worker node (see 

Figure 2.5). 

The worker node(s) hosts the pods that make up the application workload. The 

control plane supervises the worker nodes and pods of the cluster. In production 

situations, the control plane is typically distributed across many computers and a cluster 

is distributed across numerous nodes to provide fault tolerance and high availability [36]. 
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Figure 2.5 - Kubernetes cluster overview 

 

We used Kubernetes to provide scalability and robustness to the entire system in the 

practical implementation of this research by utilizing the commercial tool architecture. 

A pod is the most basic unit of execution and resources in Kubernetes, and it comprises 

a container or set of containers, as well as instructions on how to operate those containers 

[37]. Each pod represents an application instance and is always associated with 

namespace. Moreover, the pods from the same application were similar and had the same 

specifications. A pod can be thought of as a replica in this manner. The intended number 

of replicas and the amount of resources needed must be provided when deploying an 

application. 

The program, for example, is named Application-A in namespace-1 and requires 

250Mi and 250m of accessible memory and CPU for each pod. 'Mi' is an abbreviation 

for 'Mebibyte,' and 'm' is an abbreviation for 'millicore,' which is a single unit equal to 

1/1000 of a CPU core. Kubernetes defines it as a granular technique of measuring CPU 

resources so that different pods can share a CPU core. Furthermore, within the cluster, 

each pod is assigned a unique IP address. 

Kubernetes can expand apps horizontally because of its architecture. When an 

application requires extra computing resources, for example, instead of modifying the 

specifications of current pods, users may simply create another identical pod to share 

the burden. The IP address of this new pod is subsequently added to the application's 

service, which distributes incoming traffic to both the new and old pods [37]. 
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2.2.3 Workflow runner 

For a repeatable execution of the ETL system with historical control, we have 

highlighted the Airflow platform that allowed us to build data pipelines in the form of a 

Directed Acyclic Graph (see Figure 2.6) that contains individual work items called tasks, 

arranged by considering dependencies and data flows. 

 

Figure 2.6 - Airflow architecture 

 

A DAG outlines the relationships between tasks, the sequence in which they 

should be completed, and the execution attempts. The tasks themselves explain what has 

to be done, such as data extraction, analysis, and activating other systems [35]. 

 

Table 2.1 - Types of local test data files 

Components Description 

Scheduler This component is responsible for activating the scheduled 

processes and simultaneously handing over the tasks to the 

executor for execution  

Executor The running tasks are managed by the executor, who executes 

everything in the base airflow installer. Most production-oriented 

executors push tasks to the workers. 
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 Table 2.1 continuation 

Webserver The web server provides a convenient user interface for analyzing, 

checking, triggering, and debugging the behaviors of DAGs and 

tasks. 

DAG 

directory 

A folder of DAG files is read by the scheduler and runner (and all 

workers owned by the runner). 

Metadata 

Database 

Stores the state of the scheduler, executor, and web server. 

 

The design of DAGs in Airflow is such that repeated execution is possible and 

can be performed in parallel. This implies that more data are parameterized by always 

specifying the intervals at which to execute. We used Kubernetes as the deployment 

environment in this study (Figure 2.5). Using an Airflow-specific concept called an 

operator, we can define the tasks and their execution order (see Figure 2.1). The operator 

used was the KubernetesPodOperator, which is customized to the deployment 

environment. 
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CHAPTER 3. MEASUREMENT RESULTS 

 

In the previous chapters, we defined the benefits of using stratified sampling and 

discussed the need for its use in this study to reduce resource consumption in the next 

task of the DQ assessment (see Figure 2.2). In a practical setting, the DQ assessment 

task cannot be executed when sampling is not applied. The task timed out or failed 

completely during the execution in airflow owing to excessive memory consumption. In 

our study, the data consisted of files stored in a data warehouse. The files are supposed 

to have a standard model that allows us to perform stratification that is directly 

proportional to the number of files; thus, the assignment of samples to the different strata 

is performed in such a way that the overall sample is a faithful representation that allows 

us to ensure the quality of the overall population data, that is, the set of all records in the 

files, before the final transfer to the data warehouse. 

