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Remote sensing data is widely used as a common variable for digital soil mapping estimating 

models. The aim of this study, quite recently made available to researchers Operational Land Imager 

2 (OLI–2) have structure Landsat 9 and Landsat 8 (OLI) and Sentinel 2A (MSI) to compare the 

performance of soil moisture estimation in multi-layer perceptron network (MLP) artificial 

intelligence algorithm of image data. The working area is 886.78 km2 and soil sampling was 

performed at 66 points for gravimetric soil moisture determination. In addition, after the satellite 

images were pre-processed, Soil Adjusted Vegetation Index (SAVI) and Normalized Difference 

Moisture Index (NDMI) were calculated. Landsat 9 (OLI-2) based SAVI and NDMI showed a 

moderately significant positive correlation relationship with gravimetric soil moisture (rSAVI-

SM=0.62, rNMDI-SM=0.44). The relationship between Landsat 8 (OLI) (rSAVI-SM=0.57, rNDMI-SM=0.11) 

and Sentinel 2A (MSI) (rSAVI-SM=0.42, rNDMI-SM=0.27) based radiometric indices and soil moisture 

was lower than Landsat 9 (OLI-2). RMSE values of MLP models were found to be respectively 

0.79, 1.16 and 1.17 for Landsat 9 (OLI-2), Landsat 8 (OLI) and Sentinel 2A (MSI). Our results 

showed that with an Operational Land Imager (OLI-2) and near and short-wave infrared 

wavelengths improvements to multispectral imaging have improved soil moisture estimation 

success. 
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Introduction 

Soil moisture is an important component of the 

hydrological cycle, which regulates surface runoff, crop 

production and evaporation. (Kraft et al., 2022). In 

addition, early water deficiency conditions, yield 

estimation and food security; is a physical property of land 

that is taken into account in practices such as policy 

making, decision-making and crop planning (Carlson, 

2007; Sadri et al., 2020) Therefore, soil moisture modelling 

and monitoring is of increasing interest. Monitoring of 

spatial and temporal variations of soil moisture, it is a 

prerequisite for both the sustainability of crop production 

and the development of precision agriculture and food 

security. (Lloret et al., 2021; Mukwada et al., 2021; 

Oliveira et al., 2021). Surface soil moisture; although 

usually the top of the soil layer refers to the water content 

of ~5-15 cm; plays an important role in biochemical and 

physiological processes. Accurate information about 

spatial and temporal variations of surface soil moisture is 

crucial for policy-making and soil-water management 

(O’Connell et al., 2018; L. Wang & Qu, 2009). 

Optical satellite sensors are very useful data sources for 

mapping surface moisture. Besides this, active microwave 

sensors are also a remote sensing data source for soil 

moisture. (Wang, 2019). However, optical satellite sensors 

stand out for their large data archive, as well as having high 

spatial resolution. The best example of this is Landsat TM's 

data archive since 1972 (USGS, 2013). Another advantage 

of optical satellite sensors is that they detect in many 

regions of the electromagnetic spectrum. Based on the fact 

that moisture content affects soil electro-magnetic 

radiation (EMR); using visible and infrared wavelengths, 

there are studies in which the topsoil moisture content is 

successfully estimated (Abowarda et al., 2021; Pittaki-

Chrysodonta et al., 2018). Soil moisture based on spectral 

characteristics, Soil Adjusted Vegetation Index (SAVI) can 

be detected using electromagnetic radiation differences in 

the near Infrared (NIR) and red spectrum band (Amani et 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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al., 2016; Babaeian et al., 2019). Another method for 

detecting soil moisture using satellite data is Normalized 

Difference Moisture Index (NDMI), which takes into 

account reflection on the NIR and Short-Wave Infrared 

spectrum (Bidgoli et al., 2020). With this approach, the 

moisture content can be estimated by taking advantage of 

the MODIS data NIR and red reflection differences. 

