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Abstract: In this paper, we consider the output controllability of finite-dimensional control systems governed
by a distributed delayed control. For systems with ordinary controls, this problem was investigated earlier.
Nevertheless, in many practical and technical problems the control acts with some delay. We give the necessary
and sufficient condition for the output controllability. The main goal of our control is to govern the output of
the system to some position on a subspace in a given instant, and then keep this output fixed for the remaining
times. This property is called the long-time output controllability. For this, sufficient conditions are given. The
introduced notions are applied for the investigation of averaged controllability of systems with delayed controls.
The general approach for that is to approximate the system by the ordinary one. Some examples are considered.
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1. Introduction

In this paper, we deal with the output controllability of finite-dimensional control systems
governed by a distributed delayed control. For systems with ordinary controls, this problem is
investigated in [2]. It is known that in many practical and technical problems the controlling
actions take place with some delays. The main goal of our control is to govern the output of the
system to some position on a subspace in a given time T > 0, and then keep this output fixed for
the remaining times t > T .

Consider a linear autonomous system with delayed controls and observation:

ẋ(t) = Ax(t) +

∫ 0

−h

dB(s)u(t+ s), t ≥ 0, x(t) ∈ R
n, u(t) ∈ R

m, (1.1)

y(t) = Cx(t), C ∈ R
p×n, (1.2)

where elements of the matrix function B(s) belong to BV [−h, 0] (the space of functions of bounded
variation) and they are left continuous on (−h, 0], B(s) = 0 for ∀s > 0, and B(s) = B(−h) for
∀s ≤ −h. Since the matrix B(s) generates a Borelian measure, any bounded Borelian m-vector
function u(t) can be used as a control. The notion of output controllability is as follows.

Definition 1. We say that the system (1.1) is C-output controllable, if for every x0 ∈ R
n

and every ȳ ∈ imC = {y | y = Cx, x ∈ R
n} there exist an instant T > 0 and a bounded Borelian

control u on [−h, T ] such that the solution x(t) of (1.1) with initial condition x(0) = x0 satisfies

y(T ) = Cx(T ) = ȳ.
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Let us recall that the ordinary (state) controllability definition of the system (1.1) follows from
Definition 1 when C = In. The symbol In ∈ R

n×n means the unity matrix.

In this paper, we are interested in the conditions for having long-time output controllability.
This controllability notion means that the output of the system enters the subspace and then
remains on it for later times. This is defined as follows.

Definition 2. Given ȳ ∈ imC, the system (1.1) is said to be C-long-time output controllable
(briefly C-LTOC on ȳ), if for every x0 there exist a time T > 0 and a control u such that the

solution of (1.1), with initial condition x(0) = x0 satisfies y(t) = ȳ for every t ∈ [T,∞).

It is obvious that state controllability implies C-output controllability for any matrix C. But in
order to save the property y(t) = ȳ for every t ≥ T we need extra conditions on a delayed control.
In this paper we only assume the C-output controllability of the system and give a criterion for
this. Our main attention is directed to conditions of C-LTOC (or simply LTOC) for systems of the
form (1.1), (1.2) and their applications.

The notions of output controllability and C-LTOC can be applied to averaged controllability
property of finite-dimensional, parameter dependent systems with delayed controls. The averaged
controllability has been introduced in the paper [4]. More precisely, let us consider d realizations
of control systems,

ẋi(t) = Aix(t) +

∫ 0

−h

dBi(s)u(t+ s), t ≥ 0, xi(t) ∈ R
n, u(t) ∈ R

m, i ∈ 1 : d, (1.3)

and d parameters pi > 0,
∑d

i=1 pi = 1. Here the matrices Bi(s) have the same properties as B(s)
in (1.1).

Definition 3. We say that the flock of systems (1.3) is controllable in average for the weights
pi > 0 if for all initial states x10, . . . , xd0 and every ȳ ∈ R

n there exist an instant T > 0
and a bounded Borelian control u on [−h, T ] such that the solutions of (1.3) satisfy the equal-

ity
∑d

i=1 pixi(T ) = ȳ.

Let us use the Matlab notation for matrices and vectors. We can see that the averaged con-
trollability notion is exactly the C-output controllability of (1.1)–(1.2) with matrices:

A = diag [A1, . . . , Ad], B(s) = [B1(s); . . . ;Bd(s)], C = [p1In, . . . , pdIn],

where x = [x1; . . . ;xd] ∈ R
nd. The flock of systems (1.3) is called simultaneously controllable

if corresponding system (1.1) is state controllable. Of course, the simultaneous controllability
of (1.3) implies the averaged controllability. We can also define the notion of long-time averaged

controllability (briefly LTAC on ȳ). We say that systems (1.3) are LTAC on ȳ for the weights pi > 0
if for every initial states x10, . . . , xd0 there exist an instant T > 0 and an admissible control u such
that the corresponding mean value is the following

d
∑

i=1

pixi(t) = ȳ

for every t ∈ [T,∞).