The population U consisting of N units (total number of combined records of all 

files stored in the data warehouse before DQ assessment). We define the total number 

of files K as the number of strata, and the ith stratum Ui consists of Ni units (file records). 

 

∑ 𝑁𝑖𝐾
𝑖=1   =  𝑁     (3.1) 

 

From the ith stratum a sample 𝑠𝑖 of size 𝑛𝑖 is selected independently from other 

strata. 

The value 𝑦𝑖𝑗  is a Boolean DQ assessment of the record y for the jth unit of the 

ith stratum; 𝑗  =  1⋯𝑁𝑖; 𝑖  =  1⋯𝐾  ; The ith stratum total 𝑌𝑖 is expressed as 

follows: 

 

𝑌𝑖   =   ∑ 𝑦𝑖𝑗
𝑁𝑖
𝑖=1       (3.2) 

 

The ith stratum mean 𝑌𝑖 : 

 

𝑌𝑖   =  𝑌𝑖/𝑁𝑖           (3.3) 
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The population total 𝑌 : 

 

𝑌  =   ∑ 𝑌𝑖
𝐾
𝑖=1       (3.4) 

 

The population mean 𝑌 is expressed as follows: 

 

𝑌  =  ∑ ∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝐾
𝑖=1 /𝑁  = ∑ 𝑊𝑖𝑌𝑖

𝐾
𝑖=1   With 𝑊𝑖 = 𝑁𝑖/𝑁   (3.5) 

 

The ith stratum variance 𝑆𝑦𝑖
2  : 

 

𝑆𝑦𝑖
2 = ∑ 𝑁𝑖𝑗

𝑁𝑖
𝑗=1 = (𝑦𝑖𝑗 − 𝑌𝑖)

2
/(𝑁𝑖 − 1)        (3.6) 

 

The population variance 

 

𝑆𝑦
2 = ∑ ∑ (𝑦𝑖𝑗 − 𝑌)

2𝑁𝑖
𝑗=1

𝐾
𝑖=1 /(𝑁 − 1)       (3.7) 

 

3.1 Estimation of the Population Mean 

A sample 𝑠𝑖 of size 𝑛𝑖 is drawn from the stratum 𝑈𝑖 with probability 𝑝(𝑠𝑖) 

according to the sampling scheme 𝑝(𝑖). Let 𝜋𝑗|𝑖|(> 0) and 𝜋𝑗𝑘|𝑖|(> 0) be the inclusion 

probabilities for the jth unit and the jth and kth (𝑗 ≠ 𝑘  ) Units in the ith stratum, 

respectively. Based on the selected sample 𝑠𝑖, an unbiased estimate for the mean 𝑌𝑖 of 

the ith stratum is given by: 

 

           (3.8) 

 

Where 𝑏𝑗(𝑠𝑖) ‘s are constants free from 𝑦𝑖𝑗  ’s and satisfy the unbiasedness 

condition: 

      (3.9) 
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3.2 Performance evaluation of stratified random sampling for DQ assessment 

 

The goal of the experiment was to prove the effectiveness of data sampling for 

quality assurance. To this end, we modeled a test environment that differed from a 

commercial product to allow flexibility in performing the sampling task as well as 

various performance experiments. The configurations of the computer used to test the 

Stratified Sampling algorithm had 8 GB of RAM. The studied data occupy 

approximately 93.8 GB of disk space, and the CPU, a product of the manufacturer Intel 

Corporation, has two cores with a size of 1487 MHz and a capacity of 4100 MHz 

 

Table 3.1 - Types of local test data files 

Types of files Size (bytes) 

text/csv 14,243,042  

text/csv 97,276,566 

text/csv 4,020,757 

text/csv 61,913,651 

text/csv 7,883,148 

text/csv 89,328,022 

text/csv 1,380,690 

 

The results of the tests without sampling resulted in a timeout as the execution 

time exceeded the normal values. Therefore, the task could not be completed, and the 

memory and CPU resources were insufficient to complete the execution.  

