

Ministry of Education and Science of Ukraine

Ternopil Ivan Puluj National Technical University

Faculty of Computer Information Systems and Software Engineering
(full name of faculty)

 Computer Science Department
(full name of department)

QUALIFYING PAPER

For the degree of

Master
(degree name)

topic: Data Quality Management in ETL Process under Resource Constraints

Submitted by: six year student , group ІСАм-62

specialty 124 System analysis

(code and name of specialty)

 А. Kashosi
 (signature) (surname and initials)

Supervisor N. Zagorodna
 (signature) (surname and initials)

Standards verified by

O. Matsiuk
 (signature) (surname and initials)

Head of Department

I. Bodnarchuk
 (signature) (surname and initials)

Reviewer

 (signature) (surname and initials)

Ternopil 2022

Ministry of Education and Science of Ukraine

Ternopil Ivan Puluj National Technical University

Faculty
 (full name of faculty)

Department
 (full name of department)

 APPROVED BY

 Head of Department

 I. Bodnarchuk

 (signature) (surname and initials)

 « » 2022

ASSIGNMENT
for QUALIFYING PAPER

for the degree of Master
 (degree name)

specialty 124 System Analysis
 (code and name of the specialty)
student Kashosi Aser

 (surname, name, patronymic)

1. Paper topic Data Quality Management in ETL Process under Resource Constraints

Paper supervisor Nataliya Zagorodna, PhD, Associate Professor
 (surname, name, patronymic, scientific degree, academic rank)
Approved by university order as of « 22 » 11 2022 № 4/7-951 .

2. Student’s paper submission deadline

3. Initial data for the paper

4. Paper contents (list of issues to be developed)

5. List of graphic material (with exact number of required drawings, slides)

6. Advisors of paper chapters

Chapter Advisor’s surname, initials and position

Signature, date

assignment

was given by

assignment

was received

by

7. Date of receiving the

assignment

TIME SCHEDULE

LN Paper stages
Paper stages

deadlines
Notes

Student

 (signature) (surname and initials)

Paper supervisor

 (signature) (surname and initials)

4

ANNOTATION

Data Quality Management in ETL Process under Resource Constraints // Qualification

paper of the educational level "Master" // Kashosi Aser // Ternopil Ivan Puluj National

Technical University, Faculty of Computer Information System and Software

Engineering, Department of Computer Science // Ternopil, 2022 // P. , Tables – ,

Fig. – , Diagrams – , Annexes. – , References – .

Keywords: Data Quality, ETL, Big Data, Data Management Platform, Stratified

Sampling

Currently, access to data is necessary for many companies, particularly those

engaged in marketing, to make decisions that will improve the quality of their services

and businesses. They frequently find the knowledge they need from several sources in a

variety of formats. Following a dedication to the quality of information offered to data

consumers, a system will be implemented to consolidate all these data sources for

analysis and decision-making.

This study addresses the evaluation of data quality (DQ) in an ETL process

developed to support a marketing data management platform. More specifically, this

study addressed the problem of evaluating the quality of data with a high-volume trait.

Addressing the problem of DQ assessment at high ingestion rates is beyond the scope

of this study, which focuses on data quality assessment with limitations to vertical or

horizontal scaling of the ingestion system.

We also analyze the use of the model developed on real data to assume an

improvement in the quality of the data in the ETL. The methodology used consisted of

studying each feature related to the characterization of high-quality data and analyzing

the impact of those in an ETL concerned with voluminous data. We propose algorithms

for improving a more generalizable integration DQ assessment. We conducted a

practical implementation study of the different criteria and characteristics proposed to

evaluate the impact of the data collected throughout the process of data Extraction,

Transformation, and Loading.

5

We highlight a quality assessment framework that models the different necessary

parts of the process, including data sources, metrics characterizing data quality, data

destination, and the analysis and performance of the algorithms used in the assessment

process. The ETL practical implementation in this research is based on a Direct Acyclic

Graph (DAG) model, with the main purpose of extracting, transforming, and

transmitting data from this first service to the rest of the Marketing Data Management

Platform infrastructure, which is considered as the end user. The evaluation and quality

are based on the development of algorithms that take source data as input in combination

with predefined properties encompassing the expected result of the ETL transformation

to produce the evaluation result.

The evaluation findings may be used to support or contradict the standards for

quality. Decisions are made in the event of a DQ failure to improve and enhance the

data. We suggest including data checks at the very end of the ETL data manipulation

process as well as a model for data volume reduction using algorithms that are intended

to make the procedure more generic to enable quick review. The quality of the data

evaluated during the test is a statistical representation of the ingested dataset, which

provides an accurate profile that enables user applications to retrieve high-quality data

without delay. The main contributions of this thesis are: i) the development of an ETL

service in a Marketing Data Management Platform and ii) an examination of data

reduction models with a view to assessing data quality.

Chapter 1 presents a literature review of this research and describes the basic

concepts and their definitions in other research, including sampling, ETL, Data Quality

and Big Data.

Chapter 2 We present the manner in which the ETL system fits into the framework

of the data-management platform and how the entire architecture is modelled.

Chapter 3 presents the outcomes of the experiment. The experimental findings,

which were obtained using various types of actual data, are presented in this chapter.

The performance over time and the effect of the startified sample are depicted in graphs.

The closing part presents the conclusions of this thesis and discusses the

prospective research.

6

LIST OF SYMBOLS, SYMBOLS, UNITS, ABBREVIATIONS AND

TERMS

DQ – Data quality

ETL – Extract transform and load

DMP – Data management platform

DAG – Directed acyclic graphs

BD – Big data

TPC – Transaction Processing Performance Council

DI – Data integration

ISO – International Organization for Standardization

IEC – International Electrotechnical Commission

BSP – Bulk Synchronous Parallel

SVD – Singular value decomposition

PCA – Principal components analysis

DB – Database

CPU – Central processing unit

7

CONTENT

Data Quality Management in ETL Process under Resource Constraints 1

Notes ... 3

INTRODUCTION ... 9

1.1 ETL ... 12

1.1.1 ETL definitions ... 13

1.1.2 ETL tools review .. 14

1.2 Data quality ... 16

1.2.1 Data Quality Dimensions .. 17

1.2.2 Data Quality Objectives in the Context of ETL 18

1.2.3 ISO Data Quality Standards ... 19

1.3 Tcp-di benchmark ... 20

1.4 Big data ... 21

1.4.1 Vs and BIG Data ... 21

1.4.2 Batch processing and Big Data ... 22

1.5 Sampling for big data .. 23

1.5.1 A taxonomy for Big Data sampling techniques 24

CHAPTER 2. SYSTEM MODELING ... 26

2.1 ETL model .. 27

2.2 System architecture overview ... 29

2.2.1 Metadata store ... 30

2.2.2 Horizontal autoscaling environment ... 31

2.2.3 Workflow runner .. 33

CHAPTER 3. MEASUREMENT RESULTS ... 35

3.1 Estimation of the Population Mean .. 36

3.2 Performance evaluation of stratified random sampling for DQ assessment

 ... 37

8

CHAPTER 4. LABOUR PROTECTION AND SAFETY IN EMERGENCY .. 44

4.1 Introduction ... 44

4.2 Need for guidelines ... 45

4.2.1. Software quality ... 45

4.2.2 Static analysis ... 47

4.2.3 Automated static analysis tools .. 49

4.3 Universal standards ... 51

4.4 Challenges in safety critical systems .. 52

4.5 Similarities between Different Standards ... 53

4.6 Conclusion to safety .. 53

CONCLUSIONS ... 54

BIBLIOGRAPHY ... 56

9

INTRODUCTION

The presence of the Internet, social networks, and other technologies, such as the

Internet of Things (IoT), has promoted the proliferation of Big Data in all economic

sectors. Businesses have the advantage of access to a large volume of data, allowing for

more accurate decision-making. This resulted in a caveat, which was the presence of

heterogeneous data sources. Data from different sources must be processed and modeled

to obtain a standard formulation to better extract information.

This need to unify data from various sources is at the core of collection systems

and decision-making. Over the years, the ETL process has been used to address this need

for a single source of truth containing well-formatted, standardized, and reliable data on

which to perform the analyses. The Transaction Processing Performance Council (TPC)

defined ETL as a method of integrating data from various sources in various forms and

transforming the data into a uniform model to be placed in a data warehouse. The TPC

chose to use the term Data Integration (DI) instead of the abbreviation ETL to give this

procedure a more complete nomenclature [3]. Thus, ETL abstracts the heterogeneity of

data sources and provides the end user with a single access point to the storage system

to submit their queries. According to Sreemathy et al. [6], the entire development

process is conducted to meet the objectives of enterprise performance management,

application challenge development, finance, and other enterprise management sources.

Souissi and Benayed determined that the core element of a business intelligence system

that helps managers in their decision-making is the DI [4].

With the growth of big data, ETL has not remained static. This has been described

as the ability to have all datasets available at the time of decision making in areas such

as the oil and gas industry [1].

De Mauro et al. After reviewing the existing research in terms of defining Big

Data, they concluded that the core of the concept is not only expressed by the three Vs

of velocity, volume, and variety, but also by technology and analytical methods to clarify

some necessary requirements in terms of information usage. They furthered their ideas

by adding the concept of transformation into insights and the subsequent creation of

economic value as the main way for Big Data to impact businesses [2]. These concepts

agree that Big Data represent information assets characterized by the three Vs and

10

mainly require technological capabilities and resources to enable more advanced

transformation to acquire value from the information thus collected. In this research, we

argue that the concept of data quality in the processes of this ETL system fulfills the

necessary conditions to apply research on Big Data. It is essential to develop algorithms

and a correct and robust model because of the amount or volume of data collected and

the required technological resources.

