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 Traditional gold mining activities altered the environmental structure of 
the Mandor Subwatershed significantly. The expansion of critical land in 
the Mandor Subwatershed causes flooding due to the lack of water 
catchment areas. The purpose of this study was to identify the impact of 
traditional gold mining on land use change in the Mandor Subwatershed. 
The research was conducted with a spatial analysis approach using Landsat 
multitemporal images from 2002, 2013, and 2022, followed by a field 
survey. A comparison of the Normalized Difference Vegetation Index 
(NDVI) and the Enhanced Vegetation Index (EVI) methods was used to 
determine the changing process of vegetation density. The accuracy of 
vegetation index analysis indicated that the EVI method was more accurate 
for identifying vegetation density than the NDVI method. Land use change 
from 2002 to 2022 was dominated by an increase in the land area devoted 
to mining and oil palm plantations. The impact of this traditional gold 
mining has led to significant deforestation and land degradation over the 
past 20 years in the Mandor Subwatershed. This affects the condition of 
the surrounding environment as well as human health. 
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Introduction 

Land use change is one of the important factors 
contributing to the degradation of environmental 
quality. The Mandor Subwatershed is experiencing 
changes in environmental conditions in line with the 
increase in traditional gold mining activity. Mineral 
mining areas themselves pose environmental, social, 
and food sovereignty challenges for some countries. 
Indigenous people and local communities are 
particularly vulnerable to the impacts of mining 
activities, especially those affecting land and water 
(Blanco et al., 2022). Artisanal and small-scale gold 
mining (ASGM) is the world's largest source of 
anthropogenic mercury emissions and releases 
(Prescott et al., 2022). Gold mining activities in the 

Mandor Subwatershed are carried out in water bodies, 
such as rivers. These open-pit mining techniques cause 
landform changes as well as the loss of vegetation and 
fauna habitats. The removal of soil above the gold 
deposit layer alters the topography, hydrology, and 
slope stability (Hidayat et al., 2015). The development 
of land use change is important to know to predict the 
pattern of land use change in the future, thus 
preventing and reducing the impact of gold mining 
(Petit et al., 2001). In addition, an overview of land use 
change development can be used as a reference to 
implement a regional policy. Information on land use 
and cover is necessary to track changes, set 
development strategies, plan for regional 
development, and manage natural resources (Nugroho, 
2015).  
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Several studies on land use change modeling have 
been conducted in Indonesia, such as land damage and 
water pollution (Romiyanto et al., 2015) and 
identification of land conversion changes using 
vegetation index by utilizing satellite imagery 
(Yudistira et al., 2019; Husodo et al., 2021). All these 
studies analyzed land use and land cover, which can be 
monitored using satellite imagery. The spatial model 
produced from this research is expected to help 
manage and mitigate land damage due to traditional 
gold mining. The results of this study are expected to 
provide recommendations for land rehabilitation 
strategies in unlicensed gold mining areas in the 
Mandor Subwatershed. The spatial model developed 
by this research is intended to provide useful 
information for managing and mitigating land 
degradation caused by gold mining activities using 
open-pit mining techniques. Based on the problems 
that occur, it is necessary to conduct an analysis to 
identify the distribution of land changes due to mining 
activities and other derivative impacts in the Mandor 
Subwatershed. The results of this study are expected to 
provide recommendations for land rehabilitation 
strategies in unlicensed gold mining areas in the 
Mandor Subwatershed.  

Materials and Methods 

The traditional gold mining area in the Mandor 
Subwatershed, which is administered by Landak 
Regency, West Kalimantan, Indonesia, is the subject 
of the investigation. The research site is astronomically 
situated between 0°19'28.00" North and 109°20'31" 
East. The research area encompasses 17,000.46 
hectares (Figure 1). The initial step in creating the 
research boundary map was to digitize the research 
area, the Mandor Subwatershed. Determination of 
research boundaries based on the topography and the 
flow pattern of waste generated from gold mining, 
which is known to be in the same network as the 
Mandor River. 

