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ON GENERAL FIXED POINT METHOD
BASED ON MATRIX SPLITTING
FOR SOLVING LINEAR COMPLEMENTARITY PROBLEM
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Abstract. In this article, we introduce a modified fixed point method to process
the large and sparse linear complementarity problem (LCP) and formulate an
equivalent fixed point equation for the LCP and show the equivalence. Also, we
provide convergence conditions when the system matrix is a P-matrix and two
sufficient convergence conditions when the system matrix is an Hy-matrix. To
show the efficiency of our proposed method, we illustrate two numerical examples
for different parameters.
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1. INTRODUCTION

Given A7 € R™™ and a vector ¢ € R", the linear complementarity problem
denoted as LCP(gq, A1) is to find the solution z € R™ to the following system

(1) 2>0, Ajz4+q¢>0, 21 (A1z+q) =0.

The LCP has many applications, including operations research, control the-
ory, mathematical economics, optimization theory, stochastic optimal control,
the American option pricing problem, economics, elasticity theory, the free
boundary problem, and the Nash equilibrium point of the bimatrix game,
which has been extensively studied in the literature on mathematical pro-
gramming. For details see [14], [10], [21]. For recent works on this problem
see [8], [9].

The methods available for solving the LCP may be classified into two groups
namely pivoting method [2], [5], [23] and iterative method [22], [18]. The
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basic idea of the pivotal method is to obtain a basic feasible complementary
vector through a series of pivot steps, whereas the iterative method generates a
series of iterations that converge to a solution [4], [7]. Lemke and Howson [20]
introduced the complementary pivot method. Following this method, Lemke
introduced a technique known as Lemke’s algorithm, which is well known for
finding the solution to the LCP.

In order to develop effective iteration methods, we commonly use matrix
splittings to find a numerical solution of the large and sparse LCP(q, A1), such
as the projected methods [16], [19], [25], the modulus algorithm [11] and the
modulus based matrix splitting iterative methods [26], [27].

A general fixed point method (GFP) is proposed by Fang [17] assuming the
case where Q = wD; ! with w > 0 and D is the diagonal matrix of A;. The
GFP approach takes less iterations than the modulus based successive over
relaxation method (MSOR) [11]. We present a modified form of GFP [17]
that incorporates projected type iteration techniques by including two positive
diagonal parameter matrices 21, 29 and ¢ is a strictly lower triangular matrix
in this article. We also show that the fixed point equation and the LCP
is equivalent and discuss the convergence conditions and along with several
convergence domains for our method.

The paper is organised as follows: we review some notation, definitions and
lemmas in Section 2 in order to establish our key findings. The iterative fixed
point approach for solving LCP(g, A1) with convergence analysis is proposed
in Section 3. We present two numerical examples in Section 4 to demonstrate
the efficiency of the proposed methods. Section 5 ends the paper with some
conclusions.

2. PRELIMINARIES

Some notation, preliminary definitions, and required lemmas are reviewed.

Here A; = (a;;) € R™*™ and By = (I_)Z-j) € R™ " are square matrices. For

A= ((_Zz'j) € R"" and By = (bl]) S Rnxn’ A > (>) B means dij > (>) bij
for all 4,5 € {1,2,...,n}.

DEFINITION 1 ([17]). Let Ay = (a;;) € R™™ be a square matriz, then
|A1| = (bsj) is defined by b;; = |ai;| ¥ i, 7 and |Ai| represent that a;; > 0V 4, j.

DEFINITION 2 ([17]). Let A1, B; € R™"™ be two square matrices. Then
|A1 + B1| < |A1| + |B1] and |A1B1] < |A1| - |B1|. Moreover, when ay,b; € R"
then |a1 —l—b1| < |a1] + ’1)1’ and Haﬂ — |1)1H < ]al — bl|.

DEFINITION 3 ([4]). Let Ay € R™™ be a square matriz. Ay is said to be a

P-matriz if all its principle minors are positive such that det(Aiq,q,) > 0 for
all oy C€{1,2,...,n}.

DEFINITION 4 ([17]). Suppose A1 € R™*™ is a square matriz, then its com-
parison matriz is defined as (a;j) = |ai;| if i = j and (ai;) = —|aq;| if i # 5.
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DEFINITION 5 ([6]). Suppose A1 € R"™ " is a square matriz. It is said to
be a Z-matriz if all of its non diagonal elements are less than equal to zero;
an M-matriz if A" > 0 as well as Z-matriz. The matriz Ay is said to be an
H-matriz if (A1) is an M-matriz. Ay is said to be an Hi-matriz if Ay is an
H -matriz with a;; > 0V 1€ {1,2,...,n}.