The conceptualization of data quality (DQ) has been a subject of research over the

years. One of the major studies was conducted by Wang and Strong [18], in which they

take the direction of conceptualized data quality as an inherently good product that is

tailored to the context of the task clearly represented and made accessible to data

consumers.

The necessity for a data integration phase inside the decision system is supported

by a number of factors, including diverse data formats, confusion or difficulty in reading

data formats, legacy systems utilizing outdated databases, and changing the data source

structure over time. What is argued in [19] to make Data Quality assessment difficult is

the characteristics of the data sources.

According to Dakrory, Mahmoud, and Ali, the purpose of checking the data

quality in the ETL is to guarantee the accuracy of the methods and determine whether

or not they need to be changed in order to address the problems. Automating the test

procedures to verify the data quality parameters was the goal of their study [20].

In this study, the evaluation of data quality in the ETL service ensures the

reliability of the data collected in the Data Management Platform. A variety of data

sources results in a diverse range of formats and intricate data structures, making data

integration more challenging. Historically, businesses have used only data produced by

their internal business systems, such as sales and inventory data. However, the extent of

data that businesses currently collect and analyze is beyond this range. The sources of

Big Data are highly diverse. The sheer amount of data makes it challenging to determine

data quality in a timely manner.

It is challenging to gather, clean, integrate, and obtain the required high-quality

data within a reasonable amount of time. Big data is subject to a significant amount of

unstructured data; hence, converting unstructured data into structured data and

processing the data requires a significant amount of time. [21]

11

Scientific novelty: Our contribution is to apply a stratified algorithm for data

quality assessment, while defining the selection criteria that enable the use of this

approach in resource-poor ETL systems.

In a real scenario where not, all data could be stored, the main result of this part

of the research was to enable data quality assessment. We also investigate the elements

that influence the selection of the reduction model. This study also sheds light on the

various problems related to sampling for DQ assessment that still need to be solved.

We also discuss the practical results of using this model. In order to reuse the

ideas that emerged in this data management platform framework and make them suitable

for any application that uses ETL, we structured the entire system in terms of directed

acyclic graphs (DAG).

12

CHAPTER 1. LITERATURE REVIEW

1.1 ETL

Consider a case study in which a marketing agency launches an advertising

campaign for a company or individual associated with the agency. The agency plans to

launch the campaign through a network of advertisers. A marketing agency obtains data

from various heterogeneous sources to identify the market and conduct a comprehensive

study. The objective of this step is to have a unified dataset that allows the campaign to

be limited to specific sectors to better target customers. Next, the marketing agency

offers a subscription to affiliates that allows them to receive regular updates on customer

data (see Figure 1.1). The marketing agency is also in contact with the advertising

network to inform them about the cost of the campaign and any other details before

asking for feedback.

Figure 1.1 - Case study business model

13

This tedious and complex process demonstrates the importance of the quality of

data collected by marketing agencies. The purpose of implementing a marketing data

management platform is to make things easier for a marketing agency that uses multiple

software platforms to aggregate its advertising network. Second, the implementation of

this platform helps solve the problem of the type and format of data offered by data

providers to marketing agencies. Third, the implementation of this platform ensures the

privacy of the collected customer data. Finally, the customer data is processed, filtered,

merged, etc. by the platform before it is forwarded to the marketing agency affiliates.

The above issues meet the conditions for the use of an ETL at the level of

collecting the data provided by the Data Providers to the marketing agency.

The data received by the marketing agency's affiliates must go through a stage

that allows the evaluation of the quality of this data, as a quality problem will cost huge

amounts of money and time to all parties involved.

1.1.1 ETL definitions

Data collection is fraught with difficulty. Some studies, such as [7], have

summarized these as follows:

First, because various sources arrange information in entirely distinct schemas, it

is critical to transform incoming source data into a common "global" data warehouse

schema that will eventually be utilized for querying by end-user applications. Second,

operational data suffers from quality issues ranging from simple spelling errors in textual

attributes to inconsistencies in values, database constraint violations, and conflicting or

missing information; thus, this type of data "noise" must be removed so that end users

receive data that is as clean, complete, and truthful as possible. Third, because

information in the production systems that populate the warehouse is continually being

updated, it is vital to routinely refresh the contents of the data warehouse to present users

with up-to-date information. All these difficulties require the data warehouse

development team to build the necessary software processes (either manually or through

specialized tools) and run them at proper time intervals for the right and full data

warehouse populating.

14

Figure 1.2 - TCP-DI ETL workflow

The primary goal of DI is to collect relevant and transferrable information to assist

in highlighting challenges and achieving the advanced vision. Extract, transform, and

load (ETL) methodologies are critical in data integration approaches. Companies can

utilize ETL to collect data from several sources and combine it in a single, centralized

place.[6]

1.1.2 ETL tools review

One of the most popular ETL tools is the Informatica PowerCenter, which is

available on premises and allows for connection to a number of database systems, while

providing data governance control, master data management, and data masking [6].

15

Figure 1.3 - Informatica Architecture

It also allows the visualization of data by connecting them to different sources so

that data processing can be performed. Moreover, it provides cloud-based applications

and technologies that allow employees to benefit from this network with less effort.

Real-time data integration, data analytics, and B2B data fusion are also available, and

are some of the benefits offered by this tool. According to research by Sreemathy et al.,

the Informatica PowerCenter also offers a wide range of features such as data

aggregation, semi-structured and unstructured data, and data execution preparation,

while also having a metadata feature that helps protect information about the application

and data operations.

One tool that has been presented to handle a variety of Big Data is GENUS [4],

which has been studied to handle unstructured data (text) as well as image and video

data. The principle of data processing in GENUS is to transform the first representation

of the data (text, image, or video) into a new representation to load it into a data

warehouse. As an output, the tool provides a data warehouse, and in most cases, this

data warehouse is then processed by analysis algorithms to extract information requests.

16

Figure 1.4 - GENUS Image encoding chain

1.2 Data quality

Wang and Strong developed two surveys [18] that were used to collect data from

consumers to establish the desired characteristics of data quality. The first survey

developed a list of potential traits or characteristics of data quality that the respondents

considered when discussing data quality. The second survey assessed the importance of

these potential data quality characteristics to consumers. An exploratory factor analysis

was conducted using the importance scores from the second survey to produce an

intermediate set of data quality dimensions that were meaningful to data consumers.

Figure 1.5 - Conceptual Framework of Data Quality

17

In the first phase, subjects were asked to group these dimensions into categories

and then identify these categories. To verify these results, another group of individuals

was asked to classify these dimensions into categories in the first phase.

They were able to create a hierarchical structure (Figure 1.5) that encompasses

many facets of data quality from the perspective of data consumers, as a result of their

research using the two-survey approach.

1.2.1 Data Quality Dimensions

In this study, we considered only the following aspects of data quality:

completeness, consistency, uniqueness, validity, timeliness, and accuracy.

Record count validation, data duplicate checking, integrity constraint checking,

and data boundary checking are four practical methods for validating data completeness.

Validity and accuracy are interrelated.

All values must be constant across all datasets and consistency guarantees this

requirement. Field mapping, integrity constraints, aggregation of metrics, and hierarchy-

level integrity are common consistency assessments.

Validity, accuracy, and uniqueness are three properties that are consistent with

consistency.

Uniqueness guarantees that stored data are free of duplicates. It also provides

numerous alternatives for defining its use in an ETL; data duplicates, integrity, and

constraints are checked in that order.

The main goal of the dimension known as "validity" is to ensure that the data

conform to the syntax (format, type, and domain) of its description. Sara, Tarek, and

Abdelmgeid presented three practical methods for assessing the validity: integrity

checking, checking the data type of a field, and checking the field length.

To ensure timeliness, it is necessary to ensure that all data are stored for the

required period. The aforementioned studies briefly described the following procedures

for assessing timeliness: freshness of data and data access. Accuracy: The issue here is

to ensure that each piece of information accurately represents the " real-world object or

event described. The accuracy of the input data can be assessed using various methods,

such as field-to-field comparison, data bounds, and integrity constraints.

18

1.2.2 Data Quality Objectives in the Context of ETL

One of the most important features of ETL operations is the data quality.

Adhianto, Banerjee, Fagan, et al. provided a detailed description of the elements to

consider when evaluating the data quality of the ETL process [28]. Data accuracy is the

proportion of data free of errors. Data completeness refers to the extent to which the

values and entities are not missing. Data freshness is a measure of the timeliness of the

data relative to when the target repository for the data source is updated. Data integrity

is maintained during transactions and across data sources and the degree to which each

user obtains a consistent version of the data. The degree to which consumers can

understand the data they obtain is known as the data interpretability.

Cai and Zhu claimed that the key to data quality evaluation is the analysis of each

dimension in their effort to create a hierarchical data quality framework from the

viewpoint of data consumers. Quantitative and qualitative methodologies comprise the

two categories of the present approach. From the standpoint of qualitative analysis to

describe and evaluate data resources, the qualitative evaluation technique is based on

specific evaluation criteria and needs determined by assessment aims and user requests.

It is best for specialists or subject matter experts to perform qualitative analysis. The

quantitative method is a formal, impartial, and methodical approach to gathering

information that uses numerical data. The elements of this technique, whose evaluation

outcomes are more logical and tangible, are objectivity, generalizability, and numbers.

