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DIRECT METHODS FOR SINGULAR INTEGRAL EQUATIONS
AND NON-HOMOGENEOUS PARABOLIC PDES

A. AGHILI∗

Abstract. In this article, the author presented some applications of the Laplace,
L2, and Post-Widder transforms for solving fractional singular integral equa-
tion, impulsive differential equation and systems of differential equations. Fi-
nally, analytic solution for a non-homogeneous partial differential equation with
non-constant coefficients is given. The obtained results reveal that the integral
transform method is an effective and convenient tool.
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1. INTRODUCTION

The use of integral transforms in applications is quite extensive. In applied
probability, as inventory and risk theory, queueing theory, the Laplace trans-
form is a valuable tool for finding underlying probability density functions. As
the Laplace transforms, the L2-transform is used in a variety of applications,
the most common usage of the L2-transform is in the solution of the singular
integral equations and initial value problems. Our interest in this transform
stems from the potential applications to boundary value problems. To the best
of our knowledge, the properties of the L2-transform have not been studied in
any detail.

For solving partial differential equations, two methods, have been more
extensively used the Laplace type integral transformations on the one hand
and separation of variables on the other hand. New methods have also been
proposed, the first integral method, the (G′/G)-expansion method and many
more. The main purpose of this work has been to employ the integral trans-
form method for studying certain mathematical models. It is worth mention-
ing that the integral transform methods are mostly suitable for the solution
of linear differential and partial differential equations. Finally, this article
presents the exact solution of non-homogeneous partial differential equation
with non-constant coefficients, which is solved by direct application of the L2-
transform. The primary advantage of this approach is that it solves boundary
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value problems characterized by partial differential equation without classical
differential equation theory. We confine ourselves here to a few non-trivial
examples which illustrate the method and lead to some interesting new results
needed in the paper.

Definition 1.1. The Laplace transform of function f(t) is given by [1, 4, 6]

L{f(t); s} =
∫ ∞

0
e−stf(t)dt = F (s).(1.1)

If L{f(t); s} = F (s), then L−1{F (s)} is as follows

f(t) = 1
2πi

∫ c+i∞

c−i∞
estF (s)ds,(1.2)

where F (s) is analytic in the region Re(s) > c.

The above complex integral is known as Bromwich integral [7]. The ex-
istence of the Laplace transform will depend on the function f(t) and the
parameter s.

Lemma 1.2. The following identities hold true.

(1) 1
(
√

s+λ) = L
[

1√
πt

− λeλ2t Erfc(λ
√

t)
]
,

(2) 1√
s(

√
s+λ) = L

[
eλ2t Erfc(λ

√
t)
]
,

Proof. See [1, 6]. □

Singular integral equations arise frequently in the mathematical modeling
of continuum phenomena, and many a time cannot be treated by known an-
alytical techniques. Though certain problems had received the attention of
aerodynamicists long ago, by contrast, extensive development of theory and
methods for the approximate numerical solution is of recent vintage. Many
physical problems dealing with radiative transfer, neutron transport, dispersal
of aerosol like particles, fluid flow and waveguides can be reduced to singular
integral equations. Comprehensive accounts of techniques for numerical solu-
tion of integral equations can be found in the monograph by Prossdorf and
Silberman [9].

Theorem 1.3. Let us consider fractional singular integro-differential equa-
tion

Dc,α
0,t ϕ(t) = f(t) + λ

∫ +∞

t
ϕ(ξ)dξ, 0 < t < 1

ϕ(0) = u0,

∫ +∞

0
ϕ(ξ)dξ = k, 0 < α < 1.
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Then the above fractional singular integro-differential equation has the follow-
ing solution.

ϕ(t) = u0

n=+∞∑
n=0

(−λ)nt(α+1)n

Γ(1+(α+1)n) +
n=+∞∑

n=0
(−λ)n

∫ t

0
f(t − η) η(α+1)n

Γ(1+(α+1)n)dη−

− λk
n=+∞∑

n=0

(−λ)nt(α+1)(1+n)−1

Γ(1+(α+1)n) .