However, due to its low spatial resolution, it is 

disadvantageous compared to the Sentinel and Landsat 

satellites. (Zhang et al., 2019). Instead of a single band of 

the existing remote sensing data set, the remote sensing 

indices were used as a covariate in the multilayer 

perceptron (MLP) model. 
The use of artificial intelligence algorithms in soil 

moisture estimation is gradually increasing. In these 
researches, prediction algorithms or common variables 
differ. Many researchers, such as Zounemat-Kermani et al. 
(2022) have predicted soil moisture with the MLP, using 
meteorological data as a covariate. Data supply can create 
a constraint in soil moisture forecasting using 
meteorological data. Because the prevalence of 
meteorological stations where data to be used for soil 
moisture estimation can be obtained is not yet at the desired 
level. In this respect, remote sensing data is a very useful 
alternative. Chaudhary et al. (2022), Sentinel-1 conducted 
soil moisture estimation with radar backscatter data and 12 
advanced machine learning algorithms and he reported that 
MLP is a successful model. 

Studies of soil moisture estimation with Landsat 9, 

which recently became available to researchers, are not yet 

at an adequate level. NASA-USGS, which aims to ensure 

the continuity of land observations by developing technical 

capabilities, the latest member of the joint mission with 

Landsat 9, Operational Land Imager 2 (OLI-2) has 

presented improvements for multispectral imaging at near-

and short-wave infrared wavelengths. (Masek et al., 2020) 

In addition; Sentinel 2 has been made available free of 

charge by ESA for environmental monitoring purposes and 

has been used in many scientific researches. This study 

aims to evaluate the effect of Landsat 9 OLI-2, Landsat 8 

OLI and Sentinel 2 MSI radiometric indices on soil 

moisture estimation success in MLP. 

Material Method 

 

Study Area 

The study area located in the south of Besni district of 

Adıyaman province (37° 40' 7''- 38° 10' 5'' East and 37° 25' 

0''- 37° 40' 5'' North) covers an area of 886.78 km2 where 

intensive agricultural production is carried out. Within the 

working area; Keysun, Kızılin and Sahantil plains are 

located and to the south, Tavaş and Çövenek waters merge 

to the south to the Göksu river, and to the north are the 

Değirmen streams. (Ortaç, 2020). The average annual 

temperature is 17.7°C, the average annual rainfall is 636 

mm (Mevbis, 2022). The study area consists of geological 

units of mesozoic-aged limestone, marl and schist. There 

are also locally various ophiolitic groups and alluviums in 

valley floors and stream circles. Its geomorphological 

structure is mainly a karst plateau torn apart by streams. 

(Yıldırım, 2004).  

 

Soil Sampling and Analysis Method 

With a total width of 886.78 km2, the working area is 

divided into 4 km x 4 km grids; soil samples were collected 

at 66 points and a depth of 0–20 cm from the approximate 

center of each grid. Also; taking into account lithological 

characters, vegetation and topography, both to ensure an 

even distribution of samples based on these characteristics 

and to increase model success 4 intersample was performed 

at intervals of 100 m, 500 m, 750 m and 1250 m between 

the sample points. (Figure 1). Soil samples taken from the 

field were made air dry and passed through a 2 mm sieve. 

Then, to determine the spatial distribution of soil moisture 

content, in the creation of the mathematical function, the 

percentage of moisture in the samples taken in the field 

study for reference is calculated by gravimetric method to 

equation 1 (Tüzüner, 1990). 

 

Soil moisture (%)=
(A-B)×100

E
   (1) 

 

In the above equation, A, B and E are respectively; tare 

wet soil, tare dry soil, and oven dry soil weigh. 

