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Resumo: A divisibilidade é um tema antigo que até hoje intriga e fascina pesquisadores e estudiosos.
Várias regras são bem conhecidas em particular a divisibilidade por onze, uma vez que, por exemplo,
um palíndromo com um número par de dígitos é divisível por onze. Nos tempos atuais, a divisibilidade
tem suas aplicações, por exemplo, em criptografia. Aqui, neste artigo, mostraremos que aplicando
dois procedimentos um tanto intuitivos às linhas do triângulo de Pascal deve sempre retornar números
divisíveis por onze. Exemplos ilustrativos são apresentados.

Palavras-chave: Triângulo de Pascal; Divisibilidade; Palíndromos; Relação de Stifel; Teorema do
binômio.

Abstract: Divisibility is an old topic that to this day intrigues and fascinates researchers and scholars.
Several rules are well-known in particular the divisibility by eleven, since, for example, a palindrome
with an even number of digits is divisible by eleven. In current times, divisibility has its applications,
for example, in cryptography. Here, in this paper we will show that applying two somewhat intuitive
procedures to the lines of Pascal’s triangle shall always yield numbers divisible by eleven. Illustrative
examples are presented.
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1 Introduction

Divisibility is a vast topic within number theory and has been a subject of study since
remote times. Even though its early introduction in formal education (during elementary
school) it plays central role in rather sophisticated fields, such as cryptography.

As divisibility is well-known and has plenty study material available, we will limit
ourselves to mention two graduation level references: Gardner [1] in which divisibility
rules from two to twelve are discussed; also the book Richmond & Richmond [2] which
presents many divisibility criteria and some of their applications.

The Pascal’s triangle [1623 – Blaise Pascal – 1662] has been fascinating generations
of mathematicians. It is a fairly simple representation of binomial numbers, but its lines
and columns provide all sorts of interesting relations, we mention eleven division [3],[4]
and Pythagorean triples [5]. Students are firstly presented this triangle in high school,
but it is rare to study its properties in depth, which happens only in some graduation
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courses.
Although Pascal’s triangle is not as well-known as divisibility to the general public, it

is of great importance to many fields, e.g. combinatorial analysis. It can be defined as
an infinite lower triangular matrix in which the n-th line is composed by the coefficients
of the Newton’s binomial theorem [1643 – Isaac Newton – 1727]. Other way to define
Pascal’s triangle is by construction using Pascal’s rule, also known as Stifel’s relation
[1487 – Michael Stifel – 1567], which is an identity involving binomial coefficients. For
more details on the topic we suggest: Merris [6] for its quality and for being easily
accessible on the internet; and the recent work of Wallis & George [7] for it presents
various application on the matter.

On the present work we will focus on the divisibility by eleven and its relation to the
lines of Pascal’s triangle. To do so we introduce some procedures that applied to the
lines yield multiples of eleven. Illustrative examples are provided. As a step towards the
demonstration of the main result we also show that the reversei of a number divisible
by eleven is also divisible by eleven.

This article is organized as follows: in section two we introduce some preliminary
information and context, highlighting the divisible by eleven rule, binomial coefficients,
the binomial theorem, the Stifel’s relation and the Pascal’s triangle. Section three is
dedicated to state and prove the main proposition.

2 Preliminaries

In order to reach our goal, first, we present some definitions and hypotheses that will
be used to obtain the main results.

Lemma 2.1. Divisibility by eleven. Let Se and So be, starting from the right
respectively, the sum of the digits in even and odd positions of an integer number N. N
is divisible by eleven if, and only if, |So − Se| is divisible by eleven.

Definition 2.2. Binomial coefficient. Let n and k be non-negative integer numbers
with k ≤ n. The binomial coefficient is given by(

n

k

)
= n!

(n − k)!k!

where ℓ!, with ℓ ∈ N, is the factorial. For n < k the binomial coefficient is zero.

This binomial coefficient is interpreted as the number of subsets of k elements from
a set of n elements or, in other words, the number of ways one can choose k different
elements out of n distinct elements.

Theorem 2.3. Binomial theorem. Let a and b be real numbers and n ∈ N. The
binomial theorem is expressed as

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk ·

i
For reverse of a number we mean read it backwards. Not to be confused with the inverse of a number, which is one divided by the number.
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Definition 2.4. Stifel’s relation. Let n and k be non-negative integer numbers.
The relation, given below involving three binomial coefficients (three elements of Pascal’s
triangle) (

n

k

)
+
(

n

k + 1

)
=
(

n + 1
k + 1

)
is called Stifel’s relation.

