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THE AKIMA’S FITTING METHOD FOR QUARTIC SPLINES

ALEXANDRU MIHAI BICA∗ and DIANA CURILĂ-POPESCU∗∗

Abstract. For the Hermite type quartic spline interpolating on the partition
knots and at the midpoint of each subinterval, we consider the estimation of
the derivatives on the knots, and the values of these derivatives are obtained
by constructing an algorithm of Akima’s type. For computing the derivatives
on endpoints are also considered alternatives that request optimal properties
near the endpoints. The error estimate in the interpolation with this quartic
spline is generally obtained in terms of the modulus of continuity. In the case
of interpolating smooth functions, the corresponding error estimate reveal the
maximal order of approximation O(h3). A numerical experiment is presented
for making the comparison between the Akima’s cubic spline and the Akima’s
variant quartic spline having deficiency 2 and natural endpoint conditions.
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Keywords. Quartic splines, Akima’s fitting spline interpolation procedure, er-
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1. INTRODUCTION

Before the fundamental work of Schoenberg (see [15]) where the notion of
B-spline is introduced in explicit way, according to de Boor and Pinkus [7],
the first apparition of spline functions can be found in the pioneering works
of Popoviciu (see [14]) and Chakalov (see [9]). Through polynomial spline
functions, the widely used are cubic splines which can be expressed both in
terms of the moments (second order derivatives of the spline on knots) and
in terms of the local first order derivatives mi, i = 0, n, as in the case of
Hermite type cubic splines, that are presented in the following. On a partition
∆ : a = x0 < x1 < . . . < xn−1 < xn = b of [a, b], the Hermite type cubic spline
s ∈ C1[a, b] has the expression

s (x) = (xi−x)2[2(x−xi−1)+hi]
h3

i
yi−1 + (x−xi−1)2[2(xi−x)+hi]

h3
i

yi

(1)

+ (xi−x)2(x−xi−1)
h2

i
mi−1 − (x−xi−1)2(xi−x)

h2
i

mi, x ∈ [xi−1, xi], i = 1, n
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where hi = xi−xi−1, i = 1, n, and yi = s (xi) , i = 0, n. For the computation of
the local derivatives mi, i = 0, n, were proposed several procedures. Imposing
the smallest deficiency, that is s ∈ C2[a, b], and considering two endpoint
conditions, various types of cubic splines are obtained such as complete cubic
splines, not-a-knot splines, periodic cubic splines, E (α) cubic splines, natural
cubic splines (see [3] and [13]). For instance, the natural cubic spline that
minimizes the L2-norm of s′′ is generated by the endpoint conditions s′′ (a) =
s′′ (b) = 0. Another idea is to determine the derivatives mi, i = 0, n under
the smoothness property s ∈ C1[a, b] and to consider some geometric type
procedures such as in [1] and [8], or by minimizing a functional related to the
data polygon (see [4] and [11]).

The derivatives mi, i = 0, n, are computed in [1] by using geometric rea-
soning based on the slopes pi = yi+1−yi

xi+1−xi
, i = 0, n − 1, and are given as,

(2) mi = |pi+1−pi|·pi−1+|pi−1−pi−2|·pi

|pi+1−pi|+|pi−1−pi−2| , i = 2, n − 2.

In order to extend formula (2) for i = 0, n, the previously computed slopes
are not enough and therefore, Akima proposes the construction of four new
supplementary slopes p−1, p−2, pn, pn+1, as follows: p−1 = 2p0 − p1, p−2 =
3p0 − 2p1, pn = 2pn−1 − pn−2, pn+1 = 3pn−1 − 2pn−2. As it is shown in [4]
and [5], sometimes, this treatment near endpoints could generate significant
oscillations. Therefore, in [5], the values of the derivatives on the first two and
last two knots are computed by using optimal procedures.