 

Data preparation 

Landsat satellite imagery provides a powerful tool to 
analyze land use change over large areas for long 
periods of time. Landsat imagery has a spatial 
resolution of 30 m, a temporal resolution of 16 days 
and a Sun-Synchronous orbit at an orbital altitude of 
705 km (Cahyono et al., 2019). The downloaded 
images were Level-1 Precision and Terrain Corrected 
Product (L1TP) models, whose radiometric data was 
reliable and calibrated, as well as orthorectified using 
ground control points, so there was no need for 
geometric correction (USGS, 2016). Three satellite 
images, Landsat 7 ETM+, Landsat 8 OLI, and Landsat 
9 OLI 2, were downloaded from the USGS-Earth 
Explorer portal to prepare the land use change map and 
vegetation index map of the upper Mandor 
Subwatershed in 2002, 2013, and 2022 (Table 1). To 
utilize the images, a radiometric correction was needed 
as an initial step. The purpose of radiometric 
correction is to remove atmospheric disturbances from 
satellite imagery. Because the digital number of 
picture pixels did not accurately represent the value of 
the actual object, corrections must be made to acquire 
the right digital pixel value to represent the actual 
object by estimating the disturbance and eliminating it 
from the image. Radiometric correction was 
performed through the Quantum GIS software's Semi-
Automatic Classification option (Table 2). The menu 
converts Landsat data from digital numbers to 
reflectance values (Cahyono et al., 2019). The 
following formula is used to calculate reflectance 
using the DOS1 method: 

LP = L୫୧୬ − LD01%  ........................................... (1) 

ρ = [π ∗ (Lλ − Lp) ∗ dଶ]/(ESUNλ ∗ cosθ) ........ (2) 

Clustering or limiting the research area is the last 
activity of pre-image processing. The image 
delineation was performed by overlaying the vector 
data of the Mandor Subwatershed boundary with the 
corrected image data. 
  

 

Figure 1. Map of upper Mandor Subwatershed. 
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Table  1. Characteristics of the Landsat images used for the study. 

Sensor Acquisition Date Path/Row Spatial resolution (m) Source 
Landsat 7 ETM+ 17 February 2002 121/ 60 30 x 30 USGS 
Landsat 8 OLI 15 June 2013 121/ 60 30 x 30 USGS 
Landsat 9 OLI 2 28 March 2022 121/ 60 30 x 30 USGS 

Table 2. Digital number values of radiometrically corrected Landsat 7, 8, and 9 images. 

Band 2002 (ETM+) 2013 (OLI) 2022 (OLI 2) 
min max min max min max 

1 0 0.3792 0 0.6064 0 0.7673 
2 0 0.4134 0 0.653 0 0.8283 
3 0 0.3823 0 0.7015 0 0.8594 
4 0 0.8772 0 0.763 0 0.9345 
5 0 0.5261 0 0.9271 0 1 

 

The restriction made it easier for image analysts to 
analyze the research area.  
 

Producer accuracy =
ଡ଼౟౟

ଡ଼౟శ
× 100%  ....................... (3) 

User accuracy =
ଡ଼౟౟

ଡ଼ା୧
× 100%  ............................... (4) 

Overall accuracy =
∑ ୀଵ ౨

౟ ଡ଼౟౟

୒
× 100%  .................... (5) 

Kappa accuracy =
ே ∑ ௑೔೔ି∑ ௑೔ ା ௑శభ

ೝ
೔సభ

ೝ
೔సభ

ேమି∑ ௑೔శ ௑శ೔
× 100%  (6) 

 
The Kappa coefficient was computed using equation 6. 
If the Kappa Coefficient is close to one, it reaches a 
perfect agreement, whereas a value close to zero means 
the agreement is not better (Table 3) (Rwanga and 
Ndambuki, 2017). 

 

Table 3. Rating of the Kappa coefficient. 

Kappa Coefficient Strength 
< 0 Poor 

0 – 0.2 Slight 
0.21 – 4 Fair 

0.41 – 0.6 Moderate 
0.61 – 0.8 Good 
0.81 – 1 Very Good 

 

Data analysis 

The spatial analysis approach was used to conduct land 
use changes that occurred in the Mandor Subwatershed 
in the range of 2002 to 2022 by utilizing the 
Geographic Information System (GIS). Spatial 
modeling is an approach that provides information on 
land use change due to illegal mining. Land use change 
can be analyzed using spatial remote sensing data 
(Dero et al., 2021). Vegetation change studies were 
analyzed through remote sensing data collected from 
Landsat imagery, which provides multitemporal data 
to monitor the development and changes in vegetation 
density using Landsat 7, 8 and 9 imageries (Iskandar 
et al., 2012). The characteristics of the Landsat images 
used for the study is presented in Table 4. This research 
was conducted in four stages: pre-image processing, 
ground checking, image processing, and land use 
change analysis, along with vegetation index analysis. 
Land use change was analyzed using supervised 
classification with the maximum likelihood 
classification method, then ground checks were 
conducted to verify, and the result was presented as a 
land use change map. The vegetation index is a 
mathematical transformation that utilizes multispectral 
imagery and produces information about vegetation 
density phenomena.  