Definition 2.5. Pascal’s triangle. Let n and k be non-negative integer numbers.
Pascal’s triangle is an infinite numerical triangle formed by binomial coefficients,

(
n
k

)
,

where n is associated with line number (vertical position), and k is associated with
column number (horizontal position).

The Pascal’s triangle can be seen as a triangular array of the binomial coefficients.
Below, the first nine lines of Pascal’s triangle (for more details, see [8]).

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1
n = 7 1 7 21 35 35 21 7 1
n = 8 1 8 28 56 70 56 28 8 1

...
...

...
...

...
...

...
...

...
...

3 Main result

We start this section presenting examples of two procedures that can be applied
to the lines of Pascal’s triangle resulting in numbers ‘divisible by eleven. Then we
formalize those procedures, state the main result as a theorem that applying any of
those procedures to a line of Pascal’s triangle result in a number divisible by eleven and
prove it.

The idea for the main result of this manuscript first arose from the fact that the first
lines (1 to 4, line 0 is excluded) of Pascal’s triangle read directly as numbers provide
values divisible by eleven, 11, 121, 1331 and 14641, all of then palindromes. On the
other hand, that is not the case once you reach lines with elements greater than or
equal to 10 (such as

(
5
2

)
). Motivated by this characteristic present in the first lines,

we adapted the procedure to consider each element of the triangle as the coefficient of
a decimal expansion instead of simply concatenating them. By doing so for a couple
of lines further, regardless the direction of application, we are still generating values
divisible by eleven.

For clarity, let us proceed to some examples.

Example 3.1. Pascal’s triangle, n = 8.
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n = 1 1 1 11
n = 2 1 2 1 11
n = 3 1 3 3 1 11
n = 4 1 4 6 4 1 11
n = 5 1 5 10 10 5 1

1 5 10+1 0 5 1
1 6 1 0 5 1 11

n = 6 1 6 15 20 15 6 1
1 6 10+5 10+10 10+5 6 1
1 6 15 20+1 5 6 1
1 6 15+2 1 5 6 1
1 7 7 1 5 6 1 11

n = 7 1 7 21 35 35 21 7 1
1 7 21 35 37 1 7 1
1 7 21 38 7 1 7 1
1 7 24 8 7 1 7 1
1 9 4 8 7 1 7 1 11

n = 8 1 8 28 56 70 56 28 8 1
2 1 4 3 5 8 8 8 1 11

Note that, starting from the left also results in a multiple of eleven. In short, it just
reverses the order of the digits, still being divisible by eleven. In this case, n = 8, the
number 188853412 is also divisible by eleven.

Example 3.2. Pascal’s triangle, n = 10.

1 10 45 120 210 252 210 120 45 10 1
45+1 0 1

120+4 6 0 1
210+12 4 6 0 1

252+22 2 4 6 0 1
210+27 4 2 4 6 0 1

120+23 7 4 2 4 6 0 1
45+14 3 7 4 2 4 6 0 1

10+5 9 3 7 4 2 4 6 0 1
1+1 5 9 3 7 4 2 4 6 0 1

2 5 9 3 7 4 2 4 6 0 1

1 10 45 120 210 252 210 120 45 10 1
1 0 45+1
1 0 6 120+4
1 0 6 4 210+12
1 0 6 4 2 252+22
1 0 6 4 2 4 210+27
1 0 6 4 2 4 7 120+23
1 0 6 4 2 4 7 3 45+14
1 0 6 4 2 4 7 3 9 10+5
1 0 6 4 2 4 7 3 9 5 1+1
1 0 6 4 2 4 7 3 9 5 2

Both (25937424601 and 10642473952) are reverses of each other and divisible by eleven.
A natural question that can be asked is whether this property is true for every line.

Before we present the procedures and prove the main result, we discuss explicitly
the case n = 10, as in diagrams in Example 3.2. We first introduce the notation: ai
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with i = 0, 1, 2, . . ., is each digit appearing in the last line in Example 3.2; Vi with
i = 0, 1, 2, . . ., is what is being mounted on the last line and ci with i = 0, 1, 2, . . ., is the
value that is added to the next column of the diagram. Also, we definte V0 = 0 = c0.
Therefore, we present only the four steps. Thus, for a1, V1 and c1, we have

a1 =
(

10
10

)
+ c0 (mod 10) −→ a1 = 1,

V1 = 101−1 · a1 + V0 = 1

c1 = 1
10

[(
10

10 − 1 + 1

)
+ c0 − a1

]
= 0.

For a2, V2 and c2, we obtain

a2 =
(

10
10 − 2 + 1

)
+ c1 (mod 10) −→ a2 = 0,

V2 = 102−1 · a2 + V1 = 1

c2 = 1
10

[(
10

10 − 2 + 1

)
+ c1 − a2

]
= 1.