In this work we focus our attention to quartic splines and propose an
Akima’s type procedure for computing the derivatives mi, i = 0, n, of the
deficient C1-smooth quartic spline S ∈ C1[a, b] proposed in [12], which has
the following expression on the intervals [xi−1, xi] , i = 1, n:

Si (x) = (xi−x)2[(xi−x)2+4(xi−x)(x−xi−1)−5(x−xi−1)2]
h4

i
yi−1(3)

+ 16(x−xi−1)2(xi−x)2

h4
i

yi−1/2

+ (x−xi−1)2[(x−xi−1)2+4(xi−x)(x−xi−1)−5(xi−x)2]
h4

i
yi

+ (xi−x)(x−xi−1)(xi−1+xi−2x)[(xi−x)mi−1+(x−xi−1)mi]
h3

i

=Ai (x) yi−1 + Bi (x) yi−1/2 + Ci (x) yi + Di (x) mi−1 + Ei (x) mi

where mi = S′ (xi) , yi = S (xi) , i = 0, n, and yi−1/2 = S
(

xi−1+xi

2

)
, i = 1, n.

Error estimates in the interpolation with the C2 quartic splines (4) were
established in [12], [10] and [16]. In [6], the values of the derivatives mi,
i = 0, n, were determined in order to minimize the L2-norm of S′, S′′, and S′′′,
respectively. Here, the values of mi, i = 0, n, will be obtained by using a new
Akima’s type method.
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As will be viewed in the following, while for the Akima’s method a special
treatment is required on four knots (the first two and the last two), in our
method the special treatment is involved only on endpoints. The reason is in
the fact that on each interval [xi−1, xi] , i = 1, n, the derivatives mi−1 and mi

are computed on the points xi−1 and xi by using the values on the midpoints
xi−1/2 = xi−1+xi

2 , i = 1, n, too. Therefore, the knowledge at midpoints is an
advantage. In the treatment of endpoints, in order to avoid the introduction
of supplementary slopes, we develop three special variants for computing the
values m0 and mn. The interpolation error estimates of this Akima’s variant
quartic spline is given in terms of the modulus of continuity for less smooth
class of functions. When smooth functions are interpolated we obtain the
corresponding error estimates and prove that the order of approximation is
O

(
h3)

. Finally, a numerical experiment is presented in order to illustrate the
behaviour of the proposed interpolation procedure, including a comparison
with the classical Akima’s cubic spline interpolation method.

2. THE CONSTRUCTION OF THE AKIMA’S TYPE PROCEDURE FOR QUARTIC

SPLINES

Consider two neighbouring intervals [xi−1, xi] and [xi, xi+1] and the mid-
points xi−1/2, xi+1/2 in each of these intervals. Suppose that the points to be
interpolated are (x0, y0), (x1, y1), . . . , (xn, yn) and define the slopes

di = yi−1/2−yi−1
hi/2 , di−1/2 = yi−yi−1/2

hi/2 , di+1/2 = yi+1/2−yi

hi+1/2 , di+1 = yi+1−yi+1/2
hi+1/2

for i = 1, n − 1. Let pi and pi+1 be the quadratic Lagrange polynomials inter-
polating the points xi−1, xi−1/2, xi and respectively, xi, xi+1/2, xi+1, on the
intervals [xi−1, xi] and [xi, xi+1] ,

pi (x) =2(yi−1+yi−2yi−1/2)
h2

i
(x − xi−1)2 + 4yi−1/2−yi−3yi−1

hi
(x − xi−1) + yi−1,

pi+1 (x) =2(yi+1+yi−2yi+1/2)
h2

i+1
(x − xi)2 + 4yi+1/2−yi+1−3yi

hi+1
(x − xi) + yi.

Computing the derivatives of pi and pi+1 on the point xi we get

p′
i (xi) =3yi+yi−1−4yi−1/2

hi
,

p′
i+1 (xi) =4yi+1/2−yi+1−3yi

hi+1
.

Let
(4) ỹ′

i = −2hi+1
hi(hi+hi+1)yi−1/2 + 2(hi+1−hi)

hihi+1
yi + 2hi

hi+1(hi+hi+1)yi+1/2

be the three-point difference approximation formula of the derivative in the
point xi computed on the interval [xi−1/2, xi+1/2]. Now, we compute the left
tangent and the right tangent in xi by

T− (xi) = 1
2

(
p′

i (xi) + ỹ′
i

)
and T+ (xi) = 1

2

(
p′

i+1 (xi) + ỹ′
i

)
.
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If |di−1/2 − di| + |di+1 − di+1/2| ̸= 0 we propose the value of the expected
derivative mi to be

(5) mi =
|di+1 − di+1/2| · T− (xi) + |di−1/2 − di| · T+ (xi)

|di−1/2 − di| + |di+1 − di+1/2|
, i = 1, n − 1

and if |di−1/2 − di| + |di+1 − di+1/2| = 0, then this value will be

mi = 1
2 (T− (xi) + T+ (xi)) .