Note. This kind of singular integral equation is not considered in the lit-
erature. □

Solution. Taking the Laplace transform of the above fractional singular
integral equation term wise, leads to

sαΦ(s) − sα−1u0 = F (s) + λΦ(s)−Φ(0)
s = F (s) + λΦ(s)−k

s .

After solving the transformed equation, we obtain

Φ(s) = sF (s)
λ+sα+1 + u0sα−λk

λ+sα+1 ,

or,

Φ(s) =
+∞∑
n=0

(−λ)n
[

F (s)
sn(α+1)+α + u0

s(α+1)n+1 − λk
s(α+1)(n+1)

]
.

Taking the inverse Laplace transform term-wise, we get

ϕ(t) =
+∞∑
n=0

(−λ)n
[ ∫ t

0
f(t − ξ) ξn(α+1)+α−1

Γ(n(α+1)+α)dξ + u0t(α+1)n

Γ(n(α+1)+1) − λkt(α+1)(n+1)−1

Γ((α+1)(n+1))

]
,

0 < t < 1. It is easy to verify that ϕ(0) = u0. □

In applied mathematics, engineering and mathematical physics, Bessel func-
tions are associated most commonly with the partial differential equations of
the wave or diffusion equations in cylindrical or spherical coordinates. No
other special functions have received such a detailed treatment as have the
Bessel functions [2].

Lemma 1.4. By using an appropriate integral representation for the modified
Bessel functions of the second kind of order ν, Kν(s), we have the following

L−1
{

Kν(s)
sν

}
=

√
π

Γ
(

ν+ 1
2

)
2ν

(t2 − 1)ν− 1
2 .(1.3)

Proof. In view of the Definition 1.1, taking the inverse Laplace transform
of the given Kν(s)

sν , we obtain

h(t) = 1
2πi

∫ a+i∞

a−i∞
est
(

Kν(s)
sν

)
ds,(1.4)
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by using the following integral representation for Kν(s)
Kν(s)

sν =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
e−s cosh t sinh2ν tdt.(1.5)

By inserting relation (1.5) in (1.4), we get

h(t) = 1
2πi

∫ a+i∞

a−i∞
est
( √

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
e−s cosh r sinh2ν rdr

)
ds,(1.6)

and changing the order of integration in relation (1.6) leads to

h(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
sinh2ν r

(
1

2πi

∫ a+i∞

a−i∞
es(t−cosh r)ds

)
dr.(1.7)

The inner integral is δ(t − cosh r), therefore

h(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
δ(t − cosh r) sinh2ν rdr.(1.8)

Making the change of variable t − cosh r = u, and considerable algebra and
elimination process, we obtain

h(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ t−1

−∞
δ(u) ((t−u)2−1)ν√

(t−u)2−1
du =

√
π

Γ(ν+ 1
2 )2ν (t2 − 1)ν− 1

2 .(1.9)

For the special case ν = 0, we get the following relation

L−1{K0(s)} = (t2 − 1)− 1
2 . □

Example 1.5. Consider the following generalized Abel singular integral
equation of the second kind.

ϕ(t) = e− λ2
t

k
√

tν+β
+ 1

Γ(α)

∫ t

0

ϕ(ξ)
(t−ξ)1−α dξ, ϕ(0) = 0, 0 < α, ν < 1. □

This type of integral equation arises in the theory of wave propagation over
a flat surface. Such integral equations occur rather frequently in mathematical
physics and possess very interesting properties.

