
502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 3, NO 4, DECEMBER 1995

nsactions Briefs

A New Architecture for the Automatic
Design of Custom Digital Neural Network

William Fornaciari and Fabio Salice

Abstract-This brief presents a novel high-performance architecture for
implementation of custom digital feed forward neural networks, without
on-line learning capabilities. The proposed methodology covers the entire
design flow of a neural application, by addressing the internal neuron’s
structure, the system level organization of the processing elements, the
mapping of the abstract neural topology (obtained through simulation)
onto the given digital system and eventually the actual synthesis. Experi-
mental results as well as a brief description of the software environment
supporting the proposed methodology are also included.

I. INTRODUCTION
The digital solutions for neurocomputer implementation proposed

by various authors [1]-[8], ranging from dedicated hardware to
programmable processors similar to conventional computers, can be
roughly classified in two categories: special-purpose and general-
purpose neurocomputer.

General purpose neurocomputers emphasize flexibility in spite of
performance and silicon area. For a wide range of purposes, e.g.,
real-time applications, performance is particularly significant so that
the use of special-purpose neurocomputers is required. According
to the relationship among neurons (N’s) and processing elements
(PE’s), special-purpose neurocomputers fall into two main classes:
one PE per many (or one) N’s and one N per many (or one) PE’s.
The former is represented by architectures in which the circuit
complexity has been reduced by accepting a performance degradation.
Typically, the computational cycle of each neuron is not uniform (e.g.,
as for multilayer feed-forward neural networks with different layer
cardinalities) so that some clock cycles have to be used to synchronize
neuron activations with the corresponding weights. On the contrary,
silicon area used for active components is efficiently used since these
elements (adders, multipliers. . .) are shared among different neurons.
The proposal reported in [4] falls into this class.

The latter class achieves high performance, it consists of architec-
tures in which the neuron functionality is spread over some processing
elements concurrently working. The drawback of this approach is
that replication of computational blocks to build each single neuron,
increases silicon area. This class can be represented by two main
digital implementations having different degree of distribution of the
neural operations. A first architecture is reported in [l]. The neural
computation is realized via a systolic array, avoiding any sort of time

is not particularly suitable for feed-forward neural networks with
a realistic number of connections because of both the number of
processing elements (a multiplier and an adder for each weight) and
the complex structure of the Synchronization signal.

multiplexing of synapses onto interconnection lines. This structure

Manuscript received May 12, 1994; revised October 17, 1994.
W. Fomaciari is with CEFRIEL, Centro per la Ricerca e la Formazione in

Ingegneria dell’Informazione del Politecnico di Milano, 20126 Milano, Italy.
F. Salice is with the Dipartimento di Elettronica ed Informazione, Politec-

nico di Milano, 20133 Milan, Italy.
IEEE Log Number 9415603.

8 N w o n 1.i

addresses Bus’?
Nekork ? I .#

PN2

Fig. 1. Decomposition of a neuron onto four pseudoneurons (PN’s)

A solution overcoming such a problem has been presented in
[9], [lo]. The network consists of neuro-cells, called pseudo-neurons
(PN’s), that can be assembled together in a linear array structure
to build a neuron, as shown in Fig. 1. Each PN consists of a
local ROM for weights storage and of a unit capable of either
evaluating the summation of weighted inputs (added, if necessary, to a
similar summation coming from a previous neuro-cell) or forwarding
this value to the subsequent elements. In such a solution latency
and throughput are improved because of pipelined evaluation of
operations and optimization of bus accesses. Furthermore, if all PN’s
compute the same number of synaptic products, synchronization is
simplified and no wait cycle for interlayer data transfer needs to
be introduced. Even though this architecture offers a good tradeoff
between area and performance, it uses a large amount of delay-cells to
synchronize data transfer between both PN’s and layers and requires
a complex network of synchronization signals.

The goal of this paper is to present a novel digital neuron
architecture, still based on a PN approach, named tree structure. As it
will be shown it obtains lower latency with the same throughput and
hardware resources as the linear one. Moreover the performance and
area costs due to synchronization signals are greatly reduced; a formal
design methodology to fully define the entire neural network structure
has been developed. The final hardware description is given in terms
of a set of VHDL parametric cells suitable to obtain automatic VLSI
implementation through existing CAD synthesis tools.