In this paper, we obtain conditions of C-output controllability and C-LTOC for general sys-
tems (1.1)–(1.2) and apply them for the LTAC property of (1.3). Besides, we get the algorithm for
constructing of necessary control in special cases. Some examples are considered.
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2. Output controllability of the system

First, note that the initial condition x0 does not play any role in Definition 1. System (1.1),
(1.2) is C-output controllable iff for every ȳ ∈ imC there exist an instant T > 0 and an admissible
control u on [−h, T ] such that

C

∫ T

0
eA(T−θ)

∫ 0

−h

dB(s)u(θ + s)dθ = ȳ.

Setting α = θ + s we have

∫ 0

−h

dB(s)u(θ + s) =

∫ θ

θ−h

dB(α− θ)u(α),

and by Fubini’s theorem we get the equivalent equality

∫ T

−h

B(T, α)u(α)dα = ȳ, where B(T, α) = C

∫ (α+h)∧T

α∨0
eA(T−θ)dB(α− θ). (2.1)

The n×m-matrix function B(T, α) is of bounded variation with respect to α and, therefore, belongs
to the space Lp×m

2 [−h, T ] (the space of square integrable matrices or vectors). We can prove the
following lemma.

Lemma 1. System (1.1), (1.2) is C-output controllable iff there is a segment [a, b], −h ≤ a <
b ≤ T , such that

rank

(
∫ b

a

B(T, α)B′(T, α)dα

)

= rankC. (2.2)

P r o o f. Let condition (2.2) be satisfied. Since

im

∫ b

a

B(T, α)B′(T, α)dα ⊂ imC,

we obtain the equality of subspaces in this inclusion. For every ȳ ∈ imC there exists a vector
v ∈ R

p such that
∫ b

a

B(T, α)B′(T, α)dαv = ȳ.

Then u(α) = B′(T, α)v is a bounded Borelian control on [a, b]. We can take u(α) = 0, α 6∈ [a, b],
and satisfy (2.1) for any T ≥ b. On the contrary, let condition (2.1) be valid, but there is a vector
ȳ ∈ imC such that

ȳ 6∈ im

∫ T

−h

B(T, α)B′(T, α)dα.

Then we have a contradiction with (2.1) as

Lm
2 [−h, T ] =

{

u(α) : u(α) = B′(T, α)v, v ∈ R
p
}

⊕

{

u(α) :

∫ T

−h

B(T, α)u(α)dα = 0

}

.

Therefore, there are no functions u ∈ Lm
2 [−h, T ] satisfying (2.1). �
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Corollary 1. Condition (2.2) holds iff the equality

l′B(T, α) = 0 a.e. on [a, b] implies that l ∈ kerC ′. (2.3)

P r o o f. Condition (2.2) is equivalent to the equality

kerC ′ = ker

∫ b

a

B(T, α)B′(T, α)dα,

or, in other words, the implication (2.3) is fulfilled. �

Corollary 2. The function B(T, α) from (2.1) can be expressed in the form

B(T, α) = CeA(T−α)
b(T, α), where b(T, α) =

∫ α∧0

(α−T )∨(−h)
eAsdB(s). (2.4)

If T > h and a = 0, b = T − h, then

b(T, α) =

∫ 0

−h

eAsdB(s) = const

on [a, b]. Hence, the implication (2.3) is equivalent to the rank condition

rankC

[
∫ 0

−h

eA(s+h)dB(s), A

∫ 0

−h

eA(s+h)dB(s), . . . , An−1

∫ 0

−h

eA(s+h)dB(s)

]

= rankC. (2.5)

P r o o f. Setting α − θ = s in (2.1) we get (2.4). As b(T, α) = const on segment [a, b], the
relation l′B(T, α) = 0 can be differentiated with respect to α many times. So, we come to the
equivalence of implication (2.3) and rank condition (2.5) by the theorem of Cayley–Hamilton
[5, Theorem 7.2.4]. �

Let us discuss the Lemma 1 and its Corollaries. If condition (2.2) does not hold for some
segment [a, b], it can be hold for grater ones. The rank condition for C-output controllability is
possible if the matrix function B(s) is piecewise-constant as in the case of lumped delays. The
simplest case of lumped delays is given by

B(s) = −B0χ(−∞,0](s)−B1χ(−∞,−1](s), (2.6)

where the indicator function χ(a,b](s) = 1 if s ∈ (a, b], and χ(a,b](s) = 0, elsewhere. Let T > 1.
We can divide the segment [−1, T ] = (T − 1, T ] ∪ [0, T − 1] ∪ [−1, 0) into three parts. On the first
semi-interval the implication

l′CeA(T−α)B0 ≡ 0 ⇒ l ∈ kerC ′

is equivalent to the condition

rankC[B0, AB0, . . . , A
n−1B0] = rankC (2.7)

by the theorem of Cayley–Hamilton. On [0, T − 1] we have

b(T, α) = B0 + e−AB1,

and we are in the conditions of Corollary 2. On the remaining semi-interval the implication

l′CeA(T−α−1)B1 ≡ 0 ⇒ l ∈ kerC ′
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is equivalent to condition

rankCeA(T−1)[B1, AB1, . . . , A
n−1B1] = rankC. (2.8)

If 0 ≤ T < 1, we have only two segments [0, T ] and [−1, T − 1]. Therefore, we get two conditions
in (2.7) and (2.8), where the matrix of eA(T−1) is absent. Conditions (2.5), (2.7) do not depend
on T , but condition in (2.8) nevertheless depends. It distinguishes case of delayed controls from
the ordinary one.