We see that the values m0 and mn at the endpoints remain free. If the
values y′ (a) and y′ (b) are known, then we put m0 = y′ (a) and mn = y′ (b),
but if these values y′ (a) and y′ (b) are not available we will compute the values
m0 and mn by using three proposed variants that will be presented in what
follows.

3. THE TREATMENT OF THE ENDPOINTS

Firstly, we can consider the endpoint type conditions S′′(a) = S′′(b) = 0,
that usually appears at natural cubic splines. These conditions lead to the
equations

(6)

 4m0 − m1 = 1
h1

(
−11y0 + 16y1−1/2 − 5y1

)
−mn−1 + 4mn = 1

hn

(
5yn−1 − 16yn−1/2 + 11yn

)
obtaining in this way the Akima’s quartic spline with natural endpoint condi-
tions with m0 = m1

4 + −11y0+16y1−1/2−5y1
4h1

, mn = mn−1
4 + 5yn−1−16yn−1/2+11yn

4hn
.

Another variant is to consider the local optimal condition involving the
minimization of the integrals

x1∫
x0

(
S′′ (x)

)2
dx and

xn∫
xn−1

(
S′′ (x)

)2
dx

near endpoints, resulting minimal local curvature on the first and on the last
subinterval [x0, x1] and [xn−1, xn]. In this purpose we consider the functionals

J2 (m0) =
x1∫

x0

(
S′′ (x)

)2
dx and J2 (mn) =

xn∫
xn−1

(
S′′ (x)

)2
dx,

J2 (m0) =
x1∫

x0

[
A′′

1(x)y0+B′′
1 (x)y1−1/2+C ′′

1 (x)y1+D′′
1(x)m0+E′′

1 (x)m1
]2

dx,

J2 (mn) =

=
xn∫

xn−1

[
A′′

n(x)yn−1+B′′
n(x)yn−1/2+C ′′

n(x)yn+D′′
n(x)mn−1+E′′

n(x)mn

]2
dx,
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the system of normal equations J ′
2 (m0) = 0, J ′

2 (mn) = 0 being{ 36
5h1

m0 − 6
5h1

m1 = − 94
5h2

1
y0 + 128

5h2
1
y1−1/2 − 34

5h2
1
y1

− 6
5hn

mn−1 + 36
5hn

mn = 34
5h2

n
yn−1 − 128

5h2
n

yn−1/2 + 94
5h2

n
yn

Then one obtains
m0 =m1

6 − 47
18h1

y0 + 32
9h1

y1−1/2 − 17
18h1

y1,

mn =mn−1
6 + 17

18hn
yn−1 − 32

9hn
yn−1/2 + 47

18hn
yn.

The following variant is inspired by the idea of the work [5] but uses the tech-
nique from [11], minimizing the derivative oscillation on the intervals [x0, x1]
and [xn−1, xn]. For this purpose we consider the functionals

J1 (m0) =

=
x1∫

x0

(
S′ (x) − y1−y0

h1

)2
dx

=
x1∫

x0

[
A′

1(x)y0+B′
1(x)y1−1/2+C ′

1(x)y1+D′
1(x)m0+E′

1(x)m1− y1−y0
h1

]2
dx,

J1 (mn) =

=
xn∫

xn−1

(
S′ (x) − yn−yn−1

hn

)2
dx

=
xn∫

xn−1

[
A′

n(x)yn−1+B′
n(x)yn− 1

2
+C ′

n(x)yn+D′
n(x)mn−1+E′

n(x)mn− yn−yn−1
hn

]2
dx.