The next section contains a description of the neuron architecture
together with its main properties. Section I11 reports a graph-based
formalization of both computation and structure and an overview of
the design methodology. The organization of the design environment
implementing the proposed methodology linking existing top-level
neural simulator [1 I] to a VHDL-based synthesis environment, it is
also outlined. Section IV presents implementation details and results
concerning the neural cells as well as the overall network. Some
experimental data have been obtained by implementing a test-case
neural network.

11. THE TREE STRUCTURE
This section introduces a neuron architecture based on the PN

approach, suitable for VLSI custom neural network. This architecture
achieves much lower latency than the linear array structure [9]
with the same throughput and without any additional hardware
requirements.

1063-8210/95$04.00 0 1995 IEEE

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 12,2020 at 07:45:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 4, DECEMBER 1995 503

1,234 9,10.11.12.13 17,1819,2021 26,27.28,29.30

External : Inputs

A I
layer 2 W.15,16 awp& Neuron

laver 3

output Net(ui)

31.32 NLF

Fig 2. Internal architecture of a neuron: tree structure of a 32 inputs neuron.

-PNw-

Fig. 3. Temporal distribution of weights and linear outputs for one neuron
composed by a tree of 8 PN. PN’s belonging to the same layer forward their
linear output at the same time step. In some cases, more than one PN weight
positions can be used to collapse partial results from previous layers.

Each PN is only able to add two terms at a time (see Fig. 6): the
first can be either a product between neuron input and corresponding
weight or a linear input (LI) from another PN, while the second one is
a value stored in an accumulator containing, step by step, the partial
summation. Let S, be the weighted inputs summation pertaining to
PN, ; to improve the computational parallelism it is possible to arrange
the set of partial summations in pairs working together as in the
following equation:
N1-1

(wl,z,Jx1--1,2) - 84, = (. .. (((8 + S1) + (S2 + 5 3))
J=1

+ ((S ~ + S ~) + (S ~ + S ~))) . . . + (S T L - ~ + S T L) * . .) .

Where NI is the number of neurons in layer 1 (in each layer,
neurons are numbered from 1 to Ni); U J ~ , ~ , ~ synaptic weight value of
connection between neuron 2 of layer 1 and neuron j of layer I - 1;
1 9 i , ~ is the threshold value for neuron i in layer I ; Xi,% output value
of neuron i in layer 1; PNw is the number of words stored locally in
each PN memory. To obtain such a computational flow, the internal
architecture of each neuron is organized as shown in Fig. 2.

The internal structure of the neuron (with I< PN’s), can by
considered as a tree composed of Llog,(Ir’)] internal layers of PN’s,
where each PN, computes its output by adding to S, a number of
LI’s produced by PN’s belonging to the previous internal layers of
the neuron. The number of PN’s forwarding their linear inputs to the
considered PN,, depends on the position of PN, itself within the tree.
An example of data propagation among different PN’s composing
a neuron, is shown in Fig. 3. The latency of a tree neuron, i.e. the
delay between the process of the first weight and the neuron fire, is
Zutencyt,, = P N w + rlog2(I<i)1, where I<< = represents
the number of PN’s per neuron in layer 1.

Each cell of Fig. 3 contains a numerical identifier representing
a weight inside the PN memory, while x , y and Fiw are not
important for the computation; they are used only for synchronization,
to allow both partial sums propagation through P N s (z and y) and

forwarding of the neuron output to the following neurons (Fire). The
sampling of the partial sum from the previous PN takes place during
the time step 3: while the new partial sum is made available during
the y time step.

Concerning the functional equivalence between the tree and the
linear array neuron structures, it can be proved the following theorem:
let PNw be the PN’s memory size and I the number of neuron inputs.
A tree structure dealing with I inputs can be realized by using the
same number I i of PN’s necessary for the linear array architecture.
I = K (P N w - 2). Although a formal proof can be found in [12],
it can be justified by considering that both linear array and tree
structures are composed of Ir‘ PN’s (with the same memory size
PNw), so that 2 K memory words are used for collapsing of the partial
summation and firing. As a consequence, the number of memory
locations available for storing the synaptic weights is the same for
both structures.