After the evaluation, the data were compared with the defined baseline for data quality

assessment. A follow-up data analysis phase and data quality report will be produced if

the data quality meets the baseline level. Otherwise, new data must be collected if the

quality of existing data does not meet the baseline criteria [21].

Other studies [20] used a logical ETL mapping document and metadata repository

to evaluate the criteria that should be considered when assessing the data quality. The

source database, all applicable intermediate databases, and the DW were first defined as

references. This phase includes the metadata repository and the logical ETL mapping

document. The path of each file extracted from the source system to its destination is

contained in a logic mapping document. The document must be created by a business

analyst. This document, also known as a crosswalk or interface design, is an Excel

spreadsheet. It is a design that specifies business rules and transformations and evaluates

19

source or legacy systems. It includes the following fields: Transformation, Source

Database, Source Table Name, Source Column Name, Destination Table Name,

Destination Column Name, Table Type, and Slow Moving Dimension Type. Finally, a

link is created to the metadata store. The required data were extracted from the logic-

mapping document and DW metadata and inserted into the database model. The DQ

model contained multiple algorithms for each quality metric. Each quality parameter

was manually assigned to a set of test routines by searching for those that could identify

the quality issues that affected each quality parameter.

1.2.3 ISO Data Quality Standards

According to ISO/IEC 25012, the degree to which the data meets the

specifications set by the product-owning organization can be interpreted as the quality

of the data product. In particular, these requirements are those that the data quality model

reflects through its attributes (accuracy, completeness, consistency, credibility,

timeliness, accessibility, etc.).

Table 1.1 - ISO/IEC 25012 Inherent Data Quality Characteristics

Characteristic Definition

Accuracy The degree to which data has attributes that correctly represent the true

value of the intended attribute of a concept or event in a specific context

of use.

Completeness The degree to which subject data associated with an entity has values

for all expected attributes and related entity instances in a specific

context of use.

Consistency The degree to which data has attributes that are free from contradiction

and are coherent with other data in a specific context of use. It can be

either or both among data regarding one entity and across similar data

for comparable entities.

Credibility The degree to which data has attributes that are regarded as true and

believable by users in a specific context of use. Credibility includes the

concept of authenticity (the truthfulness of origins, attributions,

commitments).

Currentness The degree to which data has attributes that are of the right age in a

specific context of use.

20

DQ characteristics are divided into two main categories by ISO /IEC 25012:

In certain circumstances, inherent data quality refers to the extent to which data

quality characteristics have the inherent ability to satisfy both explicit and implicit

requirements. Inherent data quality refers to the data itself, specifically the data

domain values and possible constraints (e.g., business rules that determine the quality

required for the characteristic in a particular application), the relationships between data

values (e.g., consistency), and the metadata.

System-dependent data quality: this term describes the extent to which data

quality is achieved and maintained within a computer system when the data is used

according to specified guidelines. According to this view, the technological domain in

which the data is used determines the quality of the data. This is achieved through the

capabilities of the computer system's components, such as hardware devices (e.g., to

make data accessible or to achieve the necessary precision), computer system software

(e.g., backup software to achieve recoverability), and other software (e.g., migration

tools to achieve portability).

1.3 Tcp-di benchmark

Although it is important to have a highly effective DI system, there has never been

an industry standard for evaluating and contrasting its effectiveness. TPC recognized

this gap and published TPC-DI, a groundbreaking standard for data integration.

In January 2014, (TPC) released the first iteration of its data integration

benchmark, TPC-DI. Their research uses the data integration practices of a fictitious

retail brokerage firm to simulate TPC-DI. This involves feeding a decision support

system with converted data from various unconnected systems, such as a trading system,

internal HR, and customer relationship management (CRM) systems. [3]

Using the cardinality of a certain modeled element in the dataset as the scaling

factor, SF helps to understand the amount of data from a particular scaling factor, such

as the number of clients or ticker symbols, according to the research in [3] on dataset

scaling in TCP-DI.

Therefore, sizeF(SF), where SF is an array-specific factor F, can be used to

describe the size F of the input file F at scaling factor SF.

21

Changes are made to the dimension table when a record with the business key is

missing; the inserted record must be given a separate surrogate key value and contain it.

TCP-DI modeling research indicates that it is not possible to start processing a

phase until the previous phase is complete to represent the execution rules; the

initialization phase is not timed [3]. During the preparation phase, the system must be

configured, all the required software components must be installed, and the staging area

must be set up. In terms of performance, specifically in terms of scalability, the

discussion notes that a workload implementation may have bottlenecks or the system on

which it is run may have limitations that restrict its scalability; however, the workload

definition should not contain requirements that inherently prevent the scalability of

implementations.

With respect to performance, the benchmark Runtime Estimate in this research

predicted that it would take between 5 and 10 h to complete a full-volume benchmark.

1.4 Big data

To establish our context, we have briefly defined what the characteristics of data

are and why this data is called Big Data. In this section, we will revisit this knowledge

by defining in more detail the revisited research that over the years has defined new

metrics to consider when defining and characterising Big Data.

1.4.1 Vs and BIG Data

Several studies [8, 9, 10] have been conducted to describe the descriptive

characteristics of Big Data. After the introduction of the 3V known as Big Data in the

past, Nagham and Laden addressed in their research the concept of seven Vs without

forgetting the mention of research done by Khan, Uddin, and Gupta to describe

volatility, validity, value, veracity as well as variety, velocity, and volume as the seven

characteristics of Big Data. Validity is the use of data for specific and precise purposes.

This characteristic is similar to veracity, but is defined separately. The purpose of

validity is to ensure absolute confidence in the use of data. As for volatility, this is related

to the time of data storage being allowed to provide an overall idea in relation to the

archived data and current data. Further research by Rajan, speaks of 10 V are required

to characterize Big Data, including volume, veracity, velocity, variety, variability,

22

volatility, validity, visualization, vulnerability, and value. This definition led to

complementary research and introduced this concept to the analytical side of BD.

1.4.2 Batch processing and Big Data

Batch processing refers to modifications carried out on large blocks of data

according to Benjelloun et al. Each block is processed independently and separated over

time. When the data have previously been saved over time, this type of processing is

performed. In essence, batch processing manages beginning and ending jobs [11, 13].

Jobs for batch processing frequently run simultaneously and in succession. Its key

benefit is the efficient division of large tasks into smaller tasks. Additionally, it may

operate offline, using fewer resources and putting less strain on the CPU. The processor

is aware of how long a task will take to complete, what task will come next, and whether

execution may be delayed.

MapReduce is the best-known model for this type of processing [12, 13]. The

following is a formal definition of MapReduce: The paradigm essentially employs a

divide-and-conquer strategy. There are many different commercial use cases that may

be addressed using the programming technique known as MapReduce. Breaking the job

up into a number of distinct tasks is intended to process massive amounts of data in

parallel. The mapper organizes the keys after converting the input data into key-value

pairs. Subsequently, based on the key, the reducer combines the data into a single output

[13, 14, 15].

The user may automatically distribute large datasets by implementing the two

primitives, map, and reduce. Without worrying about task communication or failure

recovery, the user can process the data [13, 15]. In addition, it permits data segmentation,

resulting in scalability and improved performance.

Chandio, Academy, Tziritas, et al. have been able to determine the importance of

the parallel computing paradigm in the context of cloud computing. This paradigm is

crucial for solving complex and intractable computer problems.

Bulk Synchronous Parallel (BSP) and Directed Acyclic Graph (DAG) are two

current parallel computing paradigms used in cloud computing environments as

alternatives to MapReduce. The tasks handled within the framework of these paradigms

are computation requests from the end user, and can be divided into many tasks [16].

23

To develop a basic architecture for Big Data processing, Taleb et al. defined a

model consisting of three stages: data generation, data acquisition, and data storage and

analysis. In their research, they defined data generation as the phase of creating data

from numerous sources, such as sensors used to collect meteorological information or

monitoring devices, publications on social media sites, etc., and in their research, they

extended data acquisition such as data collection, data transmission, and data

preprocessing. With the heterogeneous characteristics of data sources, as well as an

unprecedented amount of structured, semi-structured, and unstructured data. The

preprocessing of Big Data consists of integration, enhancement, and enrichment, as well

as transformation, reduction, discretization, and cleaning of data. Data storage is more

related to the infrastructure of the data center where there is storage, and it is spread over

several clusters and data centers. A typical example is the use of the Hadoop ecosystem

to guarantee the reliability and efficiency of fault-tolerant storage through replication.

Data analysis involves the application of algorithms, data mining, and machine learning

for the processing and extraction of information required to make decisions [17].

1.5 Sampling for big data

Enormous fault-tolerant storage structures, parallel and graphical processing

models, such as MapReduce, Pregel, and Giraph, have been developed as creative

solutions to the proliferation of large datasets. However, not every environment can

handle this level of resources and not every query requires a perfect answer. This

encourages sampling to provide summary datasets that facilitate quick searches and

extend the usable life of the stored data. To be effective, sampling must balance the

conflicts between resource limitations, data characteristics, and the necessary query

accuracy. To enhance the value of the final sample, state-of-the-art sampling goes

significantly beyond the uniform selection of items [25].

In big data applications, sampling has become a common method for processing

massive volumes of data for real-time analysis. When dealing with enormous datasets,

two traditional approaches may be considered: dividing the data into smaller sections

for independent study and lowering the number of data columns. An improved UV

decomposition method can be used to divide large datasets [26].

24

In their research [27], Zhang, Zhao, Pang et al. showed that the UV decomposition

method cannot reduce large datasets when the dataset is very large.