 

 

 

Table 1. Image bands used to calculate remote sensing indices (Cerasoli et al., 2018; USGS, 2019) 

Landsat 8 OLI Landsat 9 OLI-2 Sentinel 2A MSI 

Band Spectral Region Wavelength (nm) Band Spectral Region Wavelength (nm) Band Spectral Region Wavelength (nm) 

4 Red 630-680 4 Red 640-670 4 Red 650-580 

5 NIR 845-885 5 NIR 850-880 8 NIR 785-899 

6 SWIR 1560-1660 6 SWIR 1570-1650 11 SWIR 1565-1655 

 

 

Table 2. Performance (error) criteria for models 

Abbreviation Error Metrics Equation Reference 

RMSE Root Mean Square Error √
1

n
∑[(Ẑ(xi) − Z(xi)]

2

n

t=1

 (Somaratne et al., 2005) 

MAE Mean Absolute Error 
1

n
∑|Ẑ(xi) − Z(xi)|

n

i=1

 (Isaaks & Mohan, 1989) 
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Table 3. Descriptive statistics for soil moisture contents in workspace-all, training and validation datasets. 
 Min. (%) Mak. (%) Median (%) Mean (%) Std. Dev (%) 

Whole dataset 1.10 7.31 2.87 2.35 1.45 

Training dataset 1.10 7.21 2.35 2.82 1.39 

Test dataset 1.10 7.31 2.67 3.01 1.61 

 

Table 4. Optimum MLP architectural parameters to estimate soil moisture 

Model 
Numbers of Activation 

Function 

R2 RMSE MAE 

Neurons Hidden Layer Training Test Training Test Training Test 

Landsat 8 7-7 2 tansig 0.791 0.536 0.61 1.16 0.49 0.85 

Landsat 9 7-7 2 tansig 0.838 0.790 0.53 0.79 0.42 0.66 

Sentinel 2A 7-7 2 tansig 0.818 0.581 0.57 1.17 0.45 0.87 

 

 
Figure 1. Geographic locations of the workspace, training, and testing dataset 

 

Remote Sensing Data

Landsat 9 OLI 2 satellite imagery is available free of 

charge by NASA-USGS as of February 2022. In the study 

presented, the May 2022 images of our workspace were 

obtained from earthexplorer.usgs.gov. The Sentinel 2A 

image from the same date was obtained from the European 

Space Agency (ESA). 
Prior to further interpretation and analysis specific pre-

processing of the raw image data is required. Some of these 
operations are intended to correct errors during the retrieval 
of data. So in the first stage, radiometric correction, which 
is one of the pre-processing steps required for healthy 

information extraction by using remote sensing images, 
was made. Thanks to radiometric correction, errors caused 
by atmospheric effects in pixel brightness values have been 
eliminated. Because, the signals reaching the satellite 
sensor are affected by many suspended particles and 
materials in the atmosphere, such as water vapour, aerosols 
and other gases, and are at pixel values causing errors 
(Khorram et al., 2012). First of all, bands of the upper 
atmosphere of the Landsat 9 (OLI-2), Landsat 8 (OLI) and 
Sentinel 2A MSI images, has been atmospherically 
corrected using the Semi-Automatic Classification 
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package, which works as an add-on to the QGIS software. 
In addition, the atmospheric correction was performed with 
the Dark Object Subtraction method (DOS1), which is 
widely used in remote sensing (Congedo, 2021; Senel, 
2018). In this new dataset, Landsat 9 (OLI-2), Landsat 8 
(OLI) and Sentinel 2A (MSI) NIR and SWIR (Table 1) 
bands were clip according to the working area boundaries. 

SAVI and NDMI values were then obtained from the 
data subjected to image processing. To determine the index 
value and stress levels of vegetation in the study area, 
SAVI was calculated according to equation 2 given below 
(Casamitjana et al., 2020; Huete, 1988).  

 

SAVI=
(1+L)×(NIR-Red)

L+NIR+Red
    (2) 

 
In the equation: NIR represents the spectral value of 

reflection in the near infrared band (785-899 nm); Red 
represents the reflective value of the red band (650-680 
nm) and L represents the brightness correction factor (0.5). 

In the next data processing step, the value of NDMI, 
which is used to determine vegetation stress in relation to 
the level of soil moisture, is calculated according to 
equation 3 (Das et al., 2021).  