Note. The above mentioned singular integral equation can be written in
terms of the Riemann-Liouville fractional integral as below

ϕ(t) = e− λ2
t

k
√

tν+β
+ IR−L,α

0,t ϕ(t), 0 < α, ν < 1. □

Solution. By taking the Laplace transform of the given integral equation,
after simplifying we arrive at

Φ(s) = L
(

e− λ2
t

k
√

tν+β

)
+ Φ(s)

sα .(1.10)

Solving transformed equation leads to

Φ(s) = L
(

e− λ2
t

k
√

tν+β

)
(1 − 1

sα )−1 = L
(

e− λ2
t

k
√

tν+β

)
+ L

(
e− λ2

t

k
√

tν+β

)
( 1

sα−1).(1.11)
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Upon taking the inverse Laplace transform, we get

ϕ(t) = e− λ2
t

k
√

tν+β
+
∫ t

0
e

− λ2
t−η

k
√

(t−η)ν+β
L−1( 1

sα−1)dη.(1.12)

In the special case α = 0.5, we have the following relation

ϕ(t) = e− λ2
t

k
√

tν+β
+
∫ t

0
e

− λ2
t−η

k
√

(t−η)ν+β

(
1√
πη + eη Erfc(−√

η)
)
dη. □

Note. We may check that ϕ(0) = 0. □

In recent years, fractional calculus appeared as an important tool to deal
with anomalous diffusion processes. A more physical approach of anomalous
diffusion processes has several applications in many fields such as diffusion in
porous media or long range correlation of DNA sequence [8]. The closed form
solution of the time fractional impulsive heat equation has been presented. At
this stage we use the joint transform method to obtain a solution of a time
fractional impulsive heat equation. The joint transform method provides an
effective procedure for exact solution of a wide class of systems representing
real physical problems.

Problem 1.6. Let us consider the following non-homogeneous time frac-
tional impulsive heat equation,

Dc,0.5
0,t u = λuxx + ηδ(t − a)δ(x − b) t > 0, −∞ < x < +∞,(1.13)

with initial and boundary conditions
u(x, 0) =

√
2πδ(x), lim

|x|→+∞
|u(x, t)| < M0,

where a, b, η are constants and λ, M0 are positive constants.

Note. Fractional derivative is in the Caputo sense. □

Solution. The joint Laplace-Fourier transform of function u(x, t) is defined
as follows

L
[
F
[
u(x, t); x → w

]
; t → s

]
=
∫ +∞

0
e−st

[
1√
2π

∫ +∞

−∞
eiwxu(x, t)dx

]
dt = U(w, s).

Let us take the joint Laplace-Fourier transform of the above equation (1.13)
term wise and using boundary conditions, we get

√
sU(w, s) − 1√

s
= −λw2U(w, s) + ηe−bseiwa.

Solving the transformed equation leads to

U(w, s) = 1√
s(

√
s+λw2) + ηeiaw[ e−bs

√
s+λw2 ].

At this point taking the inverse joint Laplace-Fourier transforms and by
virtue of the Lemma 1.2 we obtain

u(x, t) = 1√
2π

[ ∫ +∞

−∞
e−ixw[etλ2w4 Erfc(λ

√
tw2)]dw
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+ η

∫ +∞

−∞
e−i(x−a)w

[
1√

π(t−b)
− λw2eλ2(t−b)w4 Erfc(λ

√
t − bw2)

]
dw

]
.□

2. THE L2-TRANSFORM

In the literature, we have significant generalizations of the integral trans-
forms and new uses of the transformation method in engineering, applied
mathematics and physics applications. The L2-transformation was first intro-
duced by Yurekli [9] and denoted as follows

(2.1) L2{f(t); s} =
∫ ∞

0
te−s2t2

f(t)dt.

In the absence of methods for the inversion of the L2-transform, recently the
authors [3], established a simple formula to invert the L2-transform of a desired
function. We present certain new inversion techniques for the L2-transform
and an application of generalized product theorem for solving singular integral
equations and boundary value problems are given.

Lemma 2.1. The following identity holds true

L2{tηδ(atm − λ); s} = 1
am(λ

a )
η−m+2

m e−s2( λ
a

)
2
m , λ, η > 0, k, m > 1.

Solution. By definition of the L2-transform, we have

L2{tηδ(atm − λ); s} =
∫ +∞

0
tη+1e−s2t2

δ(atm − λ)dt.