By the normal equations J ′
1 (m0) = 0, J ′

1 (mn) = 0 we get the values

m0 = − 5
16m1 − 29

16h1
y0 + 1

h1
y1−1/2 + 13

16h1
y1,

mn = − 5
16mn−1 − 13

16hn
yn−1 − 1

hn
yn−1/2 + 29

16hn
yn.

4. THE INTERPOLATION ERROR ESTIMATES

For the derivatives computed by the Akima’s variant (5) we have the esti-
mate

|mi| ≤ |di−1/2−di| max{|T−(xi)|,|T+(xi)|}+|di+1−di+1/2| max{|T−(xi)|,|T+(xi)|}
|di−1/2−di|+|di+1−di+1/2|

and so, |mi| ≤ max{|T− (xi)| , |T+ (xi)|}. Now, the estimates∣∣p′
i (xi)

∣∣ ≤ 1
hi

(
3|yi − yi−1/2| + |yi−1 − yi−1/2|

)
≤ 4

hω
(
y, h

2

)
∣∣p′

i+1 (xi)
∣∣ ≤ 1

hi+1

(
3|yi+1/2 − yi| + |yi+1/2 − yi+1|

)
≤ 4

hω
(
y, h

2

)
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are obtained in terms of the modulus of continuity, where h = min{hi : i =
1, n} and h = max{hi : i = 1, n}. By (4) we infer that

|ỹ′
i| ≤ −2hi+1

hi(hi+hi+1) |yi − yi−1/2| + 2hi
hi+1(hi+hi+1) |yi+1/2 − yi| ≤ 2h

h2 ω
(
y, h

2

)
and thus

|T− (xi)| ≤ 3h
h2 ω

(
y, h

2

)
, |T+ (xi)| ≤ 3h

h2 ω
(
y, h

2

)
.

Consequently, it obtains the estimate

|mi| ≤ 3h
h2 ω

(
y, h

2

)
, ∀i = 1, n − 1.

In the case of the Akima quartic spline with natural type endpoint condi-
tions we obtain the estimate

(7) |m0| ≤ |m1|
4 + 1

4h1

(
11|y1−1/2 − y0|

)
+ 5|y1 − y1−1/2|) ≤ 19

4hω
(
y, h

2

)
and analogous, |mn| ≤ 19

4hω
(
y, h

2

)
. In the case of minimal local curvature on

the intervals [x0, x1] and [xn−1, xn], we get the estimates

(8) |mn| ≤ |mn−1|
6 + 17

18hn
|yn−1 − yn−1/2| + 47

18hn
|yn − yn−1/2| ≤ 73

18hω
(
y, h

2

)
and |m0| ≤ 73

18hω
(
y, h

2

)
. For the Akima quartic spline with minimal derivative

oscillation on the intervals [x0, x1] and [xn−1, xn] one obtains,

(9) |m0| ≤ 5|m1|
16 + 29

16h1
|y1−1/2 − y0| + 13

16h1
|y1 − y1−1/2| ≤ 57

16hω
(
y, h

2

)
and |mn| ≤ 57

16hω
(
y, h

2

)
.

Now, observing that Di and Ei have the same sign separately on the in-
tervals [xi−1, xi−1/2] and [xi−1/2, xi], the estimate of |S (x) − y (x)| will be
performed on each half-subinterval [xi−1, xi−1/2] and [xi−1/2, xi], i = 1, n, sim-
ilarly as in the proof of Corollary 7 from [6], obtaining

|S (x) − y (x)| ≤ max
x∈[xi−1,xi−1/2]

|Ai(x)+Bi(x)| max
{

|yi−1 − y (x)| , |yi/2 − y(x)|
}

+ max
x∈[xi−1,xi−1/2]

|Ci(x)| · |yi − y (x)| +

+ max
x∈[xi−1,xi−1/2]

|Di (x) + Ei (x)| max
{

|mi| : i = 0, n
}

for x ∈ [xi−1, xi−1/2]. Analogous, we have similar estimate for x ∈ [xi−1/2, xi].
Then we get

|S (x) − y (x)| ≤ 9317
8192ω

(
y, h

2

)
+ 1125

8192ω (y, h) +
√

3hi
18 max

{
|mi| : i = 0, n

}
for x ∈ [xi−1, xi], i = 1, n. Thus, concerning the interpolation error estimate,
we obtain the following result.
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Theorem 1. On the interval [x1, xn−1] the error estimate for the Akima’s
interpolating quartic spline, in terms of the modulus of continuity, is

(10) |S (x) − y (x)| ≤
(

9317
8192 +

√
3h2

6h2

)
ω

(
y, h

2

)
+ 1125

8192ω (y, h) .