 

NDMI=
NIR-SWIR

NIR+SWIR
    (3) 

 
In the equation: NIR represents the spectral value of 

reflection in the near infrared band (785-899 nm); SWIR 
represents the shortwave infrared (1565-1655 nm) 
reflectance value. 
 

Modeling Approach 
To create soil moisture prediction model with different 

remote sensing datasets, artificial neural network with 
multilayer perceptron forward feeding algorithm was used 
with input variables. The first layer of MLP is the input 
layer, which consists of the input variables of our model. 
The last layer is the output layer that consists of the output 
results. The layers between the input and output layers are 
hidden layers. Once the architecture of the MLP is created, 
it needs to be trained. In the presented study, Levenberg-
Marquardt backpropagation training algorithm was used. 
Levenberg-Marquardt is a training function that optimizes 
weight and bias values (Figure 2). This algorithm Figure 2. 
Schematic diagram representing MLP network architecture 

is the MLP training algorithm that is widely used in digital 
soil mapping applications. (Dai et al., 2014; Sergeev et al., 
2019). 

For the purpose of MLP training and achievement 

evaluation, 70% (training) and 30% (testing) are divided. 

Sampling points are reserved using the "Random selection 

within subsets" function in QGIS. In the network 

architecture, parameters such as the number of hidden 

layers and neurons were determined as a result of trial and 

error. In addition, since the data used in the learning 

process of the model is in different units, it is handled 

equally in order to improve network performance. 

Therefore, the data is normalized in the 0-1 range to reduce 

it to a single dimension (Küçüktopcu & Cemek, 2021; Vogl 

et al., 1988). Matlab 2021a was used in the modeling phase 

of our study. Data from field and laboratory studies and 

remote sensing data at these points were used for MLP 

training. 

 

Model Evaluation 
For the purpose of accuracy assessment of the MLP: we 

took into account the final output of the network and the 

soil moisture values that we measured in the laboratory 

studies. In this context, we used the error metrics we 

present in Table 2 to evaluate model accuracy 

performances. 

 

Results and Discussion 

 

Descriptive Statistics 

Descriptive statistics for training, testing and all data 

sets are shown in Table 3. The soil moisture (SM) content 

measured in all dataset ranged from 1.21% to 11.48%, with 

a mean of 6.59% and a standard deviation (SD) of 1.71%. 

Soil moisture ranges from 1.10% to 7.21% in the training 

dataset. Test dataset soil moisture is in the range of 1.10% 

to 7.31%. Training and testing dataset mean is 2.82% and 

3.01%, respectively. On the other hand, the standard 

deviations (SD) whole, training and test data sets are 1.45, 

1.39, and 1.61, respectively. Training, test and all datasets 

have similar mean and SD values, shows that soil moisture 

can be successfully used in a spatial distribution model. 

 

 
 

Figure 2. Schematic diagram representing MLP network 

architecture 

Figure 3. Correlation coefficients between independent 

variables and soil moisture 
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Figure 4. SAVI and NDMI maps of different optical satellite imagery 

 

 
Figure 5. Illustration of Landsat 8-MLP, Landsat 9-MLP and Sentinel 2A-MLP model performances in Taylor diagram 

in test dataset 
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Pearson correlation coefficients (r) between covariates 

and soil moisture content are given in Figure 3. The 

statistical correlation between the soil moisture content of 

the whole data set and the covariates with input parameters 

is moderate (P<0.05). Our results; in correspond with 

Fakharizadehshirazi et al. (2019), the vegetation index was 

positively correlated with soil moisture. On the other hand, 

Zhang ve ark. (2019); considering the spatial distribution 

of soil moisture with reflection data in the near infrared 

(NIR) and red (R) bands, have calculated the Ratio Dryness 

Monitoring Index (RDMI) as a new drought monitoring 

indicator. Showed that there was a strong negative 

correlation (r =-0.89) with soil moisture content data 

measured at a depth of 0-10 cm. In our study, soil moisture 

with SAVI, which we calculated using the same bands, 

similarly showed a moderately strong correlation. 