DEFINITION 6 ([6]). The splitting Ay = My — Ny is called an M -splitting if
M; is a nonsingular M -matriz and N1 > 0; an H-splitting if (M) — |Ny| is
an M -matriz; an H-compatible splitting if (A1) = (My) — |N1|.

LeEMMA 7 ([1]). Let aj,by € R®. Then ay >0, by >0, alb; = 0 if and only
z'fal +b1 == |CL1 - b1|

LEMMA 8 ([6]). Suppose A1, By € R"™™. If Ay and By are M and Z-
matrices respectively with Ay < By, then By is an M-matriz. If Ay is an
H-matriz, then |A7Y] < (A1), If Ay < By, then p(A1) < p(By).

LEMMA 9 ([17]). Let Ay € R™™ be an M -matriz and Ay = My — Ni be an
M -splitting. Let p be the spectral radius, then p(My'Ny) < 1.

LEMMA 10 ([13]). If splitting is an H-compatible of an H-matriz, then it is

an H-splitting but converse is not true.

LEMMA 11 ([6]). Suppose Ay > 0. If there exist v > 0 € R™ and a scalar
a1 > 0 such that Ajv < aqv, then p(A1) < ai. Moreover, if Ajv<aqv, then
p(A1)<051.

3. MAIN RESULTS

For a given vector s € R™, we consider the vectors s, = max{0, s}, s =
max{0,—s} and A; = (D1 + ¢) — (L1 + Ui + ¢), where ¢ is a strictly lower
triangular, U; is a strictly upper triangular matrix of A;. U{ denotes the
transpose of Uy, Ly is strictly lower triangular matrix of A; and « is a positive
real number. In the following theorem we convert the LCP(g, A1) into a fixed
point equation.

THEOREM 12. Let A € R™™ with the splitting Ay = (D14+¢)— (L1+U1+¢).
If z = Qis; and w = Qas_, then the equivalent formulation of the LCP(q, A1)
in the form of fized point equation is

2) s=(I —BYUD+é—U)))sy + QL1 + d) sy — Q5 'l
Proof. Let z = Q154 and w = Qgs_, and s = s; — s_. From LCP(q, A)
Qos_ = A11s4 +¢q
s=15; — Oy (A1 Qisy +q)
s= (I — Q' A1Q)s. — Qg
s=(I1 = (D1 + ¢ — Up)Q)sy + Q5 (L1 + ¢)Qisy — Q5 g
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Based on (2) we propose the following iteration method which is referred to
as modified general fixed point method (MGFP) for solving the LCP(q, 41),

3) s%) = (I, — QY (Dy + ¢ — U1))s'P) + Q7 1Ly + ¢) st — 05l

Let Res be the Euclidean norm of the error vector, which is defined [17] as
follows,
Res(z(k)) = || min(z(k), A2 4 q)||2-
Consider the nonnegative initial vector z(?) € R™. The iteration process con-
tinues until the iteration sequence {z(*)}/°0 C R™ converges. The iteration
process stop if Res(z(¥)) < 1075, For computing z#+D € R" we use the
following algorithm.

Algorithm 1 (Modified General Fixed Point Method)

e Given any initial vector s(©) € R”, ¢ > 0 and set k = 0.
for k=0,1,2,... do
SSI_C) = max{0, s¥)}

[ ]

e compute Res = norm(min(sgf), Alsgf) +4q))

e if Res < € then

o 5 =5k

e break

e else

e Using the following scheme, create the sequence s*):

sV = (1 - 31Dy + 6 - Un)u)st — 031,
o fori=23....,ndo
S = (- 9 Dy + 6 - U - 050);
Q5 (L + ¢) s,
and set z(Ft1) = 918f+1)~
e end for

e end if
e end for.

Moreover, the MGFP provides a general structure for solving LCP(q, A1).
Using some particular values of the parameter matrices {21, {29 and we obtained
an iterative method. In particular,

e When Q1 =1, Q= Q! and ¢ = 0, from (3) we have,
(4) s = (1, — Dy — U)s{ + QL1s — aq,
this is a GFP [17].

