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ABSTRACT

In this paper we present a simple yet effective method for
estimating the geometry of an acoustic enclosure in three-
dimensions. By capturing the acoustic impulse responses us-
ing a microphone array and a loudspeaker at different spatial
locations we transform the localization of planar reflectors
into the estimation of multiple linear reflectors. By decom-
posing themicrophone array into co-planar sub-arrays the line
parameters of the reflectors lying on the corresponding planes
can be inferred using a geometric constraint. By intersect-
ing these lines the actual lying plane of each reflector can be
estimated. The proposed method is evaluated using a three-
dimensional microphone array in a real conference room.

1. INTRODUCTION

Knowledge of the geometry of a room can play an important
role for many applications of space-time processing. Well-
known examples are [1] and [2] where the authors demon-
strate that a correct modelling of the reflections inside a room
can improve the accuracy of the processing algorithms.

Many techniques have appeared in the last few years,
which aim at localizing principal reflectors in a room. Rele-
vant examples are [2–6]. All these techniques, however, are
specialized to the estimation of two-dimensional (2-D) ge-
ometries. There are applications, however, where reflections
from floor and ceiling are relevant and can affect the accu-
racy of the outcome of the space-time processing. In [7] the
authors generalize the approach in [3,4] to three-dimensional
(3-D) geometries. In this paper we start once again from the
approach introduced in [3, 4] but propose a rather different
approach to the estimation of simple 3-D geometries, which
transforms the localization of planar reflectors into the esti-
mation of multiple linear reflectors. More specifically, we
adopt a 3-D array accommodating seven microphones. Mi-
crophones are organized in three sub-arrays, each composed

The authors acknowledge the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-Open grant
number: 226007 SCENIC.

of five microphones. All the microphones in a specific sub-
array are characterized by the fact that they are co-planar.
Each sub-array is devoted to the localization of the portion of
reflectors lying on its plane. By intersecting line-reflectors es-
timated from multiple sub-arrays, the proposed methodology
estimates the actual lying plane of each reflector.

An Acoustic Impulse Response (AIR) acquired in an or-
dinary room can be richly populated with peaks related to re-
flective paths, only some of which are related to first-order
reflections. We consider these first-order echoes as the only
acoustic events useful for the localization of reflectors. A pre-
liminary step that selects only the useful acoustic events, i.e.
the Times Of Arrival (TOAs) related to the direct-path prop-
agation and the first-order reflective paths, is therefore neces-
sary. For this purpose we propose a technique based on the
Hough transform. The Hough transform for the detection of
reflectors was first introduced in [8]. Based on the assumption
that all the cartesian sections of the room are rectangular, we
select the reflective paths in the impulse response which are
organized on a rectangular pattern in the Hough parameter
space. This rectangle detection technique is inspired by the
solution to a similar problem adopted in computer vision [9].
It is worth noticing that this approach can be easily general-
ized to convex polygonal rooms [10].

2. SIGNAL MODEL

Let M sensors be distributed in a 3-D volume at positions
ri ! [xi yi zi]T , i = 0, . . . ,M − 1, and a source at rs !
[xs ys zs]T . Each sensor receives the output signal given by

xi(t) = hT
i s(t) + bi(t), (1)

where hi is the ith channel acoustic impulse response, s(t)
the source signal at time t and bi(t) is the additive noise at the
ith output. This output is composed of the sum of the direct-
path signal and scaled replicas of the source signal. The delay
of each replica is determined by the respective positions of
reflectors, source and receivers. Accordingly, the AIRs are
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given by

hi(t) =
Q
∑

q=0

αi,qδ(t− τi,q), (2)

whereQ is the total number of reflections of all orders, αi,q is
an attenuation term and τi,q is defined as the TOA associated
with the ith sensor and the qth reflection. In vector/matrix
form the model is expressed as

x(t) = Hs(t) + b(t), (3)

where

x(t) = [x0(t) x1(t) · · · xM−1(t)]
T ,

H =











h0,0 h0,1 · · · h0,L−1

h1,0 h1,1 · · · h1,L−1

...
...

. . .
...

hM−1,0 hM−1,1 · · · hM−1,L−1











M×L

,

s(t) = [s(t) s(t− 1) · · · s(t− L+ 1)]T ,

b(t) = [b0(t) b1(t) · · · bM−1(t)]
T ,

and L is the length of the longest channel impulse response.
Let N denote the amount of first-order reflections. For every
ith sensor we define τi = [τi,0 τi,1 · · · τi,N ]T as the vector
containing the direct-path TOA along with the N first-order
reflective path TOAs in discrete time.