On the intervals [x0, x1] and [xn−1, xn] the error estimates are:

(11) |S (x) − y (x)| ≤
(

9317
8192 +

√
3

18

(
3h2

h2 + 19h
4h

))
ω

(
y, h

2

)
+ 1125

8192ω (y, h)

for taking the endpoint conditions S′′(a) = S′′(b) = 0,

(12) |S (x) − y (x)| ≤
(

9317
8192 +

√
3

18

(
3h2

h2 + 73h
18h

))
ω

(
y, h

2

)
+ 1125

8192ω (y, h)

when have minimal curvature on the endpoint intervals, and

(13) |S (x) − y (x)| ≤
(

9317
8192 +

√
3

18

(
3h2

h2 + 57h
16h

))
ω

(
y, h

2

)
+ 1125

8192ω (y, h)

in the case of minimal derivative oscillation near endpoints.

In contrast with the case of cubic splines, by comparing (7)–(8) and (12)–
(13), we see that for the quartic splines (3) the condition of minimal curvature
on the intervals [x0, x1] and [xn−1, xn], and the condition s′′(a) = s′′(b) = 0,
lead to different spline interpolants.

5. ERROR ESTIMATES FOR SMOOTH FUNCTIONS

In this section we provide the error estimates for ∥S − f∥∞ and ∥S′ − f ′∥∞
when the Akima’s variant quartic spline interpolates a smooth function f ∈
C4[a, b]. First of all we prove a lemma related to Hermite quartic polynomial
interpolation.

Lemma 2. If f ∈ C4[a, b] with Lipschitzian fourth order derivative and if
H4 (f) is the Hermite interpolation polynomial generated by the interpolation
conditions given for f (a) , f

(
a+b

2

)
, f (b), f ′ (a), f ′ (b), then the error estimate

is
(14) |H4 (f) (x) − f (x)| ≤

√
5(b−a)5L
30000 , ∀x ∈ [a, b]

where L is the Lipschitz constant of f (4).

Proof. Consider the fundamental polynomial

u (x) = (x − a)2
(
x − a+b

2

)
(x − b)2

and for arbitrary fixed x ∈ [a, b] we define φx : [a, b] → R, by

φx (t) =
∣∣∣∣ u (t) R (t)

u (x) R (x)

∣∣∣∣
where R = f − H4 (f) is the remainder. Because f ∈ C4[a, b] we infer that
R ∈ C4[a, b] and φx ∈ C4[a, b]. Since φx (a) = φx (b) = φx

(
a+b

2

)
= φx (x) = 0

and φ′
x (a) = φ′

x (b) = 0 after successive four times applications of the Rolle’s
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mean value theorem we get φ
(4)
x (v) = φ

(4)
x (w) = 0 for some v, w ∈ (a, b),

v ̸= w. Based on the fact that f (4) − R(4) is constant we get

5! (v − w) R (x) − u (x)
(
f (4) (v) − f (4) (w)

)
= 0

and thus,
|R (x)| = |u(x)|·|f (4)(v)−f (4)(w)|

5!|v−w| ≤ L
5! max

x∈[a,b]
|u (x)|

obtaining (14). □

Of course, if f ∈ C5[a, b], then L = ∥f (5)∥∞ in (14). The error estimate
for |H4 (f)′ (x) − f ′ (x) | can be obtained too. Since max

x∈[a,b]
|u′ (x)| = (b−a)4

16 and

according to the proof of this lemma, we have

f ′ (x) − H4 (f)′ (x) = R′ (x) = u′(x)(f (4)(v)−f (4)(w))
5!(v−w) .

Consequently, it obtains

(15)
∣∣∣H4 (f)′ (x) − f ′ (x)

∣∣∣ ≤ L(b−a)4

1920 , ∀x ∈ [a, b].