Making a change of variable atm − λ = ξ, then we have

L2
{

tηδ(atm − λ); s
}

=
∫ +∞

−λ
( ξ+λ

a )
η−m+2

m e−s2( ξ+λ
a

)
2
m δ(ξ) dξ

am ,

using elementary property of Dirac-delta function, yields

L2
{

tηδ(atm − λ); s
}

= 1
am(λ

a )
η−m+2

m e−s2( λ
a

)
2
m .

Consider the special case η = 0, m = 1, a = 1, we get

L2
[
δ(t − λ); s

]
= λe−λ2s2

. □

3. ELEMENTARY PROPERTIES OF THE L2-TRANSFORM

Here, we will derive a relation between the L2-transform of the derivative
of the function and the L2-transform of the function itself. We recall a useful
lemma about the L2 -transform of the δ-derivatives.

Lemma 3.1. If f, f ′, . . . , f (n−1) are all continuous and of exponential or-
der exp(c2t2) as t → ∞ for some real constant c and piecewise continuous
derivative f (n) on the interval t ≥ 0



7 Direct methods for singular integral equations and PDEs 115

(1) For n = 1, 2, . . . then

L2
{

δn
t f(t); s

}
=2ns2nL2{f(t); s} − 2n−1s2(n−1)f(0+)(3.1)

− 2n−2s2(n−2)(δtf)(0+) − . . . − (δn−1
t f)(0+).

(2) For n = 1, 2, . . .

(3.2) L2
{

t2nf(t); s
}

= (−1)n

2n δn
s L2

{
f(t); s

}
,

where the differential operators δt,δ2
t , are defined as below

δt = 1
t

d
dt , δ2

t = δtδt = 1
t2

d2

dt2 − 1
t3

d
dt .

Proof. See [10]. □

4. INVERSION FORMULA FOR THE L2-TRANSFORM AND EFROS’ THEOREM

Lemma 4.1. Let us assume that F (
√

s) is analytic function (s = 0 is not
a branch point) except at finite number of poles each of which lies to the left
hand side of the vertical line Re(s) = c and if F (

√
s) → 0 as s → ∞ through

the left plane Re(s) ≤ c, and

L2{f(t); s} =
∫ ∞

0
t exp(−s2t2)f(t)dt = F (s),(4.1)

then

L−1
2 {F (s)} = 1

2πi

∫ c+i∞

c−i∞
2F (

√
s)est2

ds =
m∑

k=1

[
Res{2F (

√
s)est2}, s = sk

]
.

(4.2)

Proof. See [3]. □

Example 4.2. Solving the following Cauchy’s problem attached to a second
order impulsive differential equation with non-constant coefficients

1
t2 y′′ − t 1

t3 y′ + 4λ2y(t) = tβδ(t − ξ), y(0+) = (δty)(0+) = 0. □

Solution. By taking the L2-transform of the above equation term wise,
we get

L2
(
δ2

t y(t)
)

+ 4λ2L2(y(t)) = L2(tβδ(t − ξ)).(4.3)

Let us assume that L2(y(t)) = Y (s), then after evaluation of the L2-
transform each term, we arrive at

4s4Y (s) + 4λ2Y (s) = ξβ+1e−ξ2s2
,(4.4)

or,

Y (s) = ξβ+1e−ξ2s2

4s4+4λ2 ,(4.5)
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using inversion formula for the L2-transform, we have

y(t) = 1
2πi

∫ c+i∞

c−i∞

(
ξβ+1e−ξ2s

2(s2+λ2)

)
est2

ds,(4.6)

finally, using the second part of the Lemma 3.1 leads to the following solution:
y(t) = ξβ+1 1

2λ sin(λ(t2 − ξ2)). □

Lemma 4.3 (Efros’ Theorem for L2-Transforms). Let L2(f(t)) = F (s) and
assuming Φ(s), q(s) are analytic and such that, L2(Φ(t, τ)) = Φ(s)τe−τ2q2(s),
then the following relation holds true,