Therefore, we divided the DQ task into two tasks. First, we introduced sampling, 

as described in the previous sections, and then evaluated data quality (see Figure 7). In 

this section, we present the basic results of the Stratified Sampling execution time in the 

test environment. This provides the necessary conditions and information for adapting 
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the execution to the production conditions of data integration systems working with Big 

Data in batch processing. 

 

 

Figure 3.1 - Sample size allocation 

 

We define the weight that determines the number of samples to be collected from 

each stratum as a value directly proportional to the size of the data and inversely 

proportional to the estimate of the weight of the expected global sample. As shown in 

Fig. 3.1, the distribution of units in the strata is directly proportional to the weight of the 

test data. 
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Figure 3.2a - Local test results part 1 
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Figure 3.2b - Local test results part 2 

 

We can observe a direct correlation between memory and the choice of weight 

used in determining the sample to be included. Figure 3.2a and Figure 3.2b show the 

results of sampling with the weight setting versus the choice of units to be contained in 

the strata. We can also conclude that, in spite of a linear correlation between all the 

dimensions of performance, there is an innuitable advantage for the choice of the weight 

in the example quoted above. We can observe a reduction of 99, 9 % in the size of the 

data for the constitution of the sample, and the time of execution of the sampling is 

included between 0.2 and 12.04 seconds. Contrary to the use of all the data, sampling 

proves to be efficient; nevertheless, this strategy presents a disadvantage that is linked 
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to the choice of the weight, and it may not allow a not too representative sampling of the 

data in the strata. However, as the weight increases, the execution time also increases.  

 

Figure 3.3 - Sample data size by varying strata weights from 3.62-e07 to 7.62-e05. 

 

 

Figure 3.4 - Memory consumption by varying strata weights from 3.62-e07 to 7.62-

e05. 
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Figure 3.5 - Weight choice versus execution time. 

 

 

Figure 3.6 - Weight choice versus execution time. 
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We first varied the size of the data from 1,380,690 B to 97.27 Mb and then 

compared the seven cases where choosing the same weight resulted in a random number 

of records to process relative to the size of the file. As long as the value of the weight 

was above a threshold higher than 3.62-e07, there was variability in the distribution of 

the total records for each layer; however, in the opposite case, each layer produced a 

single record. As shown in Figure 3.2, finding the most diverse records in the final 

sample is directly proportional to the chosen weighting. Therefore, in an environment 

involving data with high variability, it is more advantageous to choose an equally high 

weight to accurately represent the data. The choice of a high weight has several 

consequences, as shown in Figure 3.3, which shows a linear correlation with the 

variation in the weight point. This is a serious problem for the relationship between 

volume and variability, leading to the need to balance the choice of weight. We 

determined the execution time by calculating the time elapsed between the application 

of simple random sampling to obtain the number of records to be included in each 

stratum and the combination of all the strata. We also found a correlation between the 

weighting and execution time, as shown in Figure 3.4, and concluded that the correlation 

between the two entities is beneficial because we can infer that reducing the weighting 

directly affects execution time. In a resource-constrained environment, where we aim 

for normal execution time without compromising the quality of the samples, it is 

necessary to choose a minimum weight without compromising the variability of the data. 

For memory consumption varying between 5263 B and 131,929 kb, we observed a linear 

increase in execution time from 0.28 seconds to 12 s throughout the process with the test 

setup environment (see Figure 3.5). This allowed us to determine the reliability of our 

process compared with an environment with a higher data volume. The problem that 

arises is the reduction in execution time without reaching an unattainable memory 

consumption. Therefore, before applying Stratified Sampling in a practical environment, 

it is of utmost importance to test and determine the applicable thresholds for weight, 

memory, and execution time on a small scale before determining applicability in a 

production environment. 
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CHAPTER 4. LABOUR PROTECTION AND SAFETY IN EMERGENCY 

 

Based on Safety critical software ground rules by Addagarrala and Kinnicutt 

Safety critical software development field is one of the active research areas in 

many industries like automotive, medical, railways, nuclear and aerospace are placing 

increased value on safety and reliability. Safety critical software systems are those 

systems whose failure could result in the death or a serious injury to the people’s life, 

security is one of the important topics in the field of safety-critical systems and it must 

be addressed completely in order to operate safety critical software successfully. In this 

paper we present a study about the set of standards and different ground rules to be 

followed in critical software development practices in different industries and the 

challenges in applying these standards. We also discuss the role of static analysis and 

software integrity levels in these standards, similarities in these standards and the set of 

activities followed in the development process of these standards. 