In the case f ∈ C4[a, b], if f ′ (a) and f ′ (b) are unknown we put

m0 = −3y0+4y1−1/2−y1
h1

, mn = yn−1−4yn−1/2+3yn

hn

where yi = f (xi), i = 0, n, yi−1/2 = f
(

xi−1+xi

2

)
, i = 1, n, inspired by the

technique from [2]. When f ′ (a) and f ′ (b) are known it is natural to consider
m0 = f ′ (a), mn = f ′ (b). Concerning the interpolation error estimate of the
Akima’s variant quartic spline in the case of smooth functions we obtain the
following main result.

Theorem 3. If f ∈ C4[a, b] with Lipschitzian fourth order derivative and
S ∈ C1[a, b] is the Akima’s variant quartic spline interpolating f , then the
error estimates are

(16) |S (x) − f (x)| ≤


h3√

3∥f ′′′∥∞
288 + Lh5√

5
30000 , x ∈ [x1, xn−1]

h3√
3∥f ′′′∥∞
54 + Lh5√

5
30000 , x ∈ [x0, x1] ∪ [xn−1, xn]

and

(17)
∣∣S′ (x) − f ′ (x)

∣∣ ≤
{

h2∥f ′′′∥∞
8 + Lh4

1920 , x ∈ [x1, xn−1]
2h2∥f ′′′∥∞

3 + Lh4

1920 , x ∈ [x0, x1] ∪ [xn−1, xn]

where L is the Lipschitz constant of f (4) and ∥f ′′′∥∞ = max
x∈[a,b]

|f ′′′ (x)|.

Proof. Consider H (f) be the Hermite type piecewise quartic polynomial
interpolating on each interval [xi−1, xi] the values yi−1, yi−1/2, yi, f ′ (xi−1) ,

f ′ (xi) , i = 1, n, and by (14) we get

|H (f) (x) − f (x)| ≤ L
√

5h5
i

30000 ≤ L
√

5h5

30000 , x ∈ [xi−1, xi].
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Now, by (4) and by the Lagrange numerical differentiation formula will be
ηi ∈ (xi−1, xi) , θi ∈ (xi, xi+1) , ci ∈

(
xi−1/2, xi+1/2

)
such that∣∣∣f ′ (xi) − ỹ′

i

∣∣∣ =hihi+1
4 · |f ′′′(ci)|

3!∣∣f ′ (xi) − p′
i (xi)

∣∣ =h2
i

2 · |f ′′′(ηi)|
3! , i = 1, n − 1.∣∣f ′ (xi) − p′

i+1 (xi)
∣∣ =h2

i+1
2 · |f ′′′(θi)|

3!

Consequently,∣∣T− (xi) − f ′ (xi)
∣∣ = 1

2

∣∣∣p′
i (xi) − f ′ (xi) +

(
ỹ′

i − f ′ (xi)
)∣∣∣

≤ 1
2

(
h2

i |f ′′′(ηi)|
12 + hihi+1|f ′′′(ci)|

24

)
≤ h2

16 ·
∥∥f ′′′∥∥

∞ ,

∣∣T+ (xi) − f ′ (xi)
∣∣ = 1

2

∣∣∣p′
i+1 (xi) − f ′ (xi) +

(
ỹ′

i − f ′ (xi)
)∣∣∣

≤ 1
2

(
h2

i+1|f ′′′(θi)|
12 + hihi+1|f ′′′(ci)|

24

)
≤ h2

16 ·
∥∥f ′′′∥∥

∞ ,

for all i = 1, n − 1, and by (5) we obtain

(18)
∣∣mi − f ′ (xi)

∣∣ ≤ h2

16 ·
∥∥f ′′′∥∥

∞ , i = 1, n − 1.

On the other hand, at endpoints by the same Lagrange differentiation for-
mula it obtains
(19)

∣∣f ′ (x0) − m0
∣∣ ≤ h2

3 ·
∥∥f ′′′∥∥

∞ ,
∣∣f ′ (xn) − mn

∣∣ ≤ h2

3 ·
∥∥f ′′′∥∥

∞ .