Noting that, in Example 3.2 this number c2 = 1 is to be added to 45 on third column.
For a3, V3 and c3, we have

a3 =
(

10
10 − 3 + 1

)
+ c2 (mod 10) −→ a3 = 6,

V3 = 103−1 · a3 + V2 = 100 · 6 + 1 = 601

c3 = 1
10

[(
10

10 − 3 + 1

)
+ c2 − a3

]
= 4.

Noting V3 = 601 denotes the last line in Example 3.2 being formed and c3 = 4 the
value to be added to 120 in the next (third column) column. We finally, consider a4, V4
and c4. Thus, we have

a4 =
(

10
10 − 4 + 1

)
+ c3 (mod 10) −→ a4 = 4,

V4 = 104−1 · a4 + V3 = 4601

c4 = 1
10

[(
10

10 − 4 + 1

)
+ c3 − a4

]
= 12.

Also here, V4 = 4601 denotes the last line in Example 3.2 being formed and c4 = 12
the value to be added to 210 in the next column (fourth column). Thus, for this case,
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n = 10, we list the other ones (digits at last line) V5 = 24601, V6 = 424601, V7 = 7424601,
V8 = 37424601, V9 = 937424601, V10 = 5937424601 V11 = 25937424601. So, this las
number is equal to 1110, a well-known result, as we will see in Theorem 3.4

Now we understand the goal, let us formally define the procedures to how interpret
elements of the Pascal’s triangle line as a decimal expansion and the main result.
Procedure 3.1. Decimal expansion from right to left.

1. This procedure combines all the n + 1 elements of n-th line of Pascal’s triangle.

2. Define V0 and c0 to be 0.ii

3. For k ≥ 1 we perform the following operations until for k > n we have ak = 0 and
ck = 0.

(a) ak =
(

n
n−k+1

)
+ ck−1 (mod 10)

(b) Vk = 10k−1 · ak + Vk−1

(c) ck = 1
10

((
n

n−k+1

)
+ ck−1 − ak

)
4. Note that ci is a sequence of non-negative integers and for i greater than n + 1 it is

strictly decreasing. For this reason there is a j such that
(

n
n−j+1

)
= 0 and cj−1 = 0,

which implies aj = 0 and the procedure ends.

Procedure 3.2. Decimal expansion from left to right.

1. This procedure combines all the n + 1 elements of n-th line of Pascal’s triangle.

2. Define V0 and c0 to be 0.

3. For k ≥ 1 we perform the following operations until for k > n we have ak = 0 and
ck = 0.

(a) ak =
(

n
k−1

)
+ ck−1 (mod 10).

(b) Vk = 10 · Vk−1 + ak.

(c) ck = 1
10

((
n

k−1

)
+ ck−1 − ak

)
.

4. Note that ci is a sequence non-negative integer and for i greater than n + 1 its value is
strictly decreasing. For this reason there is a j such that

(
n

j−1

)
= 0 and cj−1 = 0, which

implies aj = 0 and the procedure ends.

Theorem 3.3. For any given line in the Pascal triangle Procedures 3.1 and 3.2 produce
results that are reverses of each other.
ii

We used V because it is the result value and c because it works as a carrying value.
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Proof 3.3.1. We will break the demonstration in three steps. First of all we will show
that each iteration of Procedure 3.1 defines a digit of its final result, going from the least
significant to the most. The second step is showing that the same stands for Procedure
3.2, but the digits are generated from the most significant to the least one. Finally
we are going to prove that for a given k the values of ak and ck are the same for both
procedures and once ak is the next digit the procedures produce results that are the
reverses of each other.

Part one: Each iteration of Procedure 3.1 defines one digit in the result. For this we
will show by induction that Vk < 10k and that an iteration affects only the k-th digit of
the result. As the base for the induction V0 = 0 and c0 = 0 imply that a1 = 1, V1 = 1
and c1 = 0. So V1 < 101 and the first step affected the first digit.

Now let’s suppose that for a number k both assumptions hold. Then we have:

• ak+1 =
(

n
n−k

)
+ ck (mod 10) =⇒ 0 ≤ ak+1 ≤ 9.

• Vk+1 = 10k · ak+1 + Vk < 9 · 10k + 10k = 10k+1.

• Vk+1 = 10k · ak+1 + Vk and Vk < 10k implies that ak+1 is the (k + 1)th digit from the
least to the most significant in Vk+1.

So, by induction, the k-th digit of the result of Procedure 3.1 is ak.

Part two: Each iteraction of Procedure 3.2 defines one digit in the result. This is
simpler than the first step. As 0 ≤ ak ≤ 9 and Vk = 10 · Vk−1 + ak follows directly that
the least significant digit of Vk is ak, because Vk−1 is multiplied by 10.