 

Table 4. Characteristics of the Landsat images used for the study. 

Land use Type Description 
Mining Area Areas of land where the minerals are exploited using open or closed techniques 
Water Body Area of land covered with water bodies like wetlands, springs, and rivers 
Palm Plantation All appearances of cultivated perennials that belong to the plantation group 
Settlement Land used for built-up compounds and other constructed infrastructures to serve the 

community 
Forest Land covered by trees with forests, small trees, bushes 
Rice Field Areas cultivated for the cultivation of food crops, plantations, and horticulture 
Open Land Land without cover, whether natural, semi-natural or artificial 

In this study, vegetation density was analyzed using 
Landsat 7, 8, and 9 image data with each recording 
year 2002, 2013, and 2022. The vegetation index used 

is a comparison of the NDVI (Normalized Difference 
Vegetation Index) method and the Enhanced 
Vegetation Index (EVI) method. 
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The NDVI approach calculates the green color value 
of vegetation using a categorization based on the value 
of each pixel (Yengoh et al., 2014; Siahaya et al., 
2015). It could predict the occurrence and impact of 
natural disasters such as droughts, fires, and floods 
(Pettorelli et al., 2005) and predict the extent of land 
degradation (Prince et al., 2009). Vegetation 
monitoring with NDVI is suitable for environmental 
management given that it is a low-cost and systematic 
method that could identify vegetation density. NDVI 
remote sensing for vegetation monitoring is quite 
useful in assessing environmental changes (Alcaraz-
Segura et al., 2009). The EVI (Enhanced Vegetation 
Index) transform is a refinement of the NDVI 
vegetation index analysis that improves the sensitivity 
of vegetation signals in high biomass areas. EVI 
improves the greenness of vegetation by combining 
information from the blue channel spectral band with 
background soil, canopy signal, and the influence of 
atmospheric conditions (Son et al., 2014). 

Land use change analysis 

Land use is defined by the purposes for which humans 
exploit the land. There is high variability in time and 
space in biophysical environments, socioeconomic 

activities, and cultural contexts that are associated with 
land use change (Lambin et al., 2003). The 
classification was done by the maximum likelihood 
classification algorithm. The image was analyzed 
using ArcGIS software. This method began with 
creating a training sample area on the composite image 
for each land cover.  Land use changes of the study 
years were calculated from processed images 
following equations 7 and 8 (Islam et al., 2018). 

Vegetation index analysis 

The purpose of NDVI study is to determine the health 
and density of plants. In accordance with previous 
research, vegetation density criteria are categorized 
into five types. The descriptions of identified 
vegetation index in Mandor Subwatershed are 
presented in Table 5. Environmental changes lead the 
vegetation around the mine to lack water and nutrients, 
causing the leaves to appear from yellow to brown 
(Romiyanto et al., 2015). The NDVI algorithm is 
derived from the ratio between the red band and the 
near-infrared band. NDVI is related to the amount of 
photosynthetically active radiation absorbed by the 
plant canopy (Wang et al., 2005).  

 
Magnitude of change = magnitude of the new year - magnitude of the previous year ..... (7) 

Percentage of land use change =
୫ୟ୥୬୧୲୳ୢୣ ୭୤ ୡ୦ୟ୬୥ୣ

ୠୟୱୣ ୷ୣୟ୰
× 100% ........................................ (8) 

 

Table 5. Descriptions of identified vegetation index in Mandor Subwatershed. 

Vegetation Index Description 
Non-Vegetation mining area, bare land and build-up area (residential, transportation, social 

complexes, and services). 
Low-Density Vegetation low dense growth plants, and underbrush. 
Quite-Low Density Vegetation quite low-dense growth plants and underbrush. 
Medium Density Vegetation medium-dense growth of trees, plants, and underbrush 
High-Density Vegetation dense growth of trees and plants. 

 

The NDVI is the most often used vegetation index. The 
normalized difference between the red and near-
infrared bands was used to determine NDVI per unit 
pixel (equation 9). 