A significant difference between tree and linear array is in term
of performance. As far as latency is concerned, the use of a tree
structure allows to obtain an improvement with respect to the one of
the linear array, that is P N w + K - 1, due to an optimized collapsing
of the LI’s produced by the various PN’s. The improvement depends
almost-linearly on I<- and evaluates

Latency gain = latency,,nea, array - latency,,,,

= (IC - 1) - riog,(ii)l

The actual gain starts with I< > 3 because for I C < 4 both
structures correspond to the same connection of PNs. Furthermore,
the PN’s memory size (PNw) has to be sufficient to make possible the
collapsing of the maximum number of LI pertaining to a single PN
of the tree. Hence, it is necessary to fulfill the feasibility constraint
of having P N w 2 llog,(IC)] + 1.

Both structures have the same throughput f ck /PNw since:
given a neural network topology, the number and the memory
size of each PN is the same;
they use the same type of PN, i.e., they have the same clock
and overall computational cycle equal to the number of memory
words to be processed.

As it will be shown in Section IV, a proper coding of the tree
structure memory cootents will also allow to avoid any broadcast of
signals to control the PN computation, i.e., to relax the connectivity
requirements of the digital implementation.

111. THE DESIGN METHODOLOGY
The design methodology is mainly based upon an internal structure

representation of the PN-based neuron (both linear array or tree) by
means of a direct graph (digraph) [13]. For such a type of modeling,
we obtained some formal rules which allow to determine the position
of all weights within each PN memory (both positions z, y used for
synchronization and synaptic weights). This representation constitutes
the basic support of our approach to ANN design since the digital
architecture is automatically obtained by exploiting some of the
digraph model properties.

Each node of the neuron digraph modeling corresponds to one of
its PN’s while each oriented arc represents the data transfer between
PN’s (see Fig. 4).

The digraph model can be formally described by its adjacency
matrix A 3 [a,,] - h’ x I<-, where az3 =Z 1 if there is an arc from
PN, to PN,, otherwise a, = 0. If a linear array architecture i s
comidered, the adja x has only the firsr upper codiagonal
composed of I, because each element i is connected to element 2 + 1.
For a tree structure composed of h- PN’s, the non-null elements
of A are those satisfying the following conditions: i = 2ts + 2t-1

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 12,2020 at 07:45:31 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO 4, DECEMBER 1995

Fig. 4. Digraph representation of a neuron composed of 16 PN's in a tree configuration.

Stirulifde I completed 1

f \

Fig. 5. The complete design flow.

and j = min((2ts + 2 t) , K) , with t ranging in [I, rlog,(K)l] and
s ranging in [0,max((lK/2t] - I) , O)] .

In fact, if t = 1 and for each value of s, the elements of A set to
1 represent links from the nodes of the basis (nodes with indegree =
0) to elements at distance 1 from them; if t = 2 and for each value
of s the elements of A equal to 1 corresponds to the links from the
previous nodes (at distance 1 from the basis) to nodes at distance 1
from them, and so on for the other values of t. Not to exceed the
I i x I< boundaries of the matrix A, the midmax constraints have
been introduced on the j and s ranges in the previous conditions.

It has been proved [13] that each entry of U:,, of A" = [U:,,], is
the number of walks of length n from node i (PN,) to node j (PNj).
Since there exists at the most one path connecting two different nodes,
i.e., the digraphs are in-tree [13], the elements of A" can be either
0 or 1.

By exploiting the above structure of the matrix A" it is possible
to efficiently find out the length of the longest path connecting all
the possible pairs of PN's. This values are gathered in the longest
path matrix LPM, defined as

where
[log, (K)1 for a tree structure
IC for a linear array

The longest distance between nodes of our digraph model is used
in our methodology to represent the computational delays which
have to be introduced to guarantee a proper synchronization of the
computation among PN's.