 

4.1 Introduction 

Safety critical systems in the automotive industry are life critical systems which 

if malfunctioning may result in death or serious to human life. Due to these significant 

costs, safety critical systems must be designed, implemented and tested to ensure robust, 

efficient performance and no potentially hazardous software bugs. The C programming 

language is used commonly in automotive safety systems because it executes quickly, 

but it is a language prone to errors. Many of the problems with using C in embedded 

systems arises from memory management errors from pointer misuse or buffer 

overflows. Another main difficulty with the C programming language lies in the 

differences in compiler implementations of the language grammar, leading to 

executables with different behaviors based on the compiler options used and the 

different architectures of embedded systems. Standardized processed have been 

developed by standards bodies such as ANSI. Many of the vulnerabilities possible in C 

can be mitigated through the use of well-designed programming rules. Developing 

software for safety critical systems needs to consider all aspects of security and quality. 

The safety integrity concept grew from development of safety critical systems in 

various industries such as the automotive, aerospace, medical and railway industries. 
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The safety integrity concept was first introduced by the IEC 61508 standard and later it 

was taken up and inherited in various offshoot standards. “Safety” as used in the safety 

critical software refers to developing software to prevent harm or catastrophe from 

happening. The safety integrity concept comprises two components: 

• integrity against random failures; 

• integrity against systematic failures. 

The main difference between the two are the systematic failure cannot be 

quantified by the way of probabilistic computation and they mainly occur due to human 

errors during the different phases of software development process. Random failures 

result from hardware malfunctions and they occur randomly over time, due to aging and 

wear and tear on the hardware. Because of the nature of software, software applications 

are not subjected to random failure. In this paper we present an overview and analysis 

of a set of good standards developed in different industries for the development of 

different safety critical software systems, as well as a list of static analysis tools used 

and their role in developing high-quality code. 

 

4.2 Need for guidelines 

 

4.2.1. Software quality 

In general, people increasingly rely on more safety critical soft- ware systems in 

their mode of transportation, so developing such safety critical software always to be 

correct and perceived to be correct becomes more important to help ensure that 

catastrophes do not happen. In order to ensure the embedded software is correct, a 

unified approach is needed in software development with agreed standard techniques 

across any industry. In the automotive industry as an example, one safety critical system 

installed in the vehicle may include braking and controlling a particular function like 

antilock braking during emergency stops. These braking components (hard-ware and 

software) are supplied by the original equipment manufacturer or a third-party entity. 

Normally in automotive industry, most software developed as a part of the entire system 

is embedded software. Every vehicle manufacturer will specify some system 

specifications which ensure the following requirements: 
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• a set of interfaces to communicate with the sensors and other vehicle 

components; 

• the functional performance of the software;  

• external environmental requirements such as climatic extremes and 

electromagnetic compatibility. 

Software is considered one of the major components in auto- motive industry. 

When we compare the software with other hard- ware components we can find some 

similarities and differences between them: 

Similarities: 

• both may be subject to continual improvement and development; 

• both should be subject to strict quality control procedures; and. 

• specialist skills are required in its development.  

Differences: 

• errors in the software are systematic, not random; 

• software is considered intangible;  

• software is perceived to be easy to change. 

Any embedded safety critical software developed should undergo proper software 

development practices. Procedures and standards must be followed during the 

development and vali-dation of software in embedded systems to efficiently improve 

and maintain quality control. MISRA (Motor Industry Software Reliability Association) 

developed the first standards in November 1994; up to that time, no specific standards 

or guidelines existed in national or international vehicle software development. The 

primary reason behind the development of these standards is that every critical system 

development has standards and their integrity levels more strict than other software 

systems, and the automotive test environment uses many vehicle components and 

simulations to test systems and software extensively before they reach the customer. 