Sampling is not the only option available; there are other resolution methods in

the data reduction category, including dimensionality reduction methods,

eigenvalue/vector decompositions, PCA, and SVD, which are often expensive and slow

for large datasets. "Sketching" methods for summarizing data streams using hashing and

random projections have limited scope and are difficult to capture [25].

1.5.1 A taxonomy for Big Data sampling techniques

This section provides an overview of the sampling methods used. Although we

cannot provide an exhaustive list, in this study, we focus on stratified sampling, which

is used throughout the research to achieve better performance in performing DQ tasks.

Big-data sampling approaches have been successfully used, as proven by

Cormode and Duffiel [25]. They use them in a variety of contexts, such as social

networks and network traffic.

The sampling methods developed during this study can be classified into uniform

random sampling, two-stage sampling, cluster sampling, systematic sampling, and

stratified sampling.

With uniform random sampling, each object of interest has a uniform probability

of being included in a sample [32]. The number of objects was determined by the

population size. To apply sampling, we must generate a number between one and the

size of the population. We then select the objects where the generated number is less

than or equal to the number of objects required for the sample plus 1 or 2. A higher

number allows us to consider the statistical probability of selecting a smaller number of

objects than the one actually needed [31].

Manjunath claimed that two-stage sampling relies on a combined subset of the

data group and numerous objects of the same data type as its foundation. This method

is employed when information is randomly gathered from dispersed objects or various

time periods, and a final sample is then randomly chosen from the combined samples.

When several diverse items need to be sampled and the size of the pooled sample is

greater than that needed for the assessment, it is appropriate. An appropriate

representation of the data for each item or time period was ensured by first-stage

25

sampling. To prevent any group from skewing the final sample, each sample in the first

stage must be proportionate to its subpopulation (of records). The second round of

sampling ensured that the combined samples were adequately represented to reflect the

complete distribution of data [31].

Cluster sampling is similar to database sampling, in which samples are drawn

from fewer subsets, such as specific demographic regions. The subsamples from each

cluster were combined to form a final sample. Rather than randomly selecting sales data

from each shop, when collecting sales data for a chain of stores, one can select a

subsample from a representative subset of stores from each cluster to create a cluster

sample. This approach can only be used to represent all retail sales data if the clusters

reflect exactly the same relative data types and process consistency. For example, if the

files contain the same fields, the processes are the same, and the training and

performance measures of the information produces match.

It is recommended to use stratified random sampling when the population to be

sampled has a distribution in units such that a small number of units exist for a subtype,

according to the study in [31] on the use of random sampling in data testing. In the next

chapter, we discuss the mathematical aspects and interpretation of stratified random

sampling in more detail.

In addition, the study discusses sampling in which every nth dataset was selected.

Using a concrete example, we select a ratio based on the ratio between the total records

in the database and the required SSD. The first dataset, which was selected based on the

ratio used, was random. If the data population is truly random and organized without

bias, systematic sampling is appropriate.

26

CHAPTER 2. SYSTEM MODELING

In the first two chapters of our study, we describe the context in which we apply

data quality assessment, that is, a data management platform with multiple services. The

service we focus on is data integration or ETL. Second, we introduce the topic of

sampling and its practical use for data analysis and collection. In this section, we

illustrate the practical implementation of stratified sampling. The ultimate goal of these

results was to integrate them into a platform developed for DQ evaluation.

Because the platform is a commercial product, we developed a reduced prototype

model that illustrates the integration of the algorithms developed in this way to allow

predictions for the implementation of this system in a commercial product. In particular,

we discuss the implementation and performance of Stratified Sampling using test data

in an environment with limited processing resources in a reasonable time and without

excessive memory consumption. These conditions allowed us to simulate the feeding of

Big Data into the ETL system of the developed data management platform.

The goal of this experiment was to ensure the validity of this approach for its

implementation in applications that process real-world data. To this end, we evaluated

the practical problems that arise in the selection of parameters and their impact on the

final result.

To demonstrate the evaluation results, we created several plots that evaluated the

performance over time using a linear regression model that allowed us to predict the

impact of the implementation in an environment with larger datasets and varying

characteristics.

The following subsections provide an overview of the architecture of the data

management platform, particularly the ETL part of the system studied in this thesis. The

second subsection focuses on the test environment using stratified samples to generate

the test data to which the representative DQ assessment is to be applied.

27

2.1 ETL model

In Figure 2.1, we see the data flow over several edges, with the incoming edge

having the task of extracting data from external systems and the outgoing edge having

the task of DQ assessment. Most of the data quality assessment functions described in

the previous chapters are implemented in the last task before the data are loaded into the

data warehouse.

Figure 2.1 - ETL model

The architecture is divided into several tasks, which are implemented in Airflow

as DAG to allow more controlled execution. The Airflow tool itself is deployed in a

Kubernetes namespace that provides fault tolerance and scalability to the system. The

metadata related to all the tasks of the system were collected in a relational database

(PostgreSQL). Figure 2.1 shows the overall architecture of the tasks to be executed,

making an abstraction of the staging areas between tasks. At the end of the pipeline, the

expected result in the data warehouse is a standardized set of parquet files that can be

used by the rest of the data management platform.

28

Figure 2.2 - DQ Assessment Task Detailed Sequence Diagram

The first phase is the one on which the main basis of our research is based. It

consists of sampling data to allow us to use fewer resources in the next phase. After

sampling, the samples were subjected to quality testing (see Figure 2.2). This second

step is done with the help of the Great Expectations tool to ensure the quality of the data.

The last phase allowed us to obtain a full report on the quality of our system and

the results of the DQ assessment. This is crucial to have a history and to identify the

primary causes of the failure or success of data quality tests. Therefore, metadata are

collected at the end of the data pipeline in the Metastore.

29

2.2 System architecture overview

Figure 2.3 represent the overall system architecture

Figure 2.3 - Architecture overview

30

2.2.1 Metadata store

The Postgres database served as the metadata store in this study. In his quest to

create a database system that would work for every application, Michael Stonebraker's

most challenging project was Postgres [22].

When Postgres was still in its early design stages in 1990, there were

approximately 90,000 lines of C code. The system was used by its "bold and brave"

early users [23]. It was created over the course of three years by a team of five part-time

students, working under the supervision of a full-time head programmer. Two students

in Stonebraker's group, Andrew Yu and Jolly Chen, changed the system's parser to

accept an extended variation of SQL rather than the original Postquel language as the

Postgres research project came close. Postgres95 was the first Postgres release to support

SQL followed by PostgreSQL [22].

Figure 2.4 - PostgreSQL system overview

According to research [34], database files are accessed through a shared buffer

pool. Consequently, the two backends never see inconsistent views of the same file. The

Unix kernel frequently includes an additional buffer. Transactions are expected to be

atomic, consistent, isolated, and long-lived. Because Postgres does not allow distributed

transactions, all statements in a transaction are executed by a single backend. Currently,

nested transactions are not processed. Actual insertions/deletions/updates of tuples are

annotated as having been performed by transaction N and when completed.

31

Backends working in parallel ignore changes, knowing that transaction N has not

yet been completed. All of these changes become logically visible at the same moment

when the transaction is completed. The pg_log control file contains two status bits per

transaction ID, where statuses in progress, committed, and aborted are possible. Setting

these two bits to commit is an atomic operation, indicating that a transaction is

committed.

Normally, an aborted transaction changes the status of the pg protocol. However,

even if the process terminates early, nothing will be lost. When a backend checks the

status of this transaction, it finds that it is listed as in process but not running on any

backend, which means it has crashed and will update the pg_log entry in its name to

aborted. No changes to any table file are required during abort [34].

Lane continued to say that Postgres transactions are guaranteed to be atomic only

when a disk page is written as an action. This is the case for most current disks when a

page is in the physical sector, but most users use disk pages set to 8 K or more, which

raises the question of whether writing a page is all or nothing. In any case, the pg_log is

safe because we only invert bits in the file, and both bits of the transaction state must be

in the same sector. However, if we move tuples in a data page, there is a risk of data

corruption if a power failure interrupts the page write halfway through (perhaps only a

few sectors of the component are written) [34].

2.2.2 Horizontal autoscaling environment

A Kubernetes cluster is composed of a collection of worker computers known as

nodes that execute containerized apps. Each cluster has at least one worker node (see

Figure 2.5).

The worker node(s) hosts the pods that make up the application workload. The

control plane supervises the worker nodes and pods of the cluster. In production

situations, the control plane is typically distributed across many computers and a cluster

is distributed across numerous nodes to provide fault tolerance and high availability [36].

32

Figure 2.5 - Kubernetes cluster overview

We used Kubernetes to provide scalability and robustness to the entire system in the

practical implementation of this research by utilizing the commercial tool architecture.

A pod is the most basic unit of execution and resources in Kubernetes, and it comprises

a container or set of containers, as well as instructions on how to operate those containers

[37]. Each pod represents an application instance and is always associated with

namespace. Moreover, the pods from the same application were similar and had the same

specifications. A pod can be thought of as a replica in this manner. The intended number

of replicas and the amount of resources needed must be provided when deploying an

application.

The program, for example, is named Application-A in namespace-1 and requires

250Mi and 250m of accessible memory and CPU for each pod. 'Mi' is an abbreviation

for 'Mebibyte,' and 'm' is an abbreviation for 'millicore,' which is a single unit equal to

1/1000 of a CPU core. Kubernetes defines it as a granular technique of measuring CPU

resources so that different pods can share a CPU core. Furthermore, within the cluster,

each pod is assigned a unique IP address.