The final formal representation produced by the methodology is
obtained starting from the network topology (the layers number and
the cardinality of neurons per layer), the weight sets of each neuron
and the architectural parameters (either IC or PN and the type of
neuron: tree or linear array). It is summarized by the following
information

0 allocation of synaptic weights within the PN memones (it is
stored in the final network matrix, MRF);

* definition of the delay cells required to obtain synchroniza-
tion both inside the layer and between adjacent layers (it is
represented by the set of delay number tables, {NTDi});

.={

From this information the complete digital architecture is estab-
lished; in fact, positioning of the delay cells and allocation of the
synaptic weights within the PN memories allow the mapping of
interconnections onto the buses, and guarantee synchronization both
inside the neuron and among all neurons. The methodology for
obtaining MRF and the set of NTDls is based on the following
sequence of steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Guarantee a correct synchronization within each neuron;
this condition is expressed by the neuron number table
NTNl,i, containing the synaptic weights of neuron i of
the layer j , so that correct synchronization is obtained.
Guarantee the synchronization between adjacent layers, by
extracting the delay number tables NTDls, each defining
for its layer I , how the input signals to the various PN's
must be delayed.
Obtain the correct placement of weights inside the layer
by collapsing all the NTNI,; of layer 1 into the layer
number table, NTLI, of layer 1.
Derive from NTLI the network number table NTR,
to represent the correct weights synchronization for the
whole neural network.
Extract the relative position of all the weights during a
computational cycle, namely the placement of weights in
the PN's memories. The result of this step is the matrix
MRF.

The description of the complete algorithm for the automatic
synthesis as well as examples of its application are given in [14].
The final formal description of the VLSI macrocell architecture, is
eventually automatically translated in a corresponding VHDL code
for synthesis. In fact, t h i s design methodology and the related tool are
part of a more general design environment starting from an abstract
view of the problem (see Fig. 5).

The first stage of the design flow concerning a neural applicahon
is the functional simulation and the learning process in order to find
out both the weights set and the network topology able to solve
the given problem (TopSimJ. Such an abstract description is mapped
onto an optimized digital structure (tree or linear array) by using the
previously discussed methodology implemented in ArchSyn. Before
committing the optimized macroblock description, WeDis performs a
preliminary processing to find out, by assuming the learning error as
a constraint, both a discretized weights set and the number of steps
required by each approximated nonlinear activation function. The
obtained macrocell system implementahon will be converted into a
VHDL descnption by VHDLGen. The VHDL network model is useful
as input for both final layout synthesis tools and process analyzer. The
software system has been developed on a SUN SPARCStation 11;
VHDL simulation and synthesis use the View Logic POWER VIEW
and SEC- SYN 3 tools.

IV. IMPLEMENTATION AND EXPENMENTAL RESULTS
A suitable encoding of the PN memory words has been adopted

both to store the synaptic weights and to locally generate the control
signals for the data transfer. Such a memory encoding allows to
reduce the connectivity requirement avoiding any broadcast of control

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 12,2020 at 07:45:31 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 4, DECEMBER 1995 505

synaptic control
weights weights
F

Network
address bus

L

c'ockl

Fig. 6.
of the neuron described in Fig. 3.

Format and usage of the memory words stored in PN4 local memo9

signals among PN's. The words locally stored in each PN are
composed of two parts (see Fig. 6):

a weight block; consisting of a certain number of bits used to
store the connection weight;
a synchronization block, that is a control-part composed of
two bits. The first allows to realize the multiplexing of PN's
onto both inter-PN s connection lines and inter-layer bus by
controlling their three-state buffered outputs (value 1 enables
the output); the corresponding weights are both y and fire (see
Fig. 6) . The second is used, internally to each PN, to select either
the synaptic product (value 0) or the LI (value 1) as the adder
input (see Fig. 6); the corresponding weight is 2.

Referring to the weight block, it has to be pointed out that the
words not used to store synaptic weights (the ones marked as z
and y in Fig. 6) can be considered as don't care bits set so that
it is possible to obtain a reduction in the memory area if a PLA
solution is adopted. In addition, another connectivity reduction can
be obtained for the tree structure due to not uniform distribution of
weight among PN memories. In fact, for the linear array, the number
of buses connecting the layer I - 1 to the layer 1 is equal to the
number of PN's composing the neurons of layer I (i.e., Si), while
whenever the last PN of the tree structure is used only to collapse
partial computations, its input set is empty so that no bus line is
needed (memory word are used only for synchronization purposes).

In order to match the requirements of computation process ordering
of the first hidden layer, the input signals belonging to the envi-
ronment have to be correctly sampled. To support such a sampling
process, an interface circuit is designed by using some information,
implicitly included in MRF and {NTDl}, related to the hidden layer
synchronization.