THEOREM 13. Suppose A1 = (D1 + ¢) — (L1 + Uy + ¢) € R™™™ and q €
R"™. Then s* is a solution of (2) if and only if z* = Qs is a solution of
LCP(q,Al).
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Proof. Let s* be a solution of (2). Then
s = (I — G H(Dy + ¢ — U))s + Qg Ly + ¢)s — Q3 g,
s = (I — Q' A1Q)s% — Q5 g,
sti = Alglsi + q.

Since Q95* >0,
AlQlS*—l— +q>0.

Moreover,
(lei)T(Alglsi + q) = (lei)T(Qgsi) =0,

and ;5% > 0. Therefore z* = Q7 is a solution of LCP(q, Ay).
Let 2" = Q8% , w* = Qps* and s* = s — s*. From LCP(q, A;)

Dos™ = A1s% +q,
st =51 — QN (A1 8%+ q),
st = (I — Q3 P A1Q1)s%, — Q3 'q,
s* = (I — Q3 (D1 + ¢ — UD))s + Q3 (L1 + ) s’ — Q'
Thus, s* is a solution of (2). O

In the following theorem, we show that the solution of (2) is unique when
the system matrix A; of LCP(q, A1) is a P-matrix.

THEOREM 14. Let Ay be a P-matriz and Ay = (D1 + ¢) — (L1 + U1 + ¢) €
R™ ™ and q € R™. Then for any positive diagonal matrices Q1 and Qo, (2)
has a unique solution.

Proof. Since A; is a P-matrix, for any ¢ € R™ LCP(q, A1) has a unique
solution. Let y* and u* be the solutions of (2). Then

s = (I1 — Q3 (D1 + ¢ — U1)Q)sh + Q3 1Ly + ¢) s’ — Q3'q,
ut = (I — Q3 (D1 + ¢ — U) Q) + Q5 (L1 + 6) 0’ — Q5.
Since 1y} = Qu’ = y} = u, therefore
vt = ut. 0
In the following, we prove the convergence conditions when A; is a P-matrix.

THEOREM 15. Let Ay be a P-matriz with A1 = (D1+¢) — (L1 + U1+ ¢) €
R™™ gnd g € R™. Assume

p((1 =197 (L1 + ¢)91])71’11 — YDy + 6 — Ul)Ql‘) <1

and s* is the solution of (2). Then the sequence {z*) 20 generated by

Algorithm 1 converges to z* for any initial vector s(©) € R™.
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Proof. Suppose A; is a P-matrix, then s* is a unique solution of (2). Thus
s* = (I — Q3 " (D1 + ¢ — U)Q1)s% + Qy (L1 + ) s’ — Q5.
From (3), this implies
s+ _ gt = (I — Q7 YDy + ¢ — U)) (s — )
+ QN Ly + @) (s — 7).
It follows that

|s0+D) _g¥| =
= (I, — 5Dy + ¢ — U)) (s = 57) + Q5 (L1 + ) (s — 57
< (L — 951Dy + 6 — UD)) (P — 57| + 191 (Ly + ) (sFH — 51
< (I = QN (D1 + ¢ — U)Q)[1s®) — 5% + Q1 (L1 + ¢) [|sFHY — 57|

|55 =" =25 (La+@)ul[s*HY =] < |(L =05 (D1+¢—Un))||s™) — 5|
(I =190 Ly + o) NIs™Y — 5| < (I = Q1 (D1 + ¢ = Un))||s™) — 57

and

554D — 57 < (1= |95 (L1 + 9) ) (1 = Q5 (D + ¢ — UD))||s®) — 57,

Therefore, if p((I — |Qy (L1 + ) ]) (I — Q3 (D1 + ¢ — U)Q)|) < 1, for

any initial vector s(*) € R the sequence {2(¥)} > converges to the z*. O

Now, when A; is an H,-matrix, we analyze the convergence domains for
parameter matrices {21 and €9 for MGFP.

THEOREM 16. Let Ay be a Hy-matriz with Ay = (D1+¢) — (L1 + U1+ ¢) €
R™ ™ and either one of the following is true:

(1) Q' > (D1 + ¢)~" and (295 — (D1 + ¢) — |B + ¢|), where B =
L+ U,

(2) 0 < Q') < (Dy +¢)7 L

Then the sequence {z(k) ,":3 generated by Algorithm 1 converges to z* for
any initial vector s(0 € R™.