Kubernetes can expand apps horizontally because of its architecture. When an

application requires extra computing resources, for example, instead of modifying the

specifications of current pods, users may simply create another identical pod to share

the burden. The IP address of this new pod is subsequently added to the application's

service, which distributes incoming traffic to both the new and old pods [37].

33

2.2.3 Workflow runner

For a repeatable execution of the ETL system with historical control, we have

highlighted the Airflow platform that allowed us to build data pipelines in the form of a

Directed Acyclic Graph (see Figure 2.6) that contains individual work items called tasks,

arranged by considering dependencies and data flows.

Figure 2.6 - Airflow architecture

A DAG outlines the relationships between tasks, the sequence in which they

should be completed, and the execution attempts. The tasks themselves explain what has

to be done, such as data extraction, analysis, and activating other systems [35].

Table 2.1 - Types of local test data files

Components Description

Scheduler This component is responsible for activating the scheduled

processes and simultaneously handing over the tasks to the

executor for execution

Executor The running tasks are managed by the executor, who executes

everything in the base airflow installer. Most production-oriented

executors push tasks to the workers.

34

 Table 2.1 continuation

Webserver The web server provides a convenient user interface for analyzing,

checking, triggering, and debugging the behaviors of DAGs and

tasks.

DAG

directory

A folder of DAG files is read by the scheduler and runner (and all

workers owned by the runner).

Metadata

Database

Stores the state of the scheduler, executor, and web server.

The design of DAGs in Airflow is such that repeated execution is possible and

can be performed in parallel. This implies that more data are parameterized by always

specifying the intervals at which to execute. We used Kubernetes as the deployment

environment in this study (Figure 2.5). Using an Airflow-specific concept called an

operator, we can define the tasks and their execution order (see Figure 2.1). The operator

used was the KubernetesPodOperator, which is customized to the deployment

environment.

35

CHAPTER 3. MEASUREMENT RESULTS

In the previous chapters, we defined the benefits of using stratified sampling and

discussed the need for its use in this study to reduce resource consumption in the next

task of the DQ assessment (see Figure 2.2). In a practical setting, the DQ assessment

task cannot be executed when sampling is not applied. The task timed out or failed

completely during the execution in airflow owing to excessive memory consumption. In

our study, the data consisted of files stored in a data warehouse. The files are supposed

to have a standard model that allows us to perform stratification that is directly

proportional to the number of files; thus, the assignment of samples to the different strata

is performed in such a way that the overall sample is a faithful representation that allows

us to ensure the quality of the overall population data, that is, the set of all records in the

files, before the final transfer to the data warehouse.

The population U consisting of N units (total number of combined records of all

files stored in the data warehouse before DQ assessment). We define the total number

of files K as the number of strata, and the ith stratum Ui consists of Ni units (file records).

∑ 𝑁𝑖𝐾
𝑖=1   =  𝑁 (3.1)

From the ith stratum a sample 𝑠𝑖 of size 𝑛𝑖 is selected independently from other

strata.

The value 𝑦𝑖𝑗 is a Boolean DQ assessment of the record y for the jth unit of the

ith stratum; 𝑗  =  1⋯𝑁𝑖; 𝑖  =  1⋯𝐾  ; The ith stratum total 𝑌𝑖 is expressed as

follows:

𝑌𝑖   =   ∑ 𝑦𝑖𝑗
𝑁𝑖
𝑖=1 (3.2)

The ith stratum mean 𝑌𝑖 :

𝑌𝑖   =  𝑌𝑖/𝑁𝑖 (3.3)

36

The population total 𝑌 :

𝑌  =   ∑ 𝑌𝑖
𝐾
𝑖=1 (3.4)

The population mean 𝑌 is expressed as follows:

𝑌  =  ∑ ∑ 𝑦𝑖𝑗
𝑁𝑖
𝑗=1

𝐾
𝑖=1 /𝑁  = ∑ 𝑊𝑖𝑌𝑖

𝐾
𝑖=1 With 𝑊𝑖 = 𝑁𝑖/𝑁 (3.5)

The ith stratum variance 𝑆𝑦𝑖
2 :

𝑆𝑦𝑖
2 = ∑ 𝑁𝑖𝑗

𝑁𝑖
𝑗=1 = (𝑦𝑖𝑗 − 𝑌𝑖)

2
/(𝑁𝑖 − 1) (3.6)

The population variance

𝑆𝑦
2 = ∑ ∑ (𝑦𝑖𝑗 − 𝑌)

2𝑁𝑖
𝑗=1

𝐾
𝑖=1 /(𝑁 − 1) (3.7)

3.1 Estimation of the Population Mean

A sample 𝑠𝑖 of size 𝑛𝑖 is drawn from the stratum 𝑈𝑖 with probability 𝑝(𝑠𝑖)

according to the sampling scheme 𝑝(𝑖). Let 𝜋𝑗|𝑖|(> 0) and 𝜋𝑗𝑘|𝑖|(> 0) be the inclusion

probabilities for the jth unit and the jth and kth (𝑗 ≠ 𝑘 ) Units in the ith stratum,

respectively. Based on the selected sample 𝑠𝑖, an unbiased estimate for the mean 𝑌𝑖 of

the ith stratum is given by:

 (3.8)

Where 𝑏𝑗(𝑠𝑖) ‘s are constants free from 𝑦𝑖𝑗 ’s and satisfy the unbiasedness

condition:

 (3.9)

37

3.2 Performance evaluation of stratified random sampling for DQ assessment

The goal of the experiment was to prove the effectiveness of data sampling for

quality assurance. To this end, we modeled a test environment that differed from a

commercial product to allow flexibility in performing the sampling task as well as

various performance experiments. The configurations of the computer used to test the

Stratified Sampling algorithm had 8 GB of RAM. The studied data occupy

approximately 93.8 GB of disk space, and the CPU, a product of the manufacturer Intel

Corporation, has two cores with a size of 1487 MHz and a capacity of 4100 MHz

Table 3.1 - Types of local test data files

Types of files Size (bytes)

text/csv 14,243,042

text/csv 97,276,566

text/csv 4,020,757

text/csv 61,913,651

text/csv 7,883,148

text/csv 89,328,022

text/csv 1,380,690

The results of the tests without sampling resulted in a timeout as the execution

time exceeded the normal values. Therefore, the task could not be completed, and the

memory and CPU resources were insufficient to complete the execution.

Therefore, we divided the DQ task into two tasks. First, we introduced sampling,

as described in the previous sections, and then evaluated data quality (see Figure 7). In

this section, we present the basic results of the Stratified Sampling execution time in the

test environment. This provides the necessary conditions and information for adapting

38

the execution to the production conditions of data integration systems working with Big

Data in batch processing.

Figure 3.1 - Sample size allocation

We define the weight that determines the number of samples to be collected from

each stratum as a value directly proportional to the size of the data and inversely

proportional to the estimate of the weight of the expected global sample. As shown in

Fig. 3.1, the distribution of units in the strata is directly proportional to the weight of the

test data.

39

Figure 3.2a - Local test results part 1

40

Figure 3.2b - Local test results part 2

We can observe a direct correlation between memory and the choice of weight

used in determining the sample to be included. Figure 3.2a and Figure 3.2b show the

results of sampling with the weight setting versus the choice of units to be contained in

the strata. We can also conclude that, in spite of a linear correlation between all the

dimensions of performance, there is an innuitable advantage for the choice of the weight

in the example quoted above. We can observe a reduction of 99, 9 % in the size of the

data for the constitution of the sample, and the time of execution of the sampling is

included between 0.2 and 12.04 seconds. Contrary to the use of all the data, sampling

proves to be efficient; nevertheless, this strategy presents a disadvantage that is linked

41

to the choice of the weight, and it may not allow a not too representative sampling of the

data in the strata. However, as the weight increases, the execution time also increases.

Figure 3.3 - Sample data size by varying strata weights from 3.62-e07 to 7.62-e05.

Figure 3.4 - Memory consumption by varying strata weights from 3.62-e07 to 7.62-

e05.

42

Figure 3.5 - Weight choice versus execution time.

Figure 3.6 - Weight choice versus execution time.

43

We first varied the size of the data from 1,380,690 B to 97.27 Mb and then

compared the seven cases where choosing the same weight resulted in a random number

of records to process relative to the size of the file. As long as the value of the weight

was above a threshold higher than 3.62-e07, there was variability in the distribution of

the total records for each layer; however, in the opposite case, each layer produced a

single record. As shown in Figure 3.2, finding the most diverse records in the final

sample is directly proportional to the chosen weighting. Therefore, in an environment

involving data with high variability, it is more advantageous to choose an equally high

weight to accurately represent the data. The choice of a high weight has several

consequences, as shown in Figure 3.3, which shows a linear correlation with the

variation in the weight point. This is a serious problem for the relationship between

volume and variability, leading to the need to balance the choice of weight. We

determined the execution time by calculating the time elapsed between the application

of simple random sampling to obtain the number of records to be included in each

stratum and the combination of all the strata. We also found a correlation between the

weighting and execution time, as shown in Figure 3.4, and concluded that the correlation

between the two entities is beneficial because we can infer that reducing the weighting

directly affects execution time. In a resource-constrained environment, where we aim

for normal execution time without compromising the quality of the samples, it is

necessary to choose a minimum weight without compromising the variability of the data.