The interface circuit presents two classes of signals: input and
synchronization. The first class is partitioned into some sets, each
containing inputs using the same bus, that are completely defined by
NTDfirsthlddenAayer. Each signal of the second class defines both the
temporal points in which the input signals can be changed (level 0)
and the temporal period in which the input signals have to be stable
(level 1). The sampling of inputs set is performed on the falling edge.
The definition of the above temporal periods is completely specified
by the position of entries y and fire inside the sub-matrix of MRF
corresponding to the first hidden layer. An example of input interface
circuit is reported in Fig. 7.

rynsh ad I

spch signal 2

w c h signal 3

Fig. 7. Example of input interface

1- - __- I- 1. I _
Fig. 8. The chip layout of the neural network implementation.

To validate both architecture and methodology, some experimental
results have been obtained by implementing a test-case neural net-
work composed of 8 neurons with 6 inputs, 4 neurons in the hidden
layer and 4 output neurons. The implemented nonlinearity is a 2's
power stepwise approximation of the sigmoidal function because of
its suitability for VLSI implementation [15]. In particular, one and
three steps functions are respectively employed for the hidden and the
output layers. In such a way it is possible to simplify the multipliers
that, for three steps nonlinear functions, leads to the complexity of 4
equivalent-gates per bit. The weights are encoded on 8 bits while the
summation units are realized as ripple carry structures. The project
has been developed at SGS-THOMSON by using a standard cells 1.5
p double metal process (the layout is reported in Fig. 8.).

The chip, whose layout is core-limited, also includes the logic for
the cyclic generation of the memory bus address which is broadcasted
to all PN's memory. The memories, one for each PN, have been
implemented through PLA's. The computational part of each PN
takes about 0.3 mm2 while the PLA's take less than 10% of the global
area which is, pad included, 4227 x 3496 p'. The clock frequency
is approximately 250 KHz and the circuit performance are reported
in Fig. 9.

Further results have been obtained by producing a gate-level
description of a neural network with 25 inputs of 8 bit each, 20 hidden
neurons and 1 output neuron. They use a stepwise approximation
of the nonlinear function, with one and nine levels respectively
employed for output and hidden layers; weights have been represented
onto 12 bits. Two different implementations ("1 and "2) have
been produced by using respectively the cost functions area' *
latency' and area' * latency' to drive the decision concerning
the architectural parameters. The optimal PNws pertaining such

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 12,2020 at 07:45:31 UTC from IEEE Xplore. Restrictions apply.

SO6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL 3, NO 4, DECEMBER 1995

LatencyJClock frequency:. 44w Tfiroughput: 41 KHz
Clock frequency: 250 KHz Routing area 3.2 m2 (36%)

PN area.. 0.3 mm2
Global area (pad included) 4227 p x 3496 p Core area (PLAs + Routing + PNs) 3396 p x 2622 p

PLAS area 338 p x 2622 p=0.88mm2
Fig 9 Circuit performance and final layout data

“1 Myz
PLAs size (P ~ w) 11 7
PNs per hidden layer neuron 3 3
PNs per output fuyer neuron 3 4

-1 m2 each
-0.5 mm2 each

Total number of PNs 60+3 1~
Number of gates 120886 197380
Global area [1.5pm] (PLAs+PNs+routing) -65 m2
Latency/Clock frequency 2.76 psec2.18 psx
Throughput (fck/PNw) 0.79 MHz 1.24 MHz
Clock frequency 8.7 MHz 8.7 MHz

Fig. 10. Circuits characterization

-100 mm2

networks, obtained by means of TopSim, are respectively 11 for
the former and 7 for the latter. Fig. 10 reports data on area and
performance.