2.1. Geometrical Considerations

Given the signal model introduced in Section 2 it is desir-
able to populate τi, containing the full set of TOAs for all
channels, using a one-shot acquisition, i.e. by probing the
acoustic environment from only one source position at one
point in time. The authors in [5] interestingly claim that it
is possible to reconstruct the geometry of an acoustic enclo-
sure from a single AIR. While this is indeed true for most
convex polygonal geometries there are certain modelling as-
sumptions that are not fully satisfiable. First and foremost,
and in contrast to this manuscript, the authors consider not
only first-order reflections but also second-order echoes. It
is relatively straightforward to see that if an obtuse angle is
present in the geometry of the enclosure it is impossible to
obtain second-order reflections from that pair of walls using a
collocated microphone and source.

Although the method adopted in [5] is unique and ap-
proaches the problem of geometric inference in a mathemati-
cal elegant way, it assumes a full set of TOAs in the AIR that
contains the direct-path, first and second-order echoes. While
such a set is straightforward to obtain in simulation, it is often
impossible in real reverberant environments. This is mainly
due to the fact that a sound source, such as a loudspeaker,
does not exhibit an ideal omnidirectional directivity pattern
but also because of other effects such as occlusion, non-ideal
reflectivity of the building materials and interference.
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(d) 2D sub-array in yz-plane

Fig. 1: 7-element microphone array inside a room: Full 3D
array (a) and decomposition into three 2D sub-arrays (b)–(d).

3. PROPOSEDMETHOD

In this paper, we aim to obtain the full TOA set τi, i.e. the
set that allows the identification of all reflectors (i.e. walls)
that define the boundaries of the acoustic enclosure, by con-
sidering multiple source positions. This is achieved by ac-
quiringH at different source locations. We define the varying
spatial positions of the source as ru ! [xu yu zu]T , u =
0, . . . , N − 1. At each step the multi-channel impulse re-
sponse, Hu, u = 0, . . . , N − 1, is identified. The vector τi
is obtained from the matrix Hu by picking the peaks of the
columns ofHu, containing the impulse responses from ru to
each microphone in the array. For further details on the peak
picking the interested reader can refer to [4].

In this work, two limitations are considered. First, the
number of source positions, N , is chosen a priori to corre-
spond to the total number of reflectors present in the environ-
ment. Secondly, the source is placed in a favourable position
at each step, meaning that the first two peaks in Hu always
correspond to the direct-path and first-order reflection, with
respect to each particular source position, microphone array
and reflector arrangement. Evidently, Hu contains informa-
tion related to more than one reflector. Exploiting such re-
dundancy is indeed possible, such as proposed by the authors
in [4]. However, for the purposes of this paper we do not aim
at exploiting redundancy or the reduction of the amount of
source positions probed.

The 2-D reflector localization techniques outlined in [3,
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4, 8] are extended to the 3-D case in a straightforward yet ef-
fective way. A 3-D microphone array, such as depicted in
Figure 1(a), is employed to capture Hu. The 3-D space is
decomposed into three orthogonal 2-D regions by consider-
ing three subsets of microphones. Let rxy, rxz, ryz denote the
subsets lying on the xy, xz and yz-planes, as shown in Fig-
ures 1(b)–1(d) respectively. Each subset is used to identify
the line parameters of the reflectors coincident with the plane
it can see. By combining the measurements from all three
planes we observe that each reflector plane is represented by
a pair of lines lying on two orthogonal planes. By first esti-
mating the line parameters of the reflectors it is possible to
then calculate the parameters of the planes that are coincident
with the actual reflectors in 3-D. In the following Section we
will outline the estimation of the line parameters of the reflec-
tors followed by the reflector plane estimation methodology.

4. REFLECTOR LINE ESTIMATION

Given the geometric inference framework introduced in [3,4]
we define, in homogenous coordinates, a conic in two dimen-
sions using parameters {a, b, c, d, e, f} as

C =
{

(x, y) ∈ R
2|ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0

}

.
(4)

By setting x = [x y 1]T and C =





a b d
b c e
d e f



 this can

be written xTCx = 0. The ellipse associated with the ith
microphone, (i ∈ {0, · · · ,M − 1}), and the kth reflector,
(k ∈ {1, · · · , N}), is defined as Ci,k. The estimation of the
unknown parameters of Ci,k is outlined in detail in [4]. Fur-
thermore a line in homogeneous coordinates is expressed as

L =
{

(x, y) ∈ R
2|l1x+ l2y + l3 = 0

}

, (5)

which after setting l = [l1 l2 l3]T can be written as lTx = 0.
If we group together M ellipses that are associated with a
particular reflector, then its line parameters can be estimated
using the following cost function:

J
(

l,
{

C∗
i,k

}M−1

i=0

)

=
M−1
∑

i=0

∥

∥lT C∗
i,k l

∥

∥

2
, (6)

whereM ≥ 3 andC∗
i,k = det (Ci,k)C

−1
i,k is the adjoint of the

conic-matrix Ci,k. The cost function in (6), a nonlinear and
non-convex function, can be solved using least-squares [4] or
using an analytic method based on a closed-form estimator
[8]. For every subset rxy, rxz, ryz the TOA information, τi,
along with the current source position, ru, and the geometry
of the sub-array from ri, are used to construct the ellipses that
yield the line parameters of the reflectors.