L2

{∫ ∞

0
f(τ)Φ(t, τ)d τ

}
= F (q(s))Φ(s).(4.7)

Proof. By definition of the L2-transform

L2
{∫ ∞

0
f(τ)ϕ(t, τ)dτ

}
=
∫ ∞

0
te−s2t2( ∫ ∞

0
f(τ)ϕ(t, τ)dτ

)
dt,(4.8)

and changing the order of integration we arrive at

∫ ∞

0
f(τ)

( ∫ ∞

0
te−s2t2

ϕ(t, τ)dt
)
dτ = Φ(s)

∫ ∞

0
f(τ)τe−τ2q2(s)dτ = Φ(s)F (q(s)).

(4.9)

□

In the sequel we will show that the L2-transform is suitable for solving
singular integral equation with trigonometric kernel.

Example 4.4. By means of the above Lemma 4.3, we may solve the singular
integral equation with trigonometric kernel∫ ∞

0
f(ξ) sin(tξ)dτ = H(t − λ),(4.10)

is
f(t) = 2

π
cos(λt)

t .(4.11)

Solution. Applying the L2-transform followed by the generalized product
theorem and using the fact that

L2{sin(τt)} = π
4s3 τe− τ2

4s2 ,(4.12)
and

L2
[
H(t − λ, t → s

]
= 1

2s2 e−λ2s2
,(4.13)

or,

F ( 1
2s)

√
π

4s3 = 1
2s2 e−λ2s2

,(4.14)
finally,

F (s) = 1√
πs

e− λ2
4s2 ,(4.15)



9 Direct methods for singular integral equations and PDEs 117

using inversion formula for the L2-transform leads to

f(t) = L−1
2

[
1√
πs

e− λ2
4s2 ; s → t

]
= 2

π
cos(λt)

t . □

5. SOLUTION TO THE SYSTEM OF SECOND ORDER DIFFERENTIAL EQUATIONS

WITH NON CONSTANT COEFFICIENTS VIA THE L2-TRANSFORM

Theorem 5.1. We may consider the system of non-homogeneous second
order differential equations in general form as follows

1
t2

⇀

X ′′(t) − 1
t3

⇀

X ′(t) = A
⇀
X(t) + B(5.1)

where A and B are coefficient and constants matrices of type (n×n) and (n×1)
respectively and

⇀

X ′′(t),
⇀

X ′(t)
⇀
X(t) are column vectors. Thus, the above system

of equations has the following solution.
⇀
X(t) = L−1

2

{
(4s4I − A)−1(2s2 ⇀

X(0) +
⇀

δtX(0) + 1
2s2 B)

}
.

Proof. For the solution of the above system, first, we take L2-transform of
the above system, we get,

L2
[

1
t2

⇀

X ′′ − 1
t3

⇀

X ′(t)
]

= AL2
[⇀
X(t)

]
+ BL2[1]

or,
4s4L2

[⇀
X(t)

]
− 2s2 ⇀

X(0) −
⇀

δtX(0) = AL2
[⇀
X(t)

]
+ 1

2s2 B

after simplifying the above relation, we obtain

(4s4I − A)L2
[⇀
X(t)

]
= 2s2 ⇀

X(0) +
⇀

δtX(0) + 1
2s2 B

then,
L2
[⇀
X(t)

]
= (4s4I − A)−1(2s2 ⇀

X(0) +
⇀

δtX(0) + 1
2s2 B)

finally,
⇀
X(t) = L−1

2

{
(4s4I − A)−1(2s2 ⇀

X(0) +
⇀

δtX(0) + 1
2s2 B)

}
. □

In the sequel, we give certain illustrative examples and lemmas related to
the L2, Post-Widder transforms, and inversion formula for the Post-Widder
transform.