Part three: Results of Procedures 3.1 and 3.2 for the n-th line of Pascal triangle
are reverses of each other. To prove this result we will show by induction that both
procedures yield for a k-th step the same values of ak and ck. Doing so and considering
steps 1 and 2 we will have shown the original proposition.

Let’s use V 1, a1 and c1 for the sequences generated by Procedure 3.1 and V 2, a2 and
c2 for those generated by Procedure 3.2.

Base of induction:

• a11 =
(

n
n

)
+ c0 (mod 10) =⇒ a11 = 1

• c11 = 1
10

((
n
n

)
+ c0 − a1

)
= 0

• a21 =
(

n
0

)
+ c0 (mod 10) =⇒ a21 = 1

• c21 = 1
10

((
n
0

)
+ c0 − a1

)
= 0

Let’s suppose that for a given k we have a1k = a2k and c1k = c2k. Thus follows that:

a2k+1 =
(

n

k

)
+ c2k (mod 10) =

(
n

n − k

)
+ c1k (mod 10) = a1k+1

and
c2k+1 = 1

10

((
n

k

)
+ c2k − a2k

)
= 1

10

((
n

n − k

)
+ c1k − a1k

)
= c1k+1
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So by induction we have that sequences c1 and c2 are equal and sequences a1 and
a2 as well, which concludes the demonstrantion that results yield by Procedure 3.1 and
Procedure 3.2 are reverses. □

Theorem 3.4. Any line of Pascal’s triangle interpreted as a decimal
expansion results in a multiple of eleven.

Proof 3.4.1. We shall separate the demonstration in two steps, one for each procedure.
(First step.) As described in Procedure 3.1, the result is the sum of the elements of
the Pascal triangle line, in which the n − k element is multiplied by the term 10k:

First term

(
n

n

)
· 10n−n;

Second term

(
n

n − 1

)
· 10n−(n−1);

... ...

(n + 1)-th term

(
n

0

)
· 10n−0.

Thus, the result Rn from Procedure 3.1 applied to line n-th is

Rn =
n∑

k=0

(
n

k

)
· 10n−k ·

This expression is very similar to binomial theorem, by adding the power of 1 we
achieve the exact format

Rn =
n∑

k=0

(
n

k

)
· 10n−k =

n∑
k=0

(
n

k

)
· 10n−k · 1k = (10 + 1)n = 11n ·

Therefore, we conclude that the result of executing Procedure 3.1 for the n-th Pascal’s
triangle line is 11n, and it follows naturally that Rn is divisible by eleven.

(Second step.) From the demonstration of Theorem 3.3, it is sufficient to show that
the reverse of a multiple of eleven is also a multiple of eleven.

Let us consider a number N of k digits, each digit denoted by ai with 0 ⩽ i ⩽
k − 1, ak−1 ̸= 0. We also define So as the sum of the digits in odd positions and Se as
the sum of the digits in even position. Then we have

N =
k−1∑
i=0

ai · 10i ≡
k−1∑
i=0

ai · (−1)i ≡ Se − So (mod 11)

So 11 | N ⇐⇒ Se ≡ So (mod 11). Let Nr be the reverse of N and SRo and SRe be
the sums of odd and even positioned digits, respectively, of Nr. Let us analyze the
relations involving So, Se, SRo and SRe.

The digit aj from N is mapped to the digit ak−1−j of Nr. The implications are
considered in two cases.
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Case 1. k is an even number, (k = 2t). In this case we have
2 | k − 1 − j = 2t − 1 − j =⇒ 2 | j + 1 =⇒ 2 ∤ j.

Thus, every digit is mapped into the inverse parity, therefore Se = SRo and So = SRe.
So,

Se ≡ So (mod 11) ⇐⇒ SRo ≡ SRe (mod 11) =⇒ 11 | N ⇐⇒ 11 | Nr.

Case 2. k is an odd number, (k = 2t + 1). Thus, in this case we have

2 | k − 1 − j = 2t + 1 − 1 − j =⇒ 2 | j.

So, every digit is mapped into the same parity, implying that Se = SRe and So = SRo.
So,

Se ≡ So (mod 11) ⇐⇒ SRe ≡ SRo (mod 11) =⇒ 11 | N ⇐⇒ 11 | Nr.

Therefore, for any N , we conclude that 11 | Nr ⇐⇒ 11 | N , i.e., if a number is
divisible by eleven its reverse also.

Thus, we have that once the value generated by Procedure 3.1 is a multiple of eleven
and the number generated by Procedure 3.2 is its reverse, we conclude that the value
generated by Procedure 3.2 is also a multiple of eleven. □
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