4.1. Disambiguation of TOA Information

The vectors τi contain TOA information related to all first-
order reflections. Since we decompose the 3-D problem ge-
ometry into three orthogonal 2-D planes, it follows that there
are elements in the vector τi of each channel that are not re-
lated to the TOAs associated with the reflectors of a particular
plane. Since only the TOAs that are relevant to a particular
plane yield the correct line parameters there exists an ambi-
guity problem in the choice of elements from τi.

Consider a rectangular room like in Figure 1(a). Assum-
ing only first-order reflections each microphone will capture,
apart from the direct-path TOA, six additional TOAs. How-
ever, only four TOAs are relevant for every sub-array. Disam-
biguation of TOA information is an ongoing area of research.
Existing methods, such as [11], can be used and adapted to
the framework of this paper. However, following on the the-
oretical framework presented in our previous contribution to
this conference in [8] and due to space limitations, we will
only hint at disambiguations of TOA information in the AIRs
in this paper, and leave out the algorithmic details to a forth-
coming extended version of this paper.

In [8] we outlined a method that works out a number of
coordinate points based on the line parameters of a reflector
l. By using the Hough transform and by considering multi-
ple source positions ru, we showed how to improve the nu-
merical accuracy of l. In this manuscript we adopt a similar
framework. Given M microphones and N source positions,
we define

ξj ! [xj yj ]
T , j = 0, . . . , P, (7)

where M N − 1 ≤ P ≤ 2M N − 1, as a collection of
coordinate points that satisfy certain geometrical relation-
ships, enumerated in [8], between ellipses and reflector lines.
The aim is to obtain a representation of the reflectors in the
Hough transform domain in order to aid in the disambigua-
tion of TOA information. We note that the coordinate points
in [ξ0 ξ1 · · · ξP ] are obtained after the line parameters of a
reflector have been estimated. We would like to point out that
these coordinate points can be calculated directly from τi, but
for the sake of coherency with our previous work we adopt
the same geometrical framework based on ellipses and lines.

4.2. Disambiguation of rectangular patterns in the Hough
transform domain

The Hough transform can be used for estimating the parame-
ters of a shape from its boundary points [12]. It considers the
following normal parametrization

ρ = x cos θ + y sin θ, (8)

which specifies a straight line by the angle θ of its normal
and its algebraic distance ρ from the origin. A point in the
cartesian space maps to a sinusoid in the Hough parameter

1021



space that corresponds to all the lines passing through it. Con-
versely, points in the parameter space are transformed into
lines in the Cartesian coordinate space. Given two points ly-
ing on a line with parameters ρ, θ, in the Hough parameter
space the sinusoids corresponding to these two points inter-
sect at ρ, θ. Therefore, given the points ξj in the coordinate
space, the parameters of a line corresponding to the best-fit of
ξj can be found. Let ρ ∈ R and θ ∈ [0,π]. For each point
[xj yj ]T we calculate

ρ̂ = xj cos θ̂ + yj sin θ̂. (9)

The results are stored in an accumulator A, initially set to
zero, which is incremented at every step such that:

A
(

ρ̂, θ̂
)

= A
(

ρ̂, θ̂
)

+ 1. (10)

The accumulator space A is defined over a grid of points.
The resolution of the grid influences the accuracy of the peak
detection. In our experiments we have used a resolution of
0.5 mm and 0.25◦, with a range of 4 meters. Let H1 =
(ρ1, θ1), H2 = (ρ2, θ2), · · · , Hv = (ρv, θv) denote the v

peaks of A
(

ρ̂, θ̂
)

[9]. PeaksHm andHn are paired together
if they satisfy:

|θm − θn| ≈ Tθ, (11)

where Tθ is an angular threshold, and determines if peaksHm

andHn correspond to orthogonal lines (i.e. Tθ ≈ π/2).
For every microphone sub-array the peaks in the accumu-

lator are sorted with respect to (11). In this way elements in
τi that are not related to a particular sub-array, and its respec-
tive plane, can be discarded. For the purposes of this paper
we only consider rectangular geometries. We would like to
refer to [10] and point out that it is possible to form other ge-
ometrical relationships in order to perform disambiguation in
more complex geometries.

5. REFLECTOR PLANE ESTIMATION

The estimation process outlined in the previous Section leads
to 6 pairs of reflector lines, one pair for each wall. In partic-
ular, each wall is represented by a pair of lines lying on two
orthogonal planes. In theory, these lines are incident, and the
reflector is easily found as the plane containing them. In prac-
tice, however, estimation errors may cause the two lines to be
skew. The reflector, therefore, has to be estimated as the plane
which best fits the two lines.