V. CONCLUSION AND FUTURE DEVELOPMENTS
A neuron model and a formal methodology and a neuron model for

obtaining the complete architecture of a feed-forward neural network
for fully dedicated systems without on-line learning capabilities,
have been presented. The methodology allows the creation of the
network by mapping each neuron onto some basic processing ele-
ments connected either as a tree or a linear array structure. The final
result is the complete description of the neural network, namely the
organization of PN’s inside each neuron, the bussed interconnection
structure among neurons and the positioning of delay cells such that
synchronization between layers is guaranteed. With respect to other
proposals of the literature, this solution is characterized by better
latency and throughput, together with a more efficient connection
strategy and the possibility of fully automating the whole design
process. The description of the digital architecture consists of some
matrixes that can be simply arranged for the final VLSI synthesis.
This approach is particularly suitable to support automatic synthesis
based upon a library of building blocks (e.g. PN’s and delay cells).
The methodology has been tested and experimented by realizing
a design environment running on SUN SPARC station 2 and by
implementing some test-case neural networks passing through an
intermediate VHDL description. The data collected show that the
proposed architecture is characterized by good performances while
efficiently fulfilling the connection requirement imposed by the
application. Currently the system has been improved to cover also the
Hopfield model. Further work will be in the direction of supporting

a wider range of neural models through extension of the macrocells
library and of the interconnection capacity.

REFERENCES

[11 P Ienne and M Vredaz, “GENESIS IV A bit-senal processing element
for a multi-model neural network accelerator,” in Proc , Appli Speclfic
Array Processors ’93, Venice, Italy, Oct 1993, pp 345-356

[2] U Ramacher, A Raab, J Anlauf, U Hachmanu, and M Wesseling,
“SYNAPSE-X A general-purpose neurocomputer,” in Proc , IEEE IFIP
MzcroNeuro-91, Munich, Germany, Oct 1991, pp 401-409

[3] S Jones, M. Thomaz, and K Sammut, “Linear systolic neural network
engine,” in Proc, I H P Workshop on Parallel Architectures on Silicon,
Grenoble, France, Dec 1989

[4] S Y Kung and J N Hwang, “A unified systolic architecture for artificial
neural networks,” J Parallel Dzstrib Comput, 1989

[5] P Y Alla, G Dreyfus, J D Gascuel, A Johnnet, L Personnaz, J
Roman, and M Wemfeld, “Silicon integration of learning algorithm and
other auto-adaptative properties in a digital feedback neural network,”
in Proc , IEEE-ITG Workshop on Microelectronics for Neural Networks,
Dortmund, Germany, 1990

[6] J G Delgado-Fnas, S Vassiliadis, G G Pechanek, and W Lin,
“A VLSI pipelined neuroemulator,” in VLSI for Neural Networks and
At?lJiczal Intelligence, J G Delgado-Fnas and W R Moore Eds New
York Plenum, 1994, pp 71-80

[7] J Ouah and G Saucier, “Fast generation of neuron ASIC’s,’’ in Proc Int
Joint Conf Neural Networks, IJCNN 90, San Diego, CA, June 17-21,
1990

[8] P Treleaven and M Vellasco, “Neural networks on silicon,” in Proc
IFIP 3rd Workshop Wafer Scale Infegration, Como, Italy, June 1989

191 F Distante, M G S a m , R Stefanelli, and G S Gajani, “A compact and
fast silicon implementation for layered neural nets,” VLSI for Arfzjicial
Intelligence and Neural Networkc, J G Delgado Fnas and W R Moore
Eds New York Plenum, 1991

[lo] W Fomacian, F Salice, and G Storti Gajani, “A formal methodol-
ogy for automahc synthesis of neural networks,” in Proc , IEEE-IFIP
MicroNeuro-91, Munich, Germany, Oct 1991

1111 Neural Works II Reference and User Manuals, Neuralware Inc , 1989
[12] W Fomacian and F Salice, “A low latency digital neural network

archtecture,” in VL.3 for Neural Networks and Artlfcial Intelligence,
J. G Delgado Fnas and W R Moore EdsNew York Plenum, 1994,
pp 71-91.

[I31 F Haray, Graph Theory Menlo Park, CA Addison-Wesley, 1969
[14] W Fomacian and F Salice, “A structured approach for automatic

design of PN-based dgital neural networks,” in Proc , IEEE-IJCNN
’92, Beijing, Chma, Nov 1992

1151 C Alippi and G S Gajani, “Simple approximation of sigmoidal
function realistic design of neural networks capable of learning,” in
Proc, Intern. Symp Circuits Syst ‘91, Singapore, June 1991

Authorized licensed use limited to: Politecnico di Milano. Downloaded on November 12,2020 at 07:45:31 UTC from IEEE Xplore. Restrictions apply.