NDVI = 
୒୍ୖିୖ୉ୈ

୒୍ୖାୖ
  ................................................................. (9) 

The Enhanced Vegetation Index (EVI) analysis is the 
outcome of a mathematical combination of the blue, 
red, and near-infrared (NIR) bands. The EVI algorithm 
is also intended to be more sensitive to photos with 
highly green or dense areas (Sudiana and Diasmara, 
2008). The EVI vegetation index was created to reduce 
the impact of canopy backdrop and atmospheric 
fluctuations more effectively than the NDVI (Andana, 
2015). 

EVI = G 
୒୍ୖିୖ୉ୈ

(୐ା୒୍ୖା େభ ୖୣୢା େమ୆୪୳ୣ)
  .................................. (10) 

Results 

Accuracy Assessment 

Accuracy assessment of land use changes 

The number of accurate test point locations taken is 65, 
which is divided by class and then matched with field 
observations. The accuracy evaluation of the 2022 
Landsat 9 image using the 7-5-4 band combination 
resulted in an overall accuracy of 94% and a Kappa 
accuracy of 92%. This states that of all the pixels used, 
92% of the pixels were correctly classified. For 
Landsat 8 in 2013, using the 7-5-4 band combination 
resulted in an overall accuracy of 85% and Kappa 
accuracy of 80%. For Landsat 7 in 2002, using the 5-
4-3 band combination resulted in an overall accuracy 
of 86% and Kappa accuracy of 80%. The findings of 
the land use change accuracy calculations in 2002, 
2013, and 2022 are presented in Table 6. 
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Table 6. Accuracy of land use change analysis in 2002, 2013, and 2022. 

Year Accuracy of 
Average Producer Average User Overall Kappa 

2002 79% 75% 86% 80% 
2013 91% 86% 85% 80% 
2022 94% 93% 94% 92% 

 
 Accuracy assessment of vegetation index 

Direct observation of the field aimed to adjust the 
interpretation results of NDVI and EVI classifications 
with the real conditions of vegetation density in the 
field. In 2002, each NDVI and EVI approach yielded 
accuracy scores of 83% and 85%; in 2013, these values 
increased to 86% and 85%; and in 2022, they 
decreased to 72% and 80%. According to the image 
categorization, 47 out of 65 field test points with the 
NDVI method in 2022 will be right. In contrast, it is 
known that 52 of the 65 field test points used in the 
EVI approach in 2022 are correct. The findings of the 
vegetation index accuracy calculations in 200, 2013, 
and 2022 are presented in Table 7. 
 
Table 7. Accuracy of vegetation index analysis in 

2002, 2013, and 2022. 

Normalized Difference Vegetation Index (NDVI) 
Year Overall Accuracy 
2002 83% 
2013 86% 
2022 72% 

Enhanced Vegetation Index (EVI) 
Year Overall Accuracy 
2002 85% 
2013 85% 
2022 80% 

Land use changes in the upper Mandor 
Subwatershed 

The combination of land use in 2002 with the largest 
decrease was dominated by the forest of 11,180.52 
hectares, which in 2013 decreased to 5,321.97 
hectares, and then in 2022 continued to decrease to 
2,953.71 hectares (Figures 2, 3 and 4). Furthermore, 
the decrease in land use in the water body classification 
was noted in 2002 as 917.73 hectares and increased to 

1,521.09 hectares in 2013 and then decreased to 
869.31 hectares. The decrease also happened in the 
settlement area, which in 2002 amounted to 1,440.63 
hectares and fell to 1,280.18 hectares in 2022. 
Meanwhile, within a period of 20 years, the type of 
land that has the highest increased area was oil palm 
plantation land, which in 2002 was 1,691.01 hectares 
and has increased to 6,271.46 hectares in 2013 and 
continues to increase in 2022 to an area of 6,862.86 
hectares. Thus, followed by an increase in the mining 
classification area, which originated in 2002 was 
476.01 hectares, the increase in land use classes was 
followed by the rice fields and open land classes. This 
means that within a period of 20 years, from 2002 to 
2022, there was a conversion of forest land into oil 
palm plantations and mining. It is expected that the 
Mandor Subwatershed's high rate of land use 
conversion from forest category to mining will have a 
detrimental influence, specifically the occurrence of 
river erosion and sedimentation, which can result in 
flooding resulting from the loss of water catchment 
areas.  
 Results presented in Table 8 show that there was 
a high expansion of palm plantations and mining areas 
at the expense of other land uses. Data presented in 
Tables 8 and 9 show the detailed land conversion on 
the upper Mandor Subwatershed from 2002 to 2022, 
with bold-red numbers indicating reduction and bold-
black numbers indicating expansion. 