SAVI calculated using NIR and SWIR spectral bands 

of Landsat 9 (OLI-2) and Sentinel 2A MSI optical satellite 

images (Figure 3) and Pearson correlation coefficients 

between soil moisture are 0.62 and 0.42, respectively.  The 

reason for the increased correlation between Landsat 9-

SAVI and soil moisture is: It may be due to the improved 

of near-infrared (NIR) and shortwave infrared (SWIR) 

sensors with Operational Terrain Imager 2 (Masek et al., 

2020). Indeed, SAVI calculated using Landsat 8 spectral 

bands which has an Operational Terrain Imager 1 (Figure 

3) and the Pearson correlation coefficient between soil 

moisture is 0.57; strengthens this possibility. Because 

Landsat 9 OLI-2 image date is 27.05.2022 while Landsat 8 

OLI image date is 26.05.2022. 

Gravimetric soil moisture of Landsat 9 (OLI-2) NDMI 

and Sentinel 2A (MSI) NDMI and Pearson correlation 

coefficient, respectively 0.44 and 0.27 moderate and low 

levels of positive and significant relationship between were 

found (P<0.05) (Figure 3 and Figure 4). Our results; 

Jovanovic and ark., (2014) in their study to determine the 

relationship between SPOT-Vejetasyon Normalized 

Difference Water Index (NDWI) and measured soil 

moisture content, compatible with the strong relationship 

they achieved in the first 10 cm depth stage (r= 0.80, 

P<0.01). Casamitjana et al. (2020) with the difference 

water index they calculated using the near-infrared band of 

the PlanetScope optical satellite image with a spatial 

resolution of 3 m, at the first 10 cm soil depth, they 

achieved a strong correlation with soil moisture, regardless 

of different types of land use. Our findings shows that 

spatial resolution, as well as radiometric improvement in 

optical satellite sensors, can successfully determine soil 

moisture. Because, Optical sensor mirror in Landsat 9 with 

OLI-2 healing in the near and short infrared spectral region 

and spectral data loss caused by scattered light reduced 

(Lulla et al., 2021). Also, Sentinel 2 and Landsat 9 show a 

similar correlation with soil moisture; Signal-to-Noise 

Ratio (SNR) improvement in OLI-2 may be due to 

improvement so for brightness 5% 1-sigma and for above-

atmosphere reflection 3% (1sigma) calibration was made. 

Therefore, it should be noted that the requirement for SNR 

performance is above Landsat 8 (OLI). Also, Between 

Landsat 9 and Sentinel-2 improved pixel-based geometric 

alignment, as seen in our study demonstrated the 

possibility of interoperability with Sentinel-2 (Masek et al., 

2020). In this way Landsat 9 and Sentinel-2 sensors 

together, such as vegetation phenology identification and 

agricultural yield estimation, reduce the effort to 

coordinate the spatial resolution gap between images for a 

wide range of applications, can increase the success of deep 

learning-based fusion algorithms with the possibility of 

synergistic use (Shao et al., 2019). 

 

MLP Architecture and Accuracy Assessment 

The optimal parameter results of the MLP model 

architecture we created for soil estimation in the upper soil 

layer are given in Table 4. In our study, the optimum model 

architecture by taking into account the RMSE value 

consists of 2 hidden layers. The numbers of the hidden 

layer node are 7-7 for Landsat 8, Landsat 9 and Sentinel 

2A (Table 4). 

The results of the MLP model accuracy assessment are 

given in Table 4. In the Sentinel 2A (MSI) test and training 

data set, RMSE values were 0.57 and 1.17, respectively. 

Similar results were obtained in the Landsat 8 (OLI) test 

and training datasets. Landsat 8 RMSE and MAE values 

were 1.16 and 0.85 in the test dataset, respectively, and 

0.61 and 0.49 in the training dataset, respectively. 