This led to the development of standards for vehicle-based software systems. 

Coding standards are used to improve software reliability and security. These 

coding standards include the set of rules that help the developers avoid dangerous 

language constructs; they also help limit the complexity of functions and maintain the 

standard coding structure by following the consistent syntactical and commenting styles 
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specified in the standard. These coding standard rules help to reduce the occurrence of 

flaws and make it easier to maintain and test the software, as the code becomes more 

readable and is better documented. 

It is very common that as the coding standards improve over time, it includes a 

set of rules whose objective is to accomplish human code reviews. During code review, 

developers try to improve the software quality prior to deployment by examining the 

code, fixing potential bugs and ensuring he coding standards are met. Developers use a 

set of static analysis tools during the code review that helps them determine whether any 

set of warnings may be related to code style or design or documentation. The role of 

static analysis tools is to analyze the source code, with the aim of complementing the 

compiler by highlighting potential issues that may arise in the software system like 

uninitialized variables, poorly commented code, etc. 

Compilers and other link chains like linkers/loaders by default often emit 

warnings rather than halt a build with a fatal error in the event of uninitialized variables 

or other potential issue. A warning during compilation is an indicator to the developer 

that a construct may be technically legal but questionable, or may be exercising a corner 

of the language that is not well defined. Such constructs are frequently the cause of 

subtle bugs. To ensure that developers do not intentionally or accidentally ignore 

warnings, the compiler can be configured to treat all warnings as errors. Many compilers 

have such an option. 

 

4.2.2 Static analysis 

The software source code can be analyzed with static analysis using manual or 

automated methods. In manual analysis either a checklist or coding standards are used, 

while static analysis tools are used in the automated approach. The main objective of 

analyzing software is to ensure the absence of bugs in the software [11, 15]. Some coding 

standards used in the manual analysis are: MISRAC/C++, GNU Standards–C, JSFC++, 

CERT–java, JPL, Netrino, RUNTIME, CERT, CMSE, CON-FORM, CWE, DERA, and 

EADS. Motor Industry Software Reliability Association (MISRA) is an organization 

that provides guidelines for embedded software development to support electronic 

components used in the automotive industry. The main intention of MISRA is to give 

assistance to the automotive industry to make vehicle systems reliable and secure. These 
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guidelines were geared towards the use of the C programming language in vehicle-based 

software systems. The MISRA Guidelines are intended to achieve the following 

objectives to assure safety, robustness and security to the software, and minimization of 

both accidental and regular faults in the system design. 

Currently, the MISRA standards are meant for the C and C++ programming 

languages. The first MISRA standard was issued as MISRA C:1998; this first release 

disseminated a set of guidelines for the use of the C programming language in vehicle-

based software. MISRA C:1998 has 127 rules, of which 93 are required and 34 are 

advisory; these rules are numbered in sequence 1 to 127 [15]. The second edition of the 

standards released was MISRA C:2004. These guidelines are used in safety critical 

systems; it contains 142 rules, of which 122 are required and 20 are advisory. Most of 

these guidelines can be reviewed using static analysis tools, while the remaining rules 

may be reviewed using dynamic analysis tools. For good software design of safety 

critical systems, both required and advisory rules must be considered in all projects even 

if they are not fully MISRA-compliant. The required rules must be implemented by 

developer, and the advisory rules should also be addressed or examined even though it’s 

not compulsory in the standards. Several selected rules are normally not checked by the 

compiler, as shown in Table 1. 

We conducted several experiments using these rules with some test results. These 

experiments were conducted using the lint static analysis tool and IDEAS development 

environment as well as the MISRA C:2004 standard for a Chrysler project. To explain 

what types of violations are specified and how the violations can be corrected, we have 

taken two required rules from MISRA to concentrate on. 

Rule: 10.1 

The value of an expression of integer type shall not be implicitly converted to a 

different underlying type if: 

1) It is not a conversion to a wider integer type of the same signedness; 

2) The expression is complex;  

3) The expression is not constant and is a function argument; or  

4) The expression is not constant and is a return expression. 