For memory consumption varying between 5263 B and 131,929 kb, we observed a linear

increase in execution time from 0.28 seconds to 12 s throughout the process with the test

setup environment (see Figure 3.5). This allowed us to determine the reliability of our

process compared with an environment with a higher data volume. The problem that

arises is the reduction in execution time without reaching an unattainable memory

consumption. Therefore, before applying Stratified Sampling in a practical environment,

it is of utmost importance to test and determine the applicable thresholds for weight,

memory, and execution time on a small scale before determining applicability in a

production environment.

44

CHAPTER 4. LABOUR PROTECTION AND SAFETY IN EMERGENCY

Based on Safety critical software ground rules by Addagarrala and Kinnicutt

Safety critical software development field is one of the active research areas in

many industries like automotive, medical, railways, nuclear and aerospace are placing

increased value on safety and reliability. Safety critical software systems are those

systems whose failure could result in the death or a serious injury to the people’s life,

security is one of the important topics in the field of safety-critical systems and it must

be addressed completely in order to operate safety critical software successfully. In this

paper we present a study about the set of standards and different ground rules to be

followed in critical software development practices in different industries and the

challenges in applying these standards. We also discuss the role of static analysis and

software integrity levels in these standards, similarities in these standards and the set of

activities followed in the development process of these standards.

4.1 Introduction

Safety critical systems in the automotive industry are life critical systems which

if malfunctioning may result in death or serious to human life. Due to these significant

costs, safety critical systems must be designed, implemented and tested to ensure robust,

efficient performance and no potentially hazardous software bugs. The C programming

language is used commonly in automotive safety systems because it executes quickly,

but it is a language prone to errors. Many of the problems with using C in embedded

systems arises from memory management errors from pointer misuse or buffer

overflows. Another main difficulty with the C programming language lies in the

differences in compiler implementations of the language grammar, leading to

executables with different behaviors based on the compiler options used and the

different architectures of embedded systems. Standardized processed have been

developed by standards bodies such as ANSI. Many of the vulnerabilities possible in C

can be mitigated through the use of well-designed programming rules. Developing

software for safety critical systems needs to consider all aspects of security and quality.

The safety integrity concept grew from development of safety critical systems in

various industries such as the automotive, aerospace, medical and railway industries.

45

The safety integrity concept was first introduced by the IEC 61508 standard and later it

was taken up and inherited in various offshoot standards. “Safety” as used in the safety

critical software refers to developing software to prevent harm or catastrophe from

happening. The safety integrity concept comprises two components:

• integrity against random failures;

• integrity against systematic failures.

The main difference between the two are the systematic failure cannot be

quantified by the way of probabilistic computation and they mainly occur due to human

errors during the different phases of software development process. Random failures

result from hardware malfunctions and they occur randomly over time, due to aging and

wear and tear on the hardware. Because of the nature of software, software applications

are not subjected to random failure. In this paper we present an overview and analysis

of a set of good standards developed in different industries for the development of

different safety critical software systems, as well as a list of static analysis tools used

and their role in developing high-quality code.

4.2 Need for guidelines

4.2.1. Software quality

In general, people increasingly rely on more safety critical soft- ware systems in

their mode of transportation, so developing such safety critical software always to be

correct and perceived to be correct becomes more important to help ensure that

catastrophes do not happen. In order to ensure the embedded software is correct, a

unified approach is needed in software development with agreed standard techniques

across any industry. In the automotive industry as an example, one safety critical system

installed in the vehicle may include braking and controlling a particular function like

antilock braking during emergency stops. These braking components (hard-ware and

software) are supplied by the original equipment manufacturer or a third-party entity.

Normally in automotive industry, most software developed as a part of the entire system

is embedded software. Every vehicle manufacturer will specify some system

specifications which ensure the following requirements:

46

• a set of interfaces to communicate with the sensors and other vehicle

components;

• the functional performance of the software;

• external environmental requirements such as climatic extremes and

electromagnetic compatibility.

Software is considered one of the major components in auto- motive industry.

When we compare the software with other hard- ware components we can find some

similarities and differences between them:

Similarities:

• both may be subject to continual improvement and development;

• both should be subject to strict quality control procedures; and.

• specialist skills are required in its development.

Differences:

• errors in the software are systematic, not random;

• software is considered intangible;

• software is perceived to be easy to change.

Any embedded safety critical software developed should undergo proper software

development practices. Procedures and standards must be followed during the

development and vali-dation of software in embedded systems to efficiently improve

and maintain quality control. MISRA (Motor Industry Software Reliability Association)

developed the first standards in November 1994; up to that time, no specific standards

or guidelines existed in national or international vehicle software development. The

primary reason behind the development of these standards is that every critical system

development has standards and their integrity levels more strict than other software

systems, and the automotive test environment uses many vehicle components and

simulations to test systems and software extensively before they reach the customer.

This led to the development of standards for vehicle-based software systems.

Coding standards are used to improve software reliability and security. These

coding standards include the set of rules that help the developers avoid dangerous

language constructs; they also help limit the complexity of functions and maintain the

standard coding structure by following the consistent syntactical and commenting styles

47

specified in the standard. These coding standard rules help to reduce the occurrence of

flaws and make it easier to maintain and test the software, as the code becomes more

readable and is better documented.

It is very common that as the coding standards improve over time, it includes a

set of rules whose objective is to accomplish human code reviews. During code review,

developers try to improve the software quality prior to deployment by examining the

code, fixing potential bugs and ensuring he coding standards are met. Developers use a

set of static analysis tools during the code review that helps them determine whether any

set of warnings may be related to code style or design or documentation. The role of

static analysis tools is to analyze the source code, with the aim of complementing the

compiler by highlighting potential issues that may arise in the software system like

uninitialized variables, poorly commented code, etc.

Compilers and other link chains like linkers/loaders by default often emit

warnings rather than halt a build with a fatal error in the event of uninitialized variables

or other potential issue. A warning during compilation is an indicator to the developer

that a construct may be technically legal but questionable, or may be exercising a corner

of the language that is not well defined. Such constructs are frequently the cause of

subtle bugs. To ensure that developers do not intentionally or accidentally ignore

warnings, the compiler can be configured to treat all warnings as errors. Many compilers

have such an option.

4.2.2 Static analysis

The software source code can be analyzed with static analysis using manual or

automated methods. In manual analysis either a checklist or coding standards are used,

while static analysis tools are used in the automated approach. The main objective of

analyzing software is to ensure the absence of bugs in the software [11, 15]. Some coding

standards used in the manual analysis are: MISRAC/C++, GNU Standards–C, JSFC++,

CERT–java, JPL, Netrino, RUNTIME, CERT, CMSE, CON-FORM, CWE, DERA, and

EADS. Motor Industry Software Reliability Association (MISRA) is an organization

that provides guidelines for embedded software development to support electronic

components used in the automotive industry. The main intention of MISRA is to give

assistance to the automotive industry to make vehicle systems reliable and secure. These

48

guidelines were geared towards the use of the C programming language in vehicle-based

software systems. The MISRA Guidelines are intended to achieve the following

objectives to assure safety, robustness and security to the software, and minimization of

both accidental and regular faults in the system design.

Currently, the MISRA standards are meant for the C and C++ programming

languages. The first MISRA standard was issued as MISRA C:1998; this first release

disseminated a set of guidelines for the use of the C programming language in vehicle-

based software. MISRA C:1998 has 127 rules, of which 93 are required and 34 are

advisory; these rules are numbered in sequence 1 to 127 [15]. The second edition of the

standards released was MISRA C:2004. These guidelines are used in safety critical

systems; it contains 142 rules, of which 122 are required and 20 are advisory. Most of

these guidelines can be reviewed using static analysis tools, while the remaining rules

may be reviewed using dynamic analysis tools. For good software design of safety

critical systems, both required and advisory rules must be considered in all projects even

if they are not fully MISRA-compliant. The required rules must be implemented by

developer, and the advisory rules should also be addressed or examined even though it’s

not compulsory in the standards. Several selected rules are normally not checked by the

compiler, as shown in Table 1.

We conducted several experiments using these rules with some test results. These

experiments were conducted using the lint static analysis tool and IDEAS development

environment as well as the MISRA C:2004 standard for a Chrysler project. To explain

what types of violations are specified and how the violations can be corrected, we have

taken two required rules from MISRA to concentrate on.

Rule: 10.1

The value of an expression of integer type shall not be implicitly converted to a

different underlying type if:

1) It is not a conversion to a wider integer type of the same signedness;

2) The expression is complex;

3) The expression is not constant and is a function argument; or

4) The expression is not constant and is a return expression.

Here is an example:

Uint8 a = 0xffU;

49

Uint8 b = 0u;

Uint16 c =10u;

b = b + 5; /* not OK, 5 is signed */ b = b + 5U; /* OK, same signedness */

The test result using Qtool is shown in Fig. 4. The MISRA 10.1 rule violation report is

shown in Fig. 4.1, while the violation code and the resolved code are shown in Fig. 4.2

and 4.3, respectively.

Rule12.5

The operands of a logical && or jj shall be primary-expressions.

For example,

if ((x>c1) && (y>c2) || (z>c3)) /* not OK */ if ((x>c1) &&

((y>c2) || (z>c3))) /* ok extra braces () used.

Note the extra parentheses () used to explicitly specify the order of precedence for the

logical or operation. The result of a MISRA 12.5 test violation is given in Fig. 2.

Again, this code snippet shows that the resolved code contains explicit parentheses in

the logical expression to make it clear what the order of operations is intended to be.

4.2.3 Automated static analysis tools

MISRA is an organization with a lot of influence in the software development of

automotive software systems. Members of MISRA include but are not limited to:

Bentley Motors; Del-phi Diesel Systems; Ford Motor Company; and Jaguar Cars Ltd.