We proceed as follows. With reference to Fig. 2, let us
consider two arbitrary skew lines l1 and l2. We aim at esti-
mating the plane P = [n, d]T that best fits l1 and l2, where
the unit vector n is the normal of the plane, and d is its dis-
tance from the origin. For each line we select two arbitrary
points lying on it, namely p1 and q1 on l1; and p2 and q2 on

l1

l2
p1

q1

p2

q2

P
n

d

x

y

z

Fig. 2: Plane estimation from two skew lines.

l2. We organize the point coordinates in the matrix

G =









p1 1
q1 1
p2 1
q2 1









. (12)

The searched plane is then estimated, in the least-squares
sense, as

P̂ = [n̂, d̂]T = argmin
n,d

‖G[n, d]T ‖2 s.t. ‖n‖ = 1 .

(13)

6. EXPERIMENTAL VERIFICATION

The accuracy of the system has been tested in a real room
measuringL×W ×H = 2.77m×3.55m×3.17m, built with
concrete walls and ceiling and floored with linoleum panels.
The central microphone of the array is placed at a distance
of 1.2m from the West wall, 1.91m from the South wall and
1.59m from the floor. The array is composed of 7 omnidi-
rectional microphones. On the horizontal plane the extension
of the array is 0.5m × 0.5m, while the microphones on the
vertical axis are kept 0.38cm apart. A loudspeaker placed at
6 different spatial locations emits an MLS sequence sampled
at 48kHz and acquired at the same frequency. The sequence
is then processed to extract the impulse response from each
position of the source to each microphone in the array.

The accuracy of the reflector localization is assessed in
two steps. First the estimated line parameters in each of the
three planes are compared to the handmeasured ground truths
in terms of a distance and angular error. As a next step the
estimated plane parameters are compared to the true planes in
terms of a point-plane distance and their dihedral angle.

Let l and l̂ be the reflector line and its estimate, respec-
tively. From these we can evaluate the distance D2D from r0
to each line and the orientation A2D. The distance and ori-
entation can be evaluated by projecting r0 onto the line such
that D2D = |l1 x0+l2 y0+l3|√

l2
1
+l2

2

, A2D = arctan l2
l1
. The accuracy

of the reflector localization is measured in terms of distance
error εd =

∣

∣

∣
D2D − D̂2D

∣

∣

∣
and angular error εa =

∣

∣

∣
A2D − Â2D

∣

∣

∣
.

The distance and angular error results for the reflector lines in
2-D are shown for the xy, xz and yz planes in table 1.
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Table 1: Distance and angular error results in each plane

xy xz yz

Reflector εd [cm] εa [◦] εd [cm] εa [◦] εd [cm] εa [◦]
West 1.180 0.619 2.720 0.871
South 1.030 1.598 4.810 0.034
East 1.310 0.160 7.300 0.504
North 1.690 0.160 3.100 0.756
Ceiling 1.620 0.728 2.780 0.275
Floor 1.030 1.598 0.210 0.092

Table 2: Distance and angular error comparison in 3-D

Reflector εD [cm] Φ [◦]
West 0.260 1.068
South 1.300 0.718
East 7.950 0.528
North 0.063 0.773
Ceiling 1.050 1.601
Floor 3.860 0.778

Let P and P̂ be the true and estimated reflector planes re-
spectively. From these we can evaluate the distance D3D from
r0 to each plane (point-plane distance) and the angle A3D be-
tween true and estimate planes (dihedral angle). The distance
is given by D3D = nT [x0 y0 z0] + d, where n is the unit nor-
mal vector of P, and d is the constant of the Hessian normal
form. The distance error is calculated as εD =

∣

∣

∣
D3D − D̂3D

∣

∣

∣

and the dihedral angle is given by Φ = arccos(nT n̂). The
results for the plane localization in 3-D are shown in table 2.

6.1. Results and Discussion

The localization method estimates, both in 2-D and 3-D, the
real reflector positions in the environment with high accuracy.
It is important to note however that errors propagate directly
from the estimation of the linear reflectors to the localization
of the planar reflectors. The experiment in a real conference
room serves as an exemplar in this manuscript to outline the
applicability of the proposed method to 3-D geometries. A
more robust system identification and source range estima-
tion, such as in [4], should be employed in conjunction with
this method when higher localization accuracy is desired.

7. CONCLUSIONS

We presented an approach for estimating the geometry of an
acoustic enclosure in three-dimensions by transforming the
localization of planar reflectors into the estimation of multiple
linear reflectors. Experimental results in a real conference
room demonstrate the feasibility of the proposed method.
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