Here is an example: 

Uint8 a = 0xffU; 
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Uint8 b = 0u; 

Uint16 c =10u; 

b = b + 5; /* not OK, 5 is signed */ b = b + 5U; /* OK, same signedness */ 

The test result using Qtool is shown in Fig. 4. The MISRA 10.1 rule violation report is 

shown in Fig. 4.1, while the violation code and the resolved code are shown in Fig. 4.2 

and 4.3, respectively. 

Rule12.5 

The operands of a logical && or jj shall be primary-expressions. 

For example, 

if ((x>c1) && (y>c2) || (z>c3)) /* not OK */ if ((x>c1) && 

((y>c2) || (z>c3))) /* ok extra braces () used. 

Note the extra parentheses () used to explicitly specify the order of precedence for the 

logical or operation. The result of a MISRA 12.5 test violation is given in Fig. 2. 

Again, this code snippet shows that the resolved code contains explicit parentheses in 

the logical expression to make it clear what the order of operations is intended to be. 

 

4.2.3 Automated static analysis tools 

MISRA is an organization with a lot of influence in the software development of 

automotive software systems. Members of MISRA include but are not limited to: 

Bentley Motors; Del-phi Diesel Systems; Ford Motor Company; and Jaguar Cars Ltd. 

Because of their influence, several software vendors sell analysis tools that support the 

MISRA standards; 

 

 

Figure 4.1 - (A) Qtool report for the MISRA 10.1 violation 
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Figure 4.2 - (B) MISRA 10.1 violation code snippet (before change) 

 

 

Figure 4.3 - (C) MISRA 10.1 violation code snippet (after change) 

 

Some of these vendors include Gimpel Software, Axivion, Cosmic 

 Software and Green Hill Software, among others. Two popular automated static 

analysis tools are PC-Lint and RSM (Resource Standard Metrics). This section 

summarizes these tools. 

PC-lint 

The PC-lint is a static analysis tool. It will check the source code of C/C++ and 

figure out the bugs, inconsistencies, non-portable constructs, redundant code, etc. It is 

developed by Gimpel Software and it has been continuously maintained for more than 

25 years. 

Two examples demonstrating the types of violations PC-Lint can catch are: 

a) The goto keyword shall not be used, The PC-Lint can be configured to generate 

a warning message each time the goto keyword appears in your C/C++ code by including 

deprecate (keyword, goto, violates coding standard) in our local lint configuration file. 

b) Comments Shall never be nested, The PC-Lint generates an error whenever 

such comments are found in the source code. 
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4.3 Universal standards 

 

Different sets of standards have been developed for safety critical sofware systems 

in several industries such as railroad, medical, and aerospace. Table 2 shows the industry 

and the corresponding standard that applies to the industry. 

 

Table 2: Industries and Applicable Safety Critical Software Standards 

Industry Standard 

Automotive ISO26262 

Aerospace DO178B 

Medical IEC62304 

Railway EN50128 

 

ISO26262 automotive functional safety standard 

The ISO 26262 discusses the importance of an automotive specific international 

standard that focuses on the safety critical components. It is a derivative of the IEC 

61508, the generic functional safety standard for electrical and electronic systems. The 

high increase of complexity in the automotive industry resulted in the industry putting 

significant efforts to provide robust and responsive safety compliant systems. ISO 26262 

uses a set of steps to manage the functional safety and to regulate the product 

development on a system at both the hardware and software levels. The main goal of the 

ISO 26262 is as listed below. 

a) It provides an automotive safety lifecycle (management, development, 

production, operation, service, decommissioning) and supports tailoring the necessary 

activities during these lifecycle phases; 

b) It provides an automotive specific risk-based approach for determining risk 

classes (Automotive Safety Integrity Levels, ASILs); 

c) Covers functional safety aspects of the entire development process (including 

such activities as requirements specification, design, implementation, integration, 

verification, validation, and configuration); and 
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d) It provides requirements for validation and confirmation measures to ensure a 

sufficient and acceptable level of safety is being achieved. 