6. ILLUSTRATIVE LEMMAS AND EXAMPLES

Lemma 6.1. By using an integral representation for the modified Bessel
functions of the second kind of order ν, Kν(s), the following identity holds
true

L−1
2

{
Kν(s2)

s2ν

}
=

√
π

Γ(ν+ 1
2 )2ν (t4 − 1)ν− 1

2 .(6.1)
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Solution. By applying Lemma 4.1 and taking the inverse L2-transform of
the given Kν(s2)

s2ν , we arrive at

g(t) = 1
2πi

∫ a+i∞

a−i∞
est2(Kν(s)

sν

)
ds,(6.2)

at this point, we use an integral representation for Kν(s)
Kν(s)

sν =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
e−s cosh t sinh2ν tdt.(6.3)

By inserting relation (1.3) in (1.2) , we get

g(t) = 1
2πi

∫ a+i∞

a−i∞
est2

( √
π

Γ(ν+ 1
2 )2ν

∫ ∞

0
e−s cosh r sinh2ν rdr

)
ds,(6.4)

in relation (1.4), we may change the order of integration to obtain

g(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
sinh2ν r

(
1

2πi

∫ a+i∞

a−i∞
es(t2−cosh r)ds

)
dr,(6.5)

the inner integral is δ(t2 − cosh r), therefore

g(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ ∞

0
δ(t2 − cosh r) sinh2ν rdr,(6.6)

let us introduce a change of variable t2 − cosh r = u, and considerable algebra
and elimination process, we obtain

g(t) =
√

π

Γ(ν+ 1
2 )2ν

∫ t2−1

−∞
δ(u) ((t2−u)2−1)ν√

(t2−u)2−1
du =

√
π

Γ(ν+ 1
2 )2ν (t4 − 1)ν− 1

2 .(6.7)

In view of the definition of the L2-transform we have
√

π

Γ(ν+ 1
2 )2ν

∫ +∞

0
e−s2t2

t(t4 − 1)ν− 1
2 dt = Kν(s2)

s2ν .

Let us consider the special case ν = 0, we get the following relation

L−1
2 {K0(s2)} = (t4 − 1)− 1

2 . □

Lemma 6.2. The following singular integral equation of Post-Widder type∫ +∞

0

uϕ(u)
u2+s2 du = c

k√s2−a2 ,(6.8)

has solution as below

ϕ(u) = 4c sin( π
k

)
π k√u2+a2 .(6.9)

Proof. Using the inverse Post-Widder transform (second iteration of the
L2-transform) we have

ϕ(u) = 1
2πi

∫ c+i∞

c−i∞
esu2

(
1

2πi

∫ c′+i∞

c′−i∞
eps2

k
√

p−a2
dp

)
s→

√
s

ds,(6.10)
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introducing the new variable w = p − a2 leads to

ϕ(u) = 1
2πi

∫ c+i∞

c−i∞
2esu2

(
1

2πi

∫ δ+i∞

δ−i∞
2ews2 + a2s2

k√w
dw

)
s→

√
s

ds = ..(6.11)

.. = 1
2πi

∫ c+i∞

c−i∞
4ces(a2+u2)

(
s

1
k

−1

Γ( 1
k

)

)
ds,

hence

ϕ(u) = 4c
Γ( 1

k
)

1
2πi

∫ c+i∞

c−i∞
e(a2+u2)s 1

s
1− 1

k
ds,(6.12)

therefore, the final solution is as below

ϕ(u) = 4c
Γ( 1

k
)

1
Γ(1− 1

k
) . 1

k√ u2+a2 = 4c sin( π
k

)
π k√u2+a2 . □

Lemma 6.3. Let us show the following Post-Widder type singular integral
equation ∫ +∞

0

uϕ(u)
u2+s2 du =

n√s
s2k−λ2 ,(6.13)

has a solution as below

ϕ(u) = 2
π

[
u

2
n sin( π

n
)

λ−u4k

]
.(6.14)

Proof. Let us consider the following inversion formula for the Post-Widder
transform [1]

P−1{F (s)} = 1
πi

{
F (u2e−iπ) − F (u2eiπ)

}
.(6.15)

In view of the above inversion formula for the Post-Widder transform, we
have that

P−1
{

2 n√s
s2k−λ

}
= 1

πi

{ n√
u2e−iπ

(u2e−iπ)2k−λ
−

n√
u2eiπ

(u2eiπ)2k−λ

}
= 2

π

[
u

2
n sin( π

n
)

λ−u4k

]
.