Proof. Since Aj is an Hi-matrix. there LCP(q, A1) has unique solution
[11]. Now we will look at the splitting,

(I — |91 (Ly + ¢)u|) — |1 = Q3 (D1 + ¢ — Un)h | =
= (I = [L = Q3 (D1 + ) |) — ' [B + ¢
(1) If Q51 >(Dy + ¢)~! then,
(I — 11— Q51 (D1 + )]) — 1B + ¢l =
=2I; — QD1+ ¢)Q1 — QN B + ¢|
= Q1205 ' — (D1 + ¢) — [B + ¢|) .
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Since (2€,'Q1 — (D1 + ¢) — |B + ¢|) is an M-matrix. Then the splitting
(I — |95 Ly + ¢)]) — |1 — Q51 (D1 + ¢ — U9y represent an M-splitting
of the M-matrix Q5 (2025 'Q; — (D1 +¢) — | B+ ¢|)Q1, hence p((I —|Q5 (L1 +
D) — 0 Dy + 6~ Un))) < 1.

(2) If Q510 < (Dy + ¢)~! then,

(I = | = Q3 (D1 + d)u]) = QB+ ¢l = Q' (D1 + ¢ — | B+ ¢))
=05 (A)Q.
Therefore, (I — |Q5 (L1 + ¢)|) — |11 — Q3 (D1 + ¢ — Up)Qy| represents an

M-splitting of M-matrix Q5 '(A;)Q [13]. Therefore, from Lemma 8 p((I —
951 (L1 + ) u)) T = Q7N (D1+ ¢ = UD))) < 1. 0

4. NUMERICAL EXAMPLES

In this section, two numerical examples are provided to show the effective-
ness of our new method. We use some notation as, IT=number of iteration
steps, CPU = CPU time in seconds. The system matrix A; is generated by

Ai(p1,p2,p3) = Q + p1Ii + p2G + p3H,

where p1,p2 and p3 are given constants, I; is the identity matrix of order n

0 1 0 ...0
0 0 1 0
and G = tridiag (0,0,1)= ({0 0 0 1 :| €R™ and
: 0 . 1
0 0 0 0
(1 0 o0 0]
0 2 0 ... 0
H=diag([1 2,1,2,..)= " 0 1 0 0 cgum
0 2
0 ... ... 0 |

Let 50 = (0,0,0,0,...0,0,...)7 € R" be an initial vector. We consider the
LCP(g, A1) which has always a unique solution, whereg = [-1 1 -1 1 ..]
€ R". We set Q; = I; and Qy = w™!D; in the MGFP. The suggested method
is compared with GFP [17], which is effective in solving LCP(q, 4;).

Matlab version 2021a was used for all calculations. Table 1 and Table 2
show the numerical results for GFP [17] and MGFP respectively.
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EXAMPLE 17. The system matrix A;,B; € R™"™ are generated by
A1(p1,p2,p3) = Q + p1l1 + paG + p3H, where p1,p2 and p3 are given con-
stants and

(L, —I, © 0
—I, L1 -1, 0
Q = tridiag(—Iz, L1, ~I) = | : —Iy Ly —Iy : | €R™™"

0 —Iz —I2

|0 0 —I L]

(4 -1 ... 0

-1 4 -1 0

L; = tridiag(—1,4,-1) = -1 4 -1 e R™X™,

0 -1 . =1

0 -1 4]

m? with m being a
O

where I is the identity matrix of order m, where n
positive integer.

ExXAMPLE 18. The system matrix A; € R™*" is generated by

Ai(p1,p2,p3) = Q + p11y + p2G + psH,

where p1,p2 and ps are given constants, I is the identity matrix of order n
and

Q = tridiag(—l.5]2, Ll, —0512)

L1 =051 0 0
15, L; —0.5] 0
= —15I, Ly  —0.5I e R™",
0 —1.5I5 —0.515
0 0 —15I, I,
[ 4 —05 ... 0 ]
15 4 —05 0
L; = tridiag(—1.5,4, —0.5) = -15 4 —-05 € R™X™,
0 ~15 —0.5
0 ~-15 4 |

where Is is the identity matrix of order m.

g

From Table 1 and Table 2, we see that our proposed MGFP have requires
less iteration steps than the GFP [17] respectively.
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Table 1. Results for GFP [17] and MGFP with ¢ = a(Ly + U{).