Here in this paper, we mainly discuss the product development at the software 

level and safety integrity levels as defined by ISO 26262. The ISO 26262 specifies the 

set of steps needed to be considered for the product development at the software level in 

the automotive industry to provide the safety required. Steps discussed in ISO 26262 

include. 

a) Requirements for initiation of product development at the software level; 

b) Specification of the software safety requirements; 

c) Software architectural design; 

d) Software unit design and implementation; 

e) Software unit testing; 

f) Software integration and testing; and 

g) Verification of software safety requirements. 

 

4.4 Challenges in safety critical systems 

 

In one or the other way for people in the software community working on Safety 

Critical Systems technology, safety critical system is an application where human safety 

depends on the correct operation of the application. , as we also briefly describe below. 

The important point in safety critical systems is security and it must be named in order 

to work successfully. The major difficulty here exists very much in the software 

engineering than security. Many security difficulties that arise in network information 

systems appears because of software defects make the systems weak to attacks. Even 

now such attacks exist’s because system continues to be deployed with vulnerabilities. 

In some cases, what amounts to completely new technologies are required. The number 

of interacting safety-critical systems present in a single application will force the sharing 

of resources between systems. This will eliminate a major architectural element that 

gives confidence in correct operation-physical separation. Knowing that the failure of 

one system cannot affect another greatly facilitates current analysis techniques. 
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4.5 Similarities between Different Standards 

 

EN50128, DO-178B, and ISO26262 are derived from the IEC 61508 standard 

(General Elctrical/Programmable electronic devices) The considerable similarities 

between these standards. All these standards are offering the guidance for core software 

development process. The EN50128 process is based on waterfall and V model whereas 

the ISO 26262 describes the software lifecycle under V-model frame work and it is 

allowed to use the agile development for all the standards. Related to the safety integrity 

levels all these standards use the different terminology like Safety integrity levels (SIL), 

Automotive Safety integrity Levels (ASIL) to check the safety levels. With the higher 

safety systems need more checks and high control. 

 

4.6 Conclusion to safety 

This paper is meant to provide sets of standards and guidelines followed in 

different industries in the field of safety critical software development. We hope the 

paper can help as a point of reference in the automotive, medical, aerospace, and rail-

way industries for the developer creating embedded software to get an overview about 

the development process and SIL involved. 
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CONCLUSIONS 

 

Data quality assessment and assurance have been identified as important issues in 

decision-making systems, particularly ETL systems. This study provides an overview 

of the definition of ETL systems. In the context of ETL, the correlation between Big 

Data V characteristics and data quality was examined. 

A review of the literature on Big Data from the perspective of treatment in the 

system of integration of data that deals with heterogeneous sources. In addition, the 

representation of data quality, as generally presented in other research in the field of 

decision-making, has been reported. 

Despite the large number of studies dealing with data quality in the field of 

integration tools, there are still some problems to be solved, especially the 

implementation of Big Data in the system in terms of the practical resources of ETL 

systems. An analysis of the state of the art in data quality assessment revealed that 

sampling has not yet been considered as a solution to the expectations of data quality 

testing for BI systems. We also highlight the evaluation of practical factors that must be 

measured to ensure data quality in relation to the dimensions of the data, as presented 

by the research area. In particular, data quality can be applied to the design of an ETL 

pipeline in a marketing data-management platform. 

This study addresses these issues and proposes a test framework for evaluating 

data quality in a data extraction, transformation, and loading system in a data warehouse. 

Specifically, we compared stratified sampling to achieve data quality and a normal 

implementation that ensured the quality of the dataset. We presented data that 

demonstrated the performance of stratified sampling in an environment where the 

normal implementation of the dataset was not applicable. We also defined the factors 

involved in this process to ensure that the expected runtime and memory consumption 

are achieved relative to the available resources. 

Finally, we developed a testbed to ensure implementation of the Stratified 

Sampling algorithm in a more controlled domain. To simulate the processing of large 

amounts of Big Data, a test environment was used to ensure the sampling of data in a 

text file data processing application. We described the results of performance tests and 
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constraints to prove the use of Stratified Sampling in models of ETL production that are 

subject to Big Data. 
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