Vegetation density in the upper Mandor 
Subwatershed 

The findings of NDVI transformation density values in 
Mandor Subwatershed are non-vegetation, low-
density vegetation, quite-low-density vegetation, 
medium-density vegetation, and high-
density vegetation (Table 10). The NDVI scale ranges 
from -1.0 to 1.0. 

 

Table 8. Area of land use on upper Mandor Subwatershed during 2002-2022. 

No Type of land use Area 
2002 (ETM+) 2013 (OLI) 2022 (OLI 2) 
ha % ha % ha % 

1 Mining Area 476.01 2.80 1,296.58 7.63 2,200.77 12.95 
2 Water Body 917.73 5.40 1,521.09 8.95 869,31 5.11 
3 Palm Plantation 1,691.01 9.95 6,271.46 36.89 6,862.86 40.37 
4 Settlement 1,440.63 8.47 1,238.36 7.28 1,280.18 6.35 
5 Forest 11,180.52 65.77 5,321.97 31.30 2,953.71 17.37 
6 Rice Field 518.94 3.05 528.49 3.11 894.40 6.44 
7 Open Land 775.62 4.56 822.51 4.84 1,939.23 11.41 

Total 17,000.46 100 17,000.46 100 17,000.46 100 

Note: bold-red numbers represent a decrease; bold-black numbers represent an increase. 
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Figure 2. Mandor Subwatershed land use in 2002. 

 

 

 

 
Figure 3. Mandor Subwatershed land use in 2013. 
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Figure 4. Mandor Subwatershed land use in 2022. 

 

Table 9. The magnitude of land use change during 2002-2022. 

No Type of land use Area (ha) 
2002 - 2013 2013 - 2022 2002 - 2022 

1 Mining Area 820.57 904.19 1,724.76 
2 Water Body 603.36 651.78 48.42 
3 Palm Plantation 4,580.45 591.4 5,171.85 
4 Settlement 202.27 41.82 160.45 
5 Forest 5,858.55 2,368.26 8,226.81 
6 Rice Field 9.55 365.91 375.46 
7 Open Land 46.89 1,116.72 1,163.61 

Note: bold-red numbers represent a decrease; bold-black numbers represent an increase. 

 

Table 10. Area of the index vegetation using NDVI on upper Mandor Subwatershed during 2002-2022. 

No Type of index vegetation using NDVI Area 
2002 (ETM+) 2013 (OLI) 2022 (OLI 2) 

ha % ha % ha % 
1 Non-Vegetation 689.14 4.05 768.49 4.52 771.92 4.54 
2 Low-Density Vegetation 702.44 4.13 907.12 5.34 1,017.33 5.98 
3 Quite Low-Density Vegetation 1,183.61 6.96 975.32 5.74 1,536.44 9.04 
4 Medium Density Vegetation 4,537.48 26.69 4,198.78 24.70 2,880.09 16.94 
5 High-Density Vegetation 9,887.79 58.16 10,150.75 59.71 10,794.68 63.50 

Total 17,000.46 100 17,000.46 100 17,000.46 100 

 

Based on the calculation, the area of the most 
prominent high-density class changes each year. The 
vegetation index class is high if the land surface is still 
primarily covered by dense vegetation, and quite a few 
protecting trees between canopies are touching each 

other, and some are not. The high-density class using 
the NDVI technique amounted to 9,887.79 hectares in 
2002, 10,150.75 hectares in 2013, and 10,794.68 
hectares of the total area in 2022.  
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Figure 5. Index vegetation using Landsat 7 ETM+ of 2002 (NDVI method). 

 

 

Figure 6. Index vegetation using Landsat 8 OLI of 2013 (NDVI method). 

 



L.A. Putri et al. / Journal of Degraded and Mining Lands Management 10(2):4219-4232 (2023) 

 

Open Access                                                                                                                                                        4227 
 

 
Figure 7. Index vegetation using Landsat 9 OLI 2 of 2022 (NDVI method). 