A(1,1,-1) | n 100 400 900 1600 2500
GFP IT 18 21 22 23 23
w=1 CPU | 0.0058 0.1267 0.8356 12.8507 76.8588
Res 7.8¢-06 7.5e-06 7.3e-06 5.3e-06 7.0e-06
MGFP 1T 15 18 19 20 20
w=1 CPU | 0.0050 0.1028 0.6105 11.2363 67.0586
a=0.1 Res 6.4e-06 7.8e-06 6.8e-06 4.4e-06 5.9e-06
A(0,1,0) |n 100 400 900 1600 2500
GFP IT 13 14 15 15 15
w=1 CPU | 0.0045 0.0582 0.3728 5.4135 31.8341
Res 5.3e-06 7.6e-06 9.3e-06 2.3e-06 2.6e-06
MGFP IT 12 13 13 13 13
w=1 CPU | 0.0041 0.0817 0.4127 7.2064 42.3931
a=0.1 Res 3.1e-06 3.2e-06 5.3e-06 7.4e-06  9.5e-06
A(1,1,1) |n 100 400 900 1600 2500
GFP IT 9 9 10 10 10
w=1 CPU | 0.0046 0.0580 0.447 5.2868  31.3160
Res 2.1e-06 6.7e-06 1.8e-06 2.5e-06 3.2e-06
MGFP 1T 9 9 9 10 10
w=1 CPU | 0.0050 0.0530 0.3177 5.3091  31.5628
a = 0.02 Res 1.6e-06 5.0e-06 8.3e-06 1.8e-06 2.3e-06
A(1,0,1) |n 100 400 900 1600 2500
GFP IT 9 9 9 10 10
w=1.1 CPU | 0.0045 0.0582 0.3728 5.4135  31.8341
Res 5.3e-06 7.6e-06 9.3e-06 2.3e-06 2.6e-06
MGFP 1T 9 9 9 9 10
w=1.1 CPU | 0.0040 0.0507 0.3671 5.4161  31.9112
a=0.05 Res 4.7¢-06 6.6e-06 8.1e-06 9.3e-06 2.1e-06

5. CONCLUSION

In this article, we introduced a modified general fixed point method based
on new matrix splitting for solving the LCP(q, A1) with parameter matrices
Q1 and Q9. Also, we showed how the iterative form is linked to the new matrix
splitting and the parameter matrices 21 and 5 . This iterative form preserves
the big and sparse structure of A; during the iteration process. Moreover,
we showed the convergence condition for P-matrix and presented sufficient
convergence domains for {2y and 2 when system matrix A; is Hi-matrix. At
the end, two examples are discussed to show the efficiency of our proposed

method.
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Table 2. Results for GFP [17] and MGFP with ¢ = a(Ly + U{).
A(1,1,-1) | n 100 400 900 1600 2500
GFP IT 13 14 15 15 15
w=1 CPU | 0.0061 0.0807 0.5871 8.3912  48.8538

Res | 5.0e-06 6.2e-06 3.5e-06 5.0e-06 6.5e-06
MGFP IT 11 12 13 15 15
w=1 CPU | 0.0051 0.0607 0.5392  8.44191 49.4862
a=0.1 Res | 3.0e-06 4.8e-06 7.9e-06 3.1e-06 8.7e-06
A(0,1,0) | n 100 400 900 1600 2500
GFP IT 10 10 10 11 11
w=1 CPU | 0.0041 0.0548 0.3621  5.999 35.2935
Res 1.9e-06 5.8e-06  9.4e-06 2.6e-06 3.3e-06
MGFP IT 8 9 9 9 9
w=1 CPU | 0.0045 0.0.0507 0.3412 4.5795  28.4975
a=0.1 Res 7.8e-06 2.05e-06 2.7e-06 3.4e-06 4.0e-06
A(1,1,1) | n 100 400 900 1600 2500
GFP IT 7 7 8 8 8
w=1 CPU | 0.0041 0.0407 0.3266 4.1892  24.6431
Res 2.7e-06 6.8e-06  9.7e-06 1.3e-06 1.7e-06
MGFP IT 6 7 7 7 7
w=1 CPU | 0.0043 0.0474 0.2796 3.4536  22.6106
a=0.1 Res | 9.7e-06 1.3e-06 1.6e-06 2.0e-06 2.2e-06
A(1,0,1) | n 100 400 900 1600 2500
GFP IT 8 8 8 8 8
w=1.1 CPU | 0.0041 0.0407 0.2699 4.4741  24.6650
Res 1.9e-06 2.7e-06  3.2e-06 3.8e-06 4.2e-06
MGFP IT 8 8 8 8 8
w=1.1 CPU | 0.0047 0.05303 0.2554 4.0929  24.3851
a=0.1 Res 1.7e-06 2.4e-06  2.9e-06 3.4e-06 3.8e-06
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