Since the obtained solution satisfies integral equation, we get the following
interesting integral identity,

4 sin( π
n

)
π

∫ +∞

0
u1+ 2

n

(u2+s2)(λ−u4k)du =
n√s

s2k−λ2 .(6.16)

Let us take s = 1, then after simplifying we get the following integral∫ +∞

0
u1+ 2

n

(u2+1)(λ−u4k)du = π
4 sin( π

n
) . □

Example 6.4. Let us consider the following singular integral equation with
trigonometric kernel ∫ +∞

0
xϕ(x) cos ξxdx = eξ Erfc(

√
ξ).(6.17)
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Solution. Taking the Laplace transform of both sides of the integral equa-
tion with respect to variable ξ, we arrive at

L
{∫ +∞

0
xϕ(x) cos ξxdx

}
= 1

(s−1)
√

s
,(6.18)

or, equivalently ∫ +∞

0
x

x2+s2 ϕ(x)dx = 1
s(s−1)

√
s
,(6.19)

the left hand side of the above relation can be written as Widder potential
transform of ϕ(x). We have

P{ϕ(x); s} = 1
s(s−1)

√
s
,(6.20)

or,

ϕ(x) = 1
πi

(
1

x2e−iπ(x2e−iπ−1)
√

x2e−iπ
− 1

x2eiπ(x2eiπ−1)
√

x2eiπ

)
,(6.21)

after simplifying, we get

ϕ(x) = 2
πx3(x2+1) ,(6.22)

we deduce that ∫ +∞

0
2 cos ξx

πx2(x2+1)dx = eξ Erfc(
√

ξ).(6.23)

Finally, from the above integral and inversion formula for the Fourier-cosine
transforms we arrive at∫ +∞

0
eξ cos xξ Erfc(

√
ξ)dξ = 1

x2(x2+1) .(6.24)

Through an application of Leibnitz’s rule, by differentiating the above inte-
gral with respect to x under the integral sign and after simplifying we arrive
at ∫ +∞

0
ξeξ sin xξ Erfc(

√
ξ)dξ = 4x2+2

x4(x2+1)2 .(6.25)

At this point upon using inverse Fourier-sine transform we have

2
π

∫ +∞

0
sin(ξx) 4x2+2

x4(x2+1)2 dx = ξeξ Erfc(
√

ξ)(6.26)

In special case if we choose x = 1 in the above integral (6.26), we have the
following ∫ +∞

0
ξeξ sin ξ Erfc(

√
ξ)dξ = 3

2 . □

Note. In the next section we will briefly illustrate the method of residues
as it applies to both the L2-transform and its inversion formula. □
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7. MAIN RESULTS. THE L2-TRANSFORM FOR NON-HOMOGENEOUS PARABOLIC

PDES.

The second order PDEs, with non-constant coefficients have a number of
applications in electrical and mechanical engineering, medical sciences and
economics. The heat equation plays an important role in a number of fields of
science. In this section, we will study the application of such PDEs. Note that
separation of variables will only work if both the partial differential equation
and the boundary conditions are linear and homogeneous.

Problem 7.1. Let us consider the following non-homogeneous parabolic
PDE

1
2tut = urr + 1

r ur − λ2u − k 0 < r < 1, t > 0,(7.1)

with initial and boundary conditions

u(1, t) = u(r, 0) = 0, |u(r, t)| < M0.

where k > 0, M0 > 0.