 

The calculation results show that there was a dominant 
change in area with each of the first orders in the 
medium density, high density, moderately low density, 
low density, low density, and non-vegetation classes. 
Changes in high-density areas utilizing the EVI 
approach grew from 10,007.087 hectares to 10,298.32 
hectares and then to 10,376.96 hectares in 2002, 2013, 
and 2022, respectively. Areas of low vegetation are 
shown in red; areas of low-density vegetation are 
shown in orange; areas of moderately low density are 
marked in yellow; areas of medium density are marked 
in light green; and areas marked in dark green are high-
density areas (Figures 5, 6 and 7). Looking at the 
image, areas with a low level of plant density can be 

identified by light color. This is because the reflection 
of the vegetation crown is minimal; therefore, what 
appears in the image is lighter in color. Areas with a 
high plant density are portrayed in a darker green color 
due to the reflection of the thick vegetation canopy. 
The greenness level of vegetation can be assessed by 
analyzing the highest value of NDVI and EVI 
categorization. The greatest NDVI value for the 2002 
Landsat 7 image was 0.786. In 2013, the Landsat 8 
image recorded a maximum NDVI value of 0.892, 
while in 2022, the Landsat 9 image produced a 
maximum value of 0.906. The data demonstrate that 
the maximum NDVI value increases from 2002 to 
2022.  

 

Table 11. Area of the index vegetation using NDVI on upper Mandor Subwatershed during 2002-2022. 

No Type of index vegetation using EVI Area 
2002 (ETM+) 2013 (OLI) 2022 (OLI 2) 

ha % ha % ha % 
1 Non-Vegetation 722.01 4.25 983.99 5.79 1,370.49 8.06 
2 Low-Density Vegetation 716.83 4.22 913.89 5.38 1,004.17 5.91 
3 Quite Low-Density Vegetation 1,560.42 9.18 623.30 3.67 627.23 3.69 
4 Medium-Density Vegetation 3,994.12 23.49 4,180.96 24.59 3,621.61 21.30 
5 High-Density Vegetation 10,007.08 58.86 10,298.32 60.58 10,376.96 61.04 

Total 17,000.46 100 17,000.46 100 17,000.46 100 

There was a dominant change in area with the EVI 
method from the high-density class, which continued 
to increase from 10,007.08 hectares in 2002 to 
10,298.32 hectares in 2013 and continued to increase 
to 10,376.96 hectares in 2022 (Table 11, Figures 8, 9 

and 10). This was also followed by the non-vegetation 
and low-density classes. Meanwhile, the quite low-
density class experienced the largest decrease from 
1,560.42 hectares in 2002 to 623.30 hectares in 2013, 
then in 2022 to 627.23 hectares.  



L.A. Putri et al. / Journal of Degraded and Mining Lands Management 10(2):4219-4232 (2023) 

 

Open Access                                                                                                                                                        4228 
 

 

Figure 8. Index vegetation using Landsat 7 ETM+ of 2002 (EVI method). 

 

 

 

Figure 9. Index vegetation using Landsat 8 OLI of 2013 (EVI method). 

 



L.A. Putri et al. / Journal of Degraded and Mining Lands Management 10(2):4219-4232 (2023) 

 

Open Access                                                                                                                                                        4229 
 

 

Figure 10. Index vegetation using Landsat 9 OLI 2 of 2022 (EVI method). 

 
The EVI index value is high because the vegetation 
index is proportional to photosynthetic activity; the 
EVI value increases as photosynthetic activity 
increases, and the biomass in the study area is greener 
(Carvalho et al., 2008). 

Discussion 

The expansion of mining areas occurs along with the 
degradation of forested land. This problem is 
widespread around the world in regions where mining 
operations are conducted on forest land. The effects of 
traditional gold mining are undoubtedly not limited to 
the mine site but also have a greater impact on areas 
outside of the mining area, such as villages, rice fields, 
and oil palm plantations (Seki et al., 2022). According 
to Table 7 about land use changes, the impact of gold 
mining led to an increase in critical land area of 1,163 
ha and 8,226 ha of deforestation between 2002 and 
2022. However, it is also possible that this indication 
is a result of the mining activity's indirect appeal, 
which led to the formation of settlements with a range 
of activities, including oil palm plantations, as well as 
an increase in the area of about 5,171 ha over a 20-year 
period.  