Determination coefficient obtained as a result of 

forecasting and observation data regression (R2): test 

datasets were 0.53, 0.79 and 0.57 for MLP success has 

improved significantly in predictions made using Landsat 

9. On the other hand, our Landsat 8 result is consistent with 

the literature J. Wang et al. (2021). Wang et al. (2021); 

used the Landsat 8-based Normalized Difference Water 

Index to obtain a soil moisture distribution map in China's 

Lake Ebinur Basin. He reported the results of back-

propagation artificial neural network and Support Vector 

Regression R2 as 0.502 and 0.534, respectively.  

Landsat 9 (OLI-2); High prediction success compared 

to Landsat 8 (OLI) and Sentinel 2A (MSI). RMSE is 0.79 

in Landsat 9 (OLI-2) test dataset while 0.53 in training 

dataset. MAE value is 0.66 and 0.42 in the test and training 

dataset, respectively. MLP is an algorithm that performs 

predictions with a data-driven approach. Therefore, data 

quality has a significant impact on network prediction 

success (Khaledian & Miller, 2020; Schmidhuber, 2015). 

As Masek et al. (2020) point out; The effect of corrections 

made to Landsat 9 (OLI 2) NIR and SWIR sensors on 

improving data quality is a possible reason for the success 

seen in the estimate results. 

Taylor diagram is a good way to visualize the 

prediction performance of different models visually in 2D 

(Denis et al., 2003). According to Taylor diagram (Figure 

5), The Landsat 9-MLP model is closer to the Reference 

point, represented in red, making it more successful than 

the Landsat 8-MLP and Sentinel 2A-MLP. Landsat 9-MLP 

model prediction results showed a highly correlated 

correlation with the observed values, taking place in the 

0.9-0.95 (r) sector. The Landsat 8-MLP and Sentinel 2A-

MLP models are available in the 0.8-0.9 (r) sector. 

Centered Root Mean Square Error (CRMSE), centered 

according to reference values, is represented by semicircles 

represented by different colours (Figure 5). The CRMSE 

value of Landsat 9-MLP is close to 0.8 sector, represented 

by purple. The Taylor diagram results confirm that Landsat 

9-MLP model prediction success is higher than Landsat 8-

MLP and Sentinel 2A-MLP. 
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Conclusion 

 
In this study SAVI and NDMI, Landsat 9 (OLI-2), 

Landsat 8 (OLI) and Sentinel 2A (MSI) which are the most 
commonly used radiometric indices in soil moisture 
estimation, were calculated using optical satellite images. 
The latest member of the NASA-USGS joint mission is 
Landsat 9, improvements made with Operational Land 
Imager 2 (OLI-2) for multispectral imaging at near- and 
short-wave infrared wavelengths, the effect on MLP model 
performance, which is widely used in digital soil mapping, 
was tried to be revealed. Landsat 9 (OLI-2) based SAVI and 
NDMI showed a moderately significant positive correlation 
relationship with gravimetric soil moisture. The correlation 
relationship between Landsat 8 (OLI) and Sentinel 2A (MSI) 
based radiometric indices and soil moisture was lower than 
Landsat 9 (OLI-2). This case is the result of the improvement 
in radiometric data quality as a result of the improvement in 
the optical sensor mirror and the reduced signal-to-noise 
ratio in the near and short infrared spectral region of Landsat 
9 (OLI-2). Improved data quality positively impacted MLP 
network prediction performance. Landsat 9-MLP 
forecasting success increased significantly compared to 
Landsat 8-MLP and Sentinel 2-MLP. Our results suggest 
that Landsat 9 (OLI-2) can be reliably used in soil moisture 
spatial forecasting models. In future studies, Landsat 9 and 
Sentinel-2 sensors with fusion images obtained with 
common synergy, the forecasting success of artificial 
intelligence algorithms used in digital soil mapping 
applications should be increased. 
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