Since S and H (f) interpolates the same values yi−1, yi−1/2, yi on [xi−1, xi],
i = 1, n, having the same structure, by (18) and (19) we get

|S (x) − H (f) (x)| ≤ max
x∈[xi−1,xi−1/2]∪[xi−1/2,xi]

|Di (x) + Ei (x)| ·
∣∣mi − f ′ (xi)

∣∣
≤hi

√
3

18 · h2

16
∥∥f ′′′∥∥

∞ ≤ h3√
3

288 ·
∥∥f ′′′∥∥

∞ , x ∈ [x1, xn−1]
and

|S (x) − H (f) (x)| ≤ hi

√
3

18 · h2

3
∥∥f ′′′∥∥

∞ ≤ h3√
3

54 ·
∥∥f ′′′∥∥

∞
for x ∈ [x0, x1] ∪ [xn−1, xn], obtaining (16). Finally, by (15) we get∣∣∣H (f)′ (x) − f ′ (x)

∣∣∣ ≤ Lh4

1920 for all x ∈ [a, b]

and since
max

x∈[xi−1,xi]

∣∣D′
i (x)

∣∣ = max
x∈[xi−1,xi]

∣∣E′
i (x)

∣∣ = 1 for i = 1, n,

by (18) and (19) we obtain∣∣S′ (x) − H ′ (f) (x)
∣∣ ≤h2

8
∥∥f ′′′∥∥

∞ , x ∈ [x1, xn−1]∣∣S′ (x) − H ′ (f) (x)
∣∣ ≤2h2

3
∥∥f ′′′∥∥

∞ , x ∈ [x0, x1] ∪ [xn−1, xn],
and the estimate (17) follows. □
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In (16) we see that the order of approximation by the Akima’s variant quar-
tic spline is O

(
h3)

and, as in [12] and [16], we have obtained the corresponding
estimate of ∥S′ − f ′∥∞ for the derivative S′, too.

6. NUMERICAL EXPERIMENT

In order to illustrate this method we present a numerical example consider-
ing the points (xi, yi) , i = 0, 5 : (0, 16) , (2, 20), (3, 28), (5, 21) , (6, 24) , (7, 28),
while the values on midpoints are y1−1/2 = 12, y2−1/2 = 23, y3−1/2 = 32,

y4−1/2 = 18, y5−1/2 = 30. The local derivatives mi, i = 1, 4 are computed by
using the Akima’s type procedure (5), while the values at endpoints m0, m5
are computed by using the alternatives presented in Section 3 such as, nat-
ural endpoint conditions S′′ (a) = S′′ (b) = 0, minimal curvature J2 (m0, m5)
near endpoints, and minimal derivative oscillation J1 (m0, m5) near endpoints,
respectively. These values of the local derivatives mi, i = 0, 5 are presented
below and the obtained quartic splines are represented in Figs. 6.1 and 6.2.

m1 = 6.583 m2 = 9.95 m3 = −12.286 m4 = 16.235
end-cond.: s′′ (a) = s′′ (b) = 0 min J2 (m0, mn) min J1 (m0, mn)
m0 : −8.854 −7.9 −2.43
m5 : −8.94125 −8.183 −3.8234

Table 1. Numerical results.

In Fig. 6.1 we represent the Akima’s quartic spline with natural type end-
point conditions S′′ (a) = S′′ (b) = 0 (denoted by (EN) and drawn as solid
line curve) and the Akima’s quartic spline with minimal derivative oscillation
J1 (m0, m5) near endpoints (denoted by (AD), the dots-line curve). Differences
are observed in the first and in the last interval [0, 2] and [6, 7], respectively,
where the curve (AD) has smaller oscillation. In Fig. 6.2 are represented by
comparison the Akima’s quartic spline with minimal curvature J2 (m0, m5) on
the intervals [x0, x1] = [0, 2] and [x4, x5] = [6, 7] (denoted by (CM) and plot-
ted with dots), and the classical Akima’s cubic spline (denoted by (AK) and
drawn as solid line curve) interpolating the points (x0, y0) , . . . , (x5, y5).
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Fig. 6.1. Quartic splines, AD ( ... ), EN ( – )
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Fig. 6.2. Quartic and Akima splines, CM ( ... ), AK ( – )
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