The degradation of forest areas will also have an 
impact on climate change (Kahhat et al., 2019; Islam 
et al., 2020). At the study site, it is believed that the 
loss of forest land is a direct result of gold mining, 
which has also increased the area devoted to oil palm 
plantations; this loss will increase greenhouse gases in 
the atmosphere. Ulrich et al. (2022) stated that global 
greenhouse gas (GHG) emissions from gold mining 

exceed 100 Mt of CO2
-e per year. The environmental 

cost to gold miners is estimated to be between US$50 
t−1 CO2

-e and US$100 t−1 CO2
-e. The impact of carbon 

price varies widely between countries; with a gold 
price of US$100 t−1 CO2

-e, the average production cost 
is US$13 per ounce in Finland and up to US$275 per 
ounce in South Africa. 

Activities related to artisanal and small-scale 
gold mining are a significant global source of mercury 
(Hg) emissions into the atmosphere. Mercury was used 
in the Mandor Subwatershed's traditional gold mining 
process to separate gold from other materials, which 
produced sand and gold as byproducts. The 
downstream flow and tidal processes can also spread 
mercury contamination. Flooding-related infiltration 
may accelerate the movement of contaminants into the 
soil (Liu et al., 2021). Mercury contamination may 
adhere to sediments and result in water pollution. 
Elevated levels of dissolved total mercury and 
methylmercury (MeHg) in the water and sediment are 
signs of local contamination. Artisanal gold mining 
contributed 12% of atmospheric Hg deposition, 10% 
of plankton methylmercury concentrations, and 0.63% 
of total soil Hg concentrations (Pang et al., 2022). 
Besides that, carnivores had larger bioaccumulation 
factors in relation to dissolved MeHg than omnivores, 
and they varied by area, which suggests that factors 
other than MeHg concentration alone were influencing 
absorption and trophic transmission (Mason et al., 
2019). Furthermore, mercury pollution in shrimp in the 
Mandor River is almost evenly distributed, which 
indicates that the pattern of mercury distribution in 
sediments in the Mandor River has increased levels 
downstream (Triana et al., 2013). 
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Based on the Environmental Service of Landak 
Regency in 2021 on examination of dissolved residues, 
suspended residues, pH, BOD (biological oxygen 
demand), COD (chemical oxygen demand), DO 
(dissolved oxygen), and iron (Fe), then compared with 
the water quality standards of class II according to 
Government Regulation Number 22 of 2021, the 
Mandor River has exceeded the threshold. This means 
that Mandor river waters are not good for the life and 
reproduction of aquatic organisms. Water pollution 
increases the risk of developing skin conditions or 
other illnesses (Mailendra and Buchori, 2019). 
Mercury levels that exceed the threshold show the 
influence on the health of people who live long enough 
in the gold mining area. Additionally, it is suspected 
that mercury poisoning contributes to 1,430 annual 
deaths worldwide and a 5.8-point drop in intellect. 
When compared to health-related effects, these 
negative effects are estimated to be worth $154 billion, 
which is 1.5 times the local impact (Pang et al., 2022). 
Clinical malaria and dengue fever cases, which are 
transmitted through the bites of Aedes aegypti and 
Albopictus mosquitoes, have also increased in Mandor 
Sub-district. Illegal gold miners are very affected by 
malaria because of poor hygiene and exhausting work, 
which lead to poor health; meanwhile, deforestation 
and still water pools favour mosquito proliferation 
(Douine et al., 2018).  

As a result of these traditional gold mining 
activities, mercury contamination also occurs in other 
land uses such as plantations, settlements, and water 
bodies (Kahha et al., 2019). The soil type that 
dominates the Mandor Subwatershed itself is ultisol, 
which is a less fertile soil type. It is highly vulnerable 
to erosion because it is formed from a clay deposit at 
the bottom, which decreases water infiltration and 
increases surface runoff. Ultisol soils have 
exceptionally low to moderate levels of organic matter, 
high levels of acidity, few nutrients (N, P, and K), and 
low CEC (cation exchange capacity) and BS (base 
saturation) values. This soil can provide its full 
potential with proper soil management. Infertile soils 
like ultisol soils are starting to be widely used to 
support human needs because of inadequate land use 
practices causing relatively fertile soils to decrease 
(Karnilawati, 2018). Oil palm plantations and 
agricultural areas near the mine site may become 
exposed because of heavy metal contamination from 
gold mining. Waterlogging and flooding 
circumstances also make this exposure more severe. 
So, instead of planting oil palm around the mine, it is 
recommended to plant tool wood-producing tree 
vegetation instead. 