Solution. By taking the L2-transform of the above equation, we have

(s2 + λ2)U(r, s) − 0.5u(r, 0) − Urr(r, s) − 1
r Ur(r, s) = − k

2s2 ,(7.2)

or,

Urr + 1
r Ur − (s2 + λ2)U = k

2s2 U(1, s) = 0, |U(r, s)| < M ′.(7.3)

The general solution of the transformed equation is given in terms of the
modified Bessel functions of order zero as follows

U(r, s) = c1I0(r
√

s2 + λ2) + c2K0(r
√

s2 + λ2) − k
2s2(s2+λ2) ,(7.4)

since K0(sr) is unbounded as r → 0, we have to choose c2 = 0, thus

U(r, s) = c1I0(r
√

s2 + λ2) − k
2s2(s2+λ2) ,(7.5)

from U(1, s) = 0, we find c1 = k
2s2(s2+λ2)I0(

√
s2+λ2) , therefore

U(r, s) = − k
2s2(s2+λ2) + kI0(r

√
s2+λ2)

2s2(s2+λ2)I0(
√

s2+λ2) .(7.6)

Using complex inversion formula for the L2-transform, we have

u(r, t) = − k
λ2 (1 − e−λ2t2) + k

2πi

∫ c+∞

c−i∞

est2
I0(

√
s+λ2r)

s(s+λ2)I0(
√

s+λ2)ds,(7.7)

the integrand in the above integral has simple poles at at s + λ2 = 0, s = 0
and s + λ2 = −α2

n, n = 1, 2, 3, . . . . hence, the residue of integrand at s = −λ2

is

lim
s→−λ2

(s + λ2) est2
I0(

√
s+λ2r)

s(s+λ2)I0(
√

s+λ2) = e−λ2t2

−λ2 ,(7.8)
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and the residue of integrand at s = 0 is

lim
s→0

(s) I0(
√

s+λ2r)
s(s+λ2)I0(

√
s+λ2) = I0(λr)

λ2I0(λ) ,(7.9)

the residue of integrand at s = −λ2 − α2
n is

lim
s→−λ2−α2

n

(s + α2
n + λ2) est2

I0(
√

s+λ2r)
s(s+λ2)I0(

√
s+λ2) ,(7.10)

the integrand in the above integral has simple poles at s + λ2 = −α2
n, n =

1, 2, 3, . . . and also at s + λ2 = 0 where ηn are simple zeros of the modified
Bessel function of order zero I0 , as

√
s + λ2 = η1, η2, . . . , ηn, . . ., hence, we

have

lim
s→−α2

n−λ2
(s + λ2 + α2

n) est2
I0(

√
s+λ2r)

(s+λ2)I0(
√

s+λ2) =

=
(

lim
s→−α2

n−λ2

s+λ2+α2
n

I0(
√

s+λ2)

)(
lim

s→−α2
n−λ2

est2
I0(

√
s+λ2r)

s+λ2

)

=
(

lim
s→−α2

n−λ2
1

I′
0(

√
s+λ2) 1

2
√

s+λ2

)(
eα2

nt2
I0(iαnr)
iα2

n

)
= −2eα2

nt2
I0(iαnr)

iαnI1(iαn)

and

u(r, t) = − 2k
λ2 + 2kI0(λr)

λ2I0(λ) − 2
n=∞∑
n=1

eα2
nt2

I0(iαnr)
iαnI1(iαn) .(7.11)

In view of the properties of the Bessel function, we have
I0(t) = J0(it) = J0(−it), I1(t) = iJ1(it), J1(−t) = −J1(t),

therefore, we obtain the exact solution as below

u(r, t) = 2kI0(λr)
λ2I0(λ) − 2k

λ2 + 2
+∞∑
n=1

eα2
nt2

J0(αnr)
αnJ1(αn) . □

Note. We can check that u(1, t) = 0 and |u(r, t)| < M0. □

8. CONCLUSION

The main goal of the present paper is to extend the application of the
L2-transform to derive an analytic solution of boundary value problems. We
have presented certain methods of solution for singular integral equations and
boundary value problem using the Laplace and L2-transform. Certain non-
trivial examples are also provided. The formulations presented in this article
are simple and can be extended to other problems in the field of integral
transforms.

Acknowledgements. The author would like to express his sincere thanks
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improvement of the paper.
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