Supporting Information

Process study of the formation of biodegradable polymer microspheres for tissue engineering

Gianmarco Griffini*, Marinella Levi, Stefano Turri

Tables S1-S4 present the experimental values of microsphere diameters d_{43} and d_{32} as obtained by laser diffraction measurements for all tests performed in this work.

Table S1. Experimental values of d_{43} and d_{32} microsphere diameters as a function of viscosity ratio between dispersed and continuous phase μ_d/μ_c . Volume ratio between dispersed and continuous phase H and impeller dissipated power P/V were maintained constant and equal to 0.08 and 13892 W/m³ respectively.

Viscosity ratio μ_d/μ_c	d ₄₃	d ₃₂
[-]	[µm]	[µm]
5.07	133.57	30.39
9.94	145.39	33.22
15.44	163.24	39.62
36.15	263.82	64.13
95.70	443.33	79.47

Table S2. Experimental values of d_{43} and d_{32} microsphere diameters as a function of volume ratio between dispersed and continuous phase H. Viscosity ratio μ_d/μ_c and impeller dissipated power P/V were maintained constant and equal to 15.44 and 13892 W/m³ respectively.

Volume ratio H	d ₄₃	d ₃₂
[-]	[µm]	[µm]
0.06	184.23	41.41
0.07	174.42	39.81
0.08	163.47	39.57
0.09	175.82	41.29
0.10	200.35	44.04

Impeller dissipated power P/V	d ₄₃	d ₃₂	
[W/m ³]	[µm]	[µm]	
4116	184.70	53.86	
8271	173.25	42.31	
10289	170.13	40.58	
13892	163.43	39.92	

Table S3. Experimental values of d_{43} and d_{32} microsphere diameters as a function of impeller dissipated power P/V. Volume ratio H and viscosity ratio μ_d/μ_c were maintained constant and equal to 0.08 and 15.44 respectively.

Table S4. Experimental values of d_{43} and d_{32} microsphere diameters as a function of Weber number We. Volume ratio H and viscosity ratio μ_d/μ_c were maintained constant and equal to 0.08 and 15.44 respectively.

Weber number We	d ₄₃	d ₃₂
[-]	[µm]	[µm]
706	184.70	53.86
1124	173.25	42.31
1300	170.13	40.58
1588	163.43	39.92

Table S5. Linear regression parameters employed in this work for the calculation of the relationships between microsphere size $(d_{43}, d_{32} \text{ and } d_{eq})$ and varying process parameters from double-log plots. The fitting equation is in all cases y = ax + b. The adjusted determination coefficient $(Adj R^2)$ is also shown for each *a* value.

Process	$a \pm SE (Adj R^2)$		
parameter <i>(x)</i>	$y = \text{Log}(d_{43})$	$y = \text{Log}(d_{32})$	$y = Log(d_{eq})$
Log(µd/µc)	0.43 ± 0.06 (0.94)	$0.36 \pm 0.04 \; (0.95)$	$0.25\pm 0.04\;(0.91)$
Log(H)	0.91 ± 0.18 (0.93)	$0.48\pm 0.07\;(0.96)$	$0.48\pm 0.07~(0.95)$
Log(P/V)	- $0.10 \pm 0.01 \ (0.99)$	$-0.26 \pm 0.05 \ (0.90)$	- $0.26 \pm 0.05 \ (0.90)$
Log(We)	$-0.15 \pm 0.01 \ (0.99)$	$0.39\pm 0.07\;(0.90)$	$0.39\pm 0.07\;(0.90)$