As well as having a harmful effect on human 
health, gold mining also contaminates the environment 
with As, Cr, Ni, Pb, and Zn in addition to mercury 
(Dan-Badjo et al., 2019). Dan-Badjo et al. (2019) 
proved the level of contamination in soil, water, and 
plants of Datura inoxia and Calotropis procera in 
Nigeria. Soil contamination was found to reach 555 

mg kg-1 and 468 mg kg-1 for As and Zn, respectively. 
In water, the highest levels were observed for Zn (540 
mg L−1), followed by Cu (7.4 mg L−1) and Al (4.27 mg 
L−1). The concentrations of As and Zn in the leaves of 
Datura inoxia were 134 mg kg-1 and 388 mg kg-1, and 
in Calotropis procera leaves, they were 49 mg kg−1 
and 46 mg kg−1, respectively.  

The findings showed that most of the soil and 
water samples collected in the gold zone had 
contamination levels beyond those advised by the 
WHO, particularly for As, Cr, Ni, Pb, and Zn. The high 
concentration of As is caused by the runoff and 
sedimentation of gold mining tailings particles. (Klubi 
et al., 2018). Moreover, Sousa et al. (2010) found that 
gold miners in the Amazon River reduced mercury 
contamination but increased cyanide contamination 
instead. This condition happened because of 
modifications made to the barrel washing and 
amalgamation steps in the gold refining process. Each 
cycle typically recovers 50% of the gold and lasts 20 
days (per vat), using approximately 3300 kg NaCN per 
month. PVC capsules containing carbon-activated 
material were placed into the cyanide solution to 
undertake concentrate leaching. The cycle takes less 
than 24 hours and recovers up to 98% of the gold in 
the concentrate. The main advantages of the 
widespread adoption of this method, apart from the 
reduced gold recovery cycle and improved recovery, 
include the possibility of phasing out amalgamation 
altogether and a marked reduction in cyanide 
consumption (from the current 22,000 kg to 980 kg per 
year). 

The interconnectedness of mining, social 
inequalities, and weak environmental management 
strategies has negatively impacted food sovereignty, 
especially for local and indigenous communities with 
low coping capacities (Blanco et al., 2022). Thus, 
some efforts to overcome and mitigate the negative 
impacts of traditional gold mining are needed. First, 
monitoring and treatment programs for land and 
waters polluted by gold mining are regularly needed to 
safeguard human health (Dan-Badjo et al., 2019). 
Second, rigorous integrated impact assessment and 
conservation planning are needed in mining 
landscapes to prevent the development of settlements 
and secondary industries around mining sites while 
balancing the natural resource-based mining sector's 
output, livelihoods, and conservation agendas (Seki et 
al., 2022). Third, plant fast-growing tree vegetation in 
open areas and around areas contaminated by mining. 
Fourth, social engineering approaches with 
conventions will only be successful in reducing 
ASGM mercury emissions and releases with a 
comprehensive bottom-up formalized approach 
among miners, accompanied by significant external 
funding from consumers, large mining companies, and 
governments. The estimated 5-year global cost of this 
approach could be around US$ 213-742 million when 
scaled per miner or US$ 248-2.17 billion scaled per 
country (Prescott et al., 2022). 
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Conclusion 

The pattern of changes in vegetation density indicates 
changing vegetation composition at the study site, 
which gives a different response to the near-infrared 
channel and the red channel in the image recording 
data. The accuracy test value of image classification in 
the analysis of land use change in 2002 and 2013 
amounted to 80%, and in 2022 it amounted to 92%. 
The process of land degradation in the Mandor 
Subwatershed within 20 years because of traditional 
gold mining was indicated by the conversion of forest 
classes into oil palm plantations and mining lands. A 
forest area of 11,180.52 hectares in 2002 became 
2,953.71 hectares in 2022. This change in forest area 
shows the increasingly degraded condition of the 
forest in the Mandor Subwatershed and theoretically 
might have contributed to the greenhouse gas effect 
too. Land use change from forested areas to oil palm 
plantations will certainly have an impact on the 
exposure of oil palm plantations, especially the 
production of palm oil in the form of methyl mercury 
contamination. Moreover, traditional gold mining is a 
significant global source of mercury (Hg) pollution 
that not only harms the environment, especially water 
and soil, but also humans through bioaccumulation and 
direct exposure. Regular assessment and monitoring of 
gold mining activities, the right type of vegetation 
planting, and social engineering approaches can be 
used to mitigate the impact of pollution due to gold 
mining activities in the Mandor Subwatershed. 
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