Because of their influence, several software vendors sell analysis tools that support the

MISRA standards;

Figure 4.1 - (A) Qtool report for the MISRA 10.1 violation

50

Figure 4.2 - (B) MISRA 10.1 violation code snippet (before change)

Figure 4.3 - (C) MISRA 10.1 violation code snippet (after change)

Some of these vendors include Gimpel Software, Axivion, Cosmic

 Software and Green Hill Software, among others. Two popular automated static

analysis tools are PC-Lint and RSM (Resource Standard Metrics). This section

summarizes these tools.

PC-lint

The PC-lint is a static analysis tool. It will check the source code of C/C++ and

figure out the bugs, inconsistencies, non-portable constructs, redundant code, etc. It is

developed by Gimpel Software and it has been continuously maintained for more than

25 years.

Two examples demonstrating the types of violations PC-Lint can catch are:

a) The goto keyword shall not be used, The PC-Lint can be configured to generate

a warning message each time the goto keyword appears in your C/C++ code by including

deprecate (keyword, goto, violates coding standard) in our local lint configuration file.

b) Comments Shall never be nested, The PC-Lint generates an error whenever

such comments are found in the source code.

51

4.3 Universal standards

Different sets of standards have been developed for safety critical sofware systems

in several industries such as railroad, medical, and aerospace. Table 2 shows the industry

and the corresponding standard that applies to the industry.

Table 2: Industries and Applicable Safety Critical Software Standards

Industry Standard

Automotive ISO26262

Aerospace DO178B

Medical IEC62304

Railway EN50128

ISO26262 automotive functional safety standard

The ISO 26262 discusses the importance of an automotive specific international

standard that focuses on the safety critical components. It is a derivative of the IEC

61508, the generic functional safety standard for electrical and electronic systems. The

high increase of complexity in the automotive industry resulted in the industry putting

significant efforts to provide robust and responsive safety compliant systems. ISO 26262

uses a set of steps to manage the functional safety and to regulate the product

development on a system at both the hardware and software levels. The main goal of the

ISO 26262 is as listed below.

a) It provides an automotive safety lifecycle (management, development,

production, operation, service, decommissioning) and supports tailoring the necessary

activities during these lifecycle phases;

b) It provides an automotive specific risk-based approach for determining risk

classes (Automotive Safety Integrity Levels, ASILs);

c) Covers functional safety aspects of the entire development process (including

such activities as requirements specification, design, implementation, integration,

verification, validation, and configuration); and

52

d) It provides requirements for validation and confirmation measures to ensure a

sufficient and acceptable level of safety is being achieved.

Here in this paper, we mainly discuss the product development at the software

level and safety integrity levels as defined by ISO 26262. The ISO 26262 specifies the

set of steps needed to be considered for the product development at the software level in

the automotive industry to provide the safety required. Steps discussed in ISO 26262

include.

a) Requirements for initiation of product development at the software level;

b) Specification of the software safety requirements;

c) Software architectural design;

d) Software unit design and implementation;

e) Software unit testing;

f) Software integration and testing; and

g) Verification of software safety requirements.

4.4 Challenges in safety critical systems

In one or the other way for people in the software community working on Safety

Critical Systems technology, safety critical system is an application where human safety

depends on the correct operation of the application. , as we also briefly describe below.

The important point in safety critical systems is security and it must be named in order

to work successfully. The major difficulty here exists very much in the software

engineering than security. Many security difficulties that arise in network information

systems appears because of software defects make the systems weak to attacks. Even

now such attacks exist’s because system continues to be deployed with vulnerabilities.

In some cases, what amounts to completely new technologies are required. The number

of interacting safety-critical systems present in a single application will force the sharing

of resources between systems. This will eliminate a major architectural element that

gives confidence in correct operation-physical separation. Knowing that the failure of

one system cannot affect another greatly facilitates current analysis techniques.

53

4.5 Similarities between Different Standards

EN50128, DO-178B, and ISO26262 are derived from the IEC 61508 standard

(General Elctrical/Programmable electronic devices) The considerable similarities

between these standards. All these standards are offering the guidance for core software

development process. The EN50128 process is based on waterfall and V model whereas

the ISO 26262 describes the software lifecycle under V-model frame work and it is

allowed to use the agile development for all the standards. Related to the safety integrity

levels all these standards use the different terminology like Safety integrity levels (SIL),

Automotive Safety integrity Levels (ASIL) to check the safety levels. With the higher

safety systems need more checks and high control.

4.6 Conclusion to safety

This paper is meant to provide sets of standards and guidelines followed in

different industries in the field of safety critical software development. We hope the

paper can help as a point of reference in the automotive, medical, aerospace, and rail-

way industries for the developer creating embedded software to get an overview about

the development process and SIL involved.

54

CONCLUSIONS

Data quality assessment and assurance have been identified as important issues in

decision-making systems, particularly ETL systems. This study provides an overview

of the definition of ETL systems. In the context of ETL, the correlation between Big

Data V characteristics and data quality was examined.

A review of the literature on Big Data from the perspective of treatment in the

system of integration of data that deals with heterogeneous sources. In addition, the

representation of data quality, as generally presented in other research in the field of

decision-making, has been reported.

Despite the large number of studies dealing with data quality in the field of

integration tools, there are still some problems to be solved, especially the

implementation of Big Data in the system in terms of the practical resources of ETL

systems. An analysis of the state of the art in data quality assessment revealed that

sampling has not yet been considered as a solution to the expectations of data quality

testing for BI systems. We also highlight the evaluation of practical factors that must be

measured to ensure data quality in relation to the dimensions of the data, as presented

by the research area. In particular, data quality can be applied to the design of an ETL

pipeline in a marketing data-management platform.

This study addresses these issues and proposes a test framework for evaluating

data quality in a data extraction, transformation, and loading system in a data warehouse.

Specifically, we compared stratified sampling to achieve data quality and a normal

implementation that ensured the quality of the dataset. We presented data that

demonstrated the performance of stratified sampling in an environment where the

normal implementation of the dataset was not applicable. We also defined the factors

involved in this process to ensure that the expected runtime and memory consumption

are achieved relative to the available resources.

Finally, we developed a testbed to ensure implementation of the Stratified

Sampling algorithm in a more controlled domain. To simulate the processing of large

amounts of Big Data, a test environment was used to ensure the sampling of data in a

text file data processing application. We described the results of performance tests and

55

constraints to prove the use of Stratified Sampling in models of ETL production that are

subject to Big Data.

56

BIBLIOGRAPHY

1. Udofia, E., Buduka, S., Akpabio, J., Egwu, S., Udofia, E., & Olagunju, D. (2020).

Digital Transformation: After the Big Data, What Next? В Day 1 Tue, August 11,

2020. SPE Nigeria Annual International Conference and Exhibition. SPE.

https://doi.org/10.2118/203614-ms

2. De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is big data? A consensual

definition and a review of key research topics. В AIP Conference Proceedings.

INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-

ININFO 2014): Proceedings of the 4th International Conference on Integrated

Information. AIP Publishing LLC. https://doi.org/10.1063/1.4907823

3. Poess, M., Rabl, T., Jacobsen, H.-A., & Caufield, B. (2014). TPC-DI. В

Proceedings of the VLDB Endowment (Вип. 7, Issue 13, с. 1367–1378). VLDB

Endowment. https://doi.org/10.14778/2733004.2733009

4. Souissi, S., & BenAyed, M. (2016). GENUS: An ETL tool treating the Big Data

Variety. В 2016 IEEE/ACS 13th International Conference of Computer Systems

and Applications (AICCSA). 2016 IEEE/ACS 13th International Conference of

Computer Systems and Applications (AICCSA). IEEE.

https://doi.org/10.1109/aiccsa.2016.7945615

5. Vassiliadis, P., Simitsis, A., & Skiadopoulos, S. (2002). Conceptual modeling for

ETL processes. В Proceedings of the 5th ACM international workshop on Data

Warehousing and OLAP - DOLAP ’02. the 5th ACM international workshop.

ACM Press. https://doi.org/10.1145/583890.583893

6. Sreemathy, J., Brindha, R., Selva Nagalakshmi, M., Suvekha, N., Karthick Ragul,

N., & Praveennandha, M. (2021). Overview of ETL Tools and Talend-Data

Integration. В 2021 7th International Conference on Advanced Computing and

Communication Systems (ICACCS). 2021 7th International Conference on

Advanced Computing and Communication Systems (ICACCS). IEEE.

https://doi.org/10.1109/icaccs51430.2021.9441984

7. Vassiliadis, P. (2009). A Survey of Extract–Transform–Load Technology. В

International Journal of Data Warehousing and Mining (Вип. 5, Issue 3, с. 1–27).

IGI Global. https://doi.org/10.4018/jdwm.2009070101

https://doi.org/10.2118/203614-ms
https://doi.org/10.1063/1.4907823
https://doi.org/10.14778/2733004.2733009
https://doi.org/10.1109/aiccsa.2016.7945615
https://doi.org/10.1145/583890.583893
https://doi.org/10.1109/icaccs51430.2021.9441984
https://doi.org/10.4018/jdwm.2009070101

57

8. Khan, M. A., Uddin, M. F., & Gupta, N. (2014). Seven V’s of Big Data

understanding Big Data to extract value. В Proceedings of the 2014 Zone 1

Conference of the American Society for Engineering Education. 2014 Zone 1

Conference of the American Society for Engineering Education (ASEE Zone 1).

IEEE. https://doi.org/10.1109/aseezone1.2014.6820689

9. Saeed, N., & Husamaldin, L. (2021). Big Data Characteristics (V’s) in Industry.

В Iraqi Journal of Industrial Research (Вип. 8, Issue 1, с. 1–9). Corporation of

Research and Industrial Development. https://doi.org/10.53523/ijoirvol8i1id52

10. RANJAN, J. (2019). The 10 Vs of Big Data framework in the Context of 5

Industry Verticals. В PRODUCTIVITY (Вип. 59, Issue 4, с. 324–342).

Printspublications Private Limited. https://doi.org/10.32381/prod.2019.59.04.2

11. Chardonnens, T., Cudre-Mauroux, P., Grund, M., & Perroud, B. (2013). Big data

analytics on high Velocity streams: A case study. В 2013 IEEE International

Conference on Big Data. 2013 IEEE International Conference on Big Data. IEEE.

https://doi.org/10.1109/bigdata.2013.6691653

12. Dayalan, M. (2018). MapReduce: Simplified Data Processing on Large Cluster.

В International Journal of Research and Engineering (Вип. 5, Issue 5, с. 399–

403). Marwah Infotech. https://doi.org/10.21276/ijre.2018.5.5.4

13. Benjelloun, S., Aissi, M. E. M. E., Loukili, Y., Lakhrissi, Y., Ali, S. E. B.,

Chougrad, H., & Boushaki, A. E. (2020). Big Data Processing: Batch-based

processing and stream-based processing. В 2020 Fourth International Conference

On Intelligent Computing in Data Sciences (ICDS). 2020 Fourth International

Conference On Intelligent Computing in Data Sciences (ICDS). IEEE.

https://doi.org/10.1109/icds50568.2020.9268684

14. Yaqoob, I., Chang, V., Gani, A., Mokhtar, S., Hashem, I. A. T., Ahmed, E.,

Anuar, N. B., & Khan, S. U. (2016). WITHDRAWN: Information fusion in social

big data: Foundations, state-of-the-art, applications, challenges, and future

research directions. В International Journal of Information Management. Elsevier

BV. https://doi.org/10.1016/j.ijinfomgt.2016.04.014

15. Hashem, I. A. T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., & Khan, S. U.

(2016). MapReduce: Review and open challenges. В Scientometrics (Вип. 109,

https://doi.org/10.1109/aseezone1.2014.6820689
https://doi.org/10.53523/ijoirvol8i1id52
https://doi.org/10.32381/prod.2019.59.04.2
https://doi.org/10.1109/bigdata.2013.6691653
https://doi.org/10.21276/ijre.2018.5.5.4
https://doi.org/10.1109/icds50568.2020.9268684
https://doi.org/10.1016/j.ijinfomgt.2016.04.014

58

Issue 1, с. 389–422). Springer Science and Business Media LLC.

https://doi.org/10.1007/s11192-016-1945-y

16. Aftab Ahmed Chandio, Nikos Tziritas, & Cheng-Zhong Xu. (2015). Big-Data

Processing Techniques and Their Challenges in Transport Domain. ZTE

Communications, 13(1), 50–59. https://doi.org/10.3969/j.issn.1673-

5188.2015.01.007

17. Taleb, I., Serhani, M. A., Bouhaddioui, C., & Dssouli, R. (2021). Big data quality

framework: a holistic approach to continuous quality management. В Journal of

Big Data (Вип. 8, Issue 1). Springer Science and Business Media LLC.

https://doi.org/10.1186/s40537-021-00468-0

18. Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality

Means to Data Consumers. В Journal of Management Information Systems (Вип.

12, Issue 4, с. 5–33). Informa UK Limited.

https://doi.org/10.1080/07421222.1996.11518099

19. Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., & Yahia, S. B. (2019). Data

quality in ETL process: A preliminary study. В Procedia Computer Science (Вип.

159, с. 676–687). Elsevier BV. https://doi.org/10.1016/j.procs.2019.09.223

20. B., S., M., T., & A., A. (2015). Automated ETL Testing on the Data Quality of a

Data Warehouse. В International Journal of Computer Applications (Вип. 131,

Issue 16, с. 9–16). Foundation of Computer Science.

https://doi.org/10.5120/ijca2015907590

21. Cai, L., & Zhu, Y. (2015). The Challenges of Data Quality and Data Quality

Assessment in the Big Data Era. В Data Science Journal (Вип. 14, Issue 0, с. 2).

Ubiquity Press, Ltd. https://doi.org/10.5334/dsj-2015-002

22. Hellerstein, J. M. (2018). Looking back at Postgres. В Making Databases Work:

the Pragmatic Wisdom of Michael Stonebraker (с. 205–224). Association for

Computing Machinery. https://doi.org/10.1145/3226595.3226614

23. Stonebraker, M., Rowe, L. A., & Hirohama, M. (1990). The implementation of

POSTGRES. В IEEE Transactions on Knowledge and Data Engineering (Вип. 2,

Issue 1, с. 125–142). Institute of Electrical and Electronics Engineers (IEEE).

https://doi.org/10.1109/69.50912

https://doi.org/10.1007/s11192-016-1945-y
https://doi.org/10.3969/j.issn.1673-5188.2015.01.007
https://doi.org/10.3969/j.issn.1673-5188.2015.01.007
https://doi.org/10.1186/s40537-021-00468-0
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1016/j.procs.2019.09.223
https://doi.org/10.5120/ijca2015907590
https://doi.org/10.5334/dsj-2015-002
https://doi.org/10.1145/3226595.3226614
https://doi.org/10.1109/69.50912

59

24. Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H., & Kim, S. (2020). Horizontal

Pod Autoscaling in Kubernetes for Elastic Container Orchestration. В Sensors

(Вип. 20, Issue 16, с. 4621). MDPI AG. https://doi.org/10.3390/s20164621

25. Cormode, G., & Duffield, N. (2014). Sampling for big data. В Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and data

mining. KDD ’14: The 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM.

https://doi.org/10.1145/2623330.2630811

26. Zhang, H. L., Liu, J., Li, T., Xue, Y., Xu, S., & Chen, J. (2017). Extracting sample

data based on poisson distribution. 2017 International Conference on Machine

Learning and Cybernetics (ICMLC). https://doi.org/10.1109/icmlc.2017.8108950

27. Zhang, H. L., Zhao, Y., Pang, C., & He, J. (2020). Splitting Large Medical Data

Sets Based on Normal Distribution in Cloud Environment. В IEEE Transactions

on Cloud Computing (Вип. 8, Issue 2, с. 518–531). Institute of Electrical and

Electronics Engineers (IEEE). https://doi.org/10.1109/tcc.2015.2462361

28. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,

J., & Tallent, N. R. (2009). HPCTOOLKIT: tools for performance analysis of

optimized parallel programs. Concurrency and Computation: Practice and

Experience, n/a-n/a. https://doi.org/10.1002/cpe.1553

29. Gualo, F., Rodriguez, M., Verdugo, J., Caballero, I., & Piattini, M. (2021). Data

quality certification using ISO/IEC 25012: Industrial experiences. Journal of

Systems and Software, 176, 110938. https://doi.org/10.1016/j.jss.2021.110938

30. International Organization for Standardization. (n.d.). ISO/IEC 25012.

iso25000.com. Retrieved December 9, 2022, from

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

31. (n.d.). A study on sampling techniques for data testing. International Journal of

Computer Science and Communication (IJCSC).

http://www.csjournals.com/IJCSC/PDF3-1/Article_3.pdf

32. Zhao, X., Liang, J., & Dang, C. (2019). A stratified sampling based clustering

algorithm for large-scale data. Knowledge-Based Systems, 163, 416–428.

https://doi.org/10.1016/j.knosys.2018.09.007

https://doi.org/10.3390/s20164621
https://doi.org/10.1145/2623330.2630811
https://doi.org/10.1109/icmlc.2017.8108950
https://doi.org/10.1109/tcc.2015.2462361
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1016/j.jss.2021.110938
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
http://www.csjournals.com/IJCSC/PDF3-1/Article_3.pdf
https://doi.org/10.1016/j.knosys.2018.09.007

60

33. Arnab, R. (2017). Stratified Sampling. Survey Sampling Theory and

Applications, 213–256. https://doi.org/10.1016/b978-0-12-811848-1.00007-8

34. Lane. (n.d.). Transaction Processing in PostgreSQL (By postgresql).

www.postgresql.org. Retrieved December 20, 2022, from

https://www.postgresql.org/files/developer/transactions.pdf

35. Architecture Overview — Airflow Documentation. (n.d.).

https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html

36. Kubernetes Components. (2022, October 24). Kubernetes.

https://kubernetes.io/docs/concepts/overview/components/

37. Nguyen, T. T., Yeom, Y. J., Kim, T., Park, D. H., & Kim, S. (2020). Horizontal

Pod Autoscaling in Kubernetes for Elastic Container Orchestration. Sensors,

20(16), 4621. https://doi.org/10.3390/s20164621

38. Chaya Addagarrala, K., & Kinnicutt, P. (2018). Safety critical software ground

rules. International Journal of Engineering &Amp; Technology, 7(2.28), 344.

https://doi.org/10.14419/ijet.v7i2.28.13209

https://doi.org/10.1016/b978-0-12-811848-1.00007-8
http://www.postgresql.org/
https://www.postgresql.org/files/developer/transactions.pdf
https://airflow.apache.org/docs/apache-airflow/stable/concepts/overview.html
https://kubernetes.io/docs/concepts/overview/components/
https://doi.org/10.3390/s20164621