Remark 1. Of course, we can also consider partly different Definitions 1–3 with null initial
controls, i.e. when u(t) = 0 for t < 0. Then the integral in (2.1) is considered on [0, T ], the
parameter a ≥ 0 in Lemma 1, and condition (2.8) is not necessary. In addition, we may demand
that u(t) = 0 when t ∈ [T − h, T ], T > h. Then we have 0 ≤ a < b ≤ T − h in Lemma 1.

3. The property of LTOC

Suppose further that system (1.1)–(1.2) is C-output controllable at some instant T > h and
u(t) = 0 if t 6∈ [0, T −h] as in the Remark 1. Then it is easily seen that the C-output controllability
on [0, T ] is equivalent to C-output controllability on [a, T + a] for all a ≥ 0 when u(t) = 0 if
t 6∈ [a, T + a− h]. Therefore, in order to get y(t) ≡ ȳ, ∀t ≥ T , we need to obtain the conditions for
the property

Cx0 = Cx(t) ∀t ≥ 0. (3.1)

By derivation with respect to t in (3.1), we have:

CAx(t) + C

∫ 0

−h

dB(s)u(t+ s) = 0 ∀t ≥ 0. (3.2)

Introduce the subspace

U =

{

x ∈ R
n : ∃ an admissible function u(·) s.t. x =

∫ 0

−h

dB(s)u(s)

}

. (3.3)

To satisfy (3.2), one needs to have the inclusion CAx(t) ∈ CU for ∀t ≥ 0. Since Rp = CU⊕CU⊥, we
can take an orthonormal basis {h1, . . . , hq} in CU⊥, where q = p− dim (CU), and the corresponding
matrix H = [h1, . . . , hq] ∈ R

p×q. As a result, we get a projector P0 = HH ′ ∈ R
p×p on the

subspace CU⊥.
Consequently, condition (3.2) is L0x(t) = 0 ∀t ≥ 0, where L0 = P0CA. Therefore, if we

introduce the matrix C1 = [C;L0] ∈ R
2p×n, then C1x0 = C1x(t) ∀t ≥ 0, as in (3.1).

We can iterate the process similar to ordinary case with no delays as in [2] to define C2 = [C,L1],
L1 = P1C1A, and so on. After k steps we get

Ck+1 = [C;Lk], Lk = PkCkA ∈ R
(k+1)p×n, (3.4)

where Pk ∈ R
(k+1)p×(k+1)p is the orthogonal projector on CkU

⊥. The process stops when
kerCk+1 = kerCk. The condition (3.1) can be fulfilled iff Lkx0 = 0. To be more exact, the
following assertion holds.

Lemma 2. We have kerCk+1 ⊂ kerCk ⊂ R
n and kerLk+1 ⊂ kerLk ⊂ R

n for every k ∈ N∪{0}.
There exists a number K ∈ 0 : n such that kerCK+1 = kerCK . Here C0 = C. For every i ∈ N we

have kerCK+i = kerCK .
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P r o o f. We will argue by induction. As kerC1 = kerC0 ∩ kerL0, we trivially obtain
kerC1 ⊂ kerC0. Suppose that kerCk ⊂ kerCk−1 for some k ∈ N. Then we notice that

Lkx = 0 ⇔ ∃ u ∈ U s.t. Ck(Ax− u) = 0

⇒ Ck−1(Ax− u) = 0 ⇔ Lk−1x = 0.

This means that kerLk ⊂ kerLk−1. Therefore, kerCk+1 ⊂ kerCk. It is obvious that there exists a
number K ∈ 0 : n such that kerCK+1 = kerCK ⊂ R

n. It follows that kerLK+1 = kerLK ⊂ R
n.

Indeed,

LKx = 0 ⇔ ∃ u ∈ U s.t. CK(Ax− u) = 0

⇒ CK+1(Ax− u) = 0 ⇔ LK+1x = 0.

Hence, by induction, we obtain the final assertion. �

Note also that imLk ⊂ imCk for every k ∈ N ∪ {0}. This is equivalent to the inclusion
kerA′C ′

kPk ⊃ kerC ′
k. Indeed, if C

′
kz = 0, then z ⊥ CkU ⇒ z ∈ CkU

⊥ ⇒ Pkz = z.
The problem of control with delays to ensure equality (3.1) is more difficult than for ordinary

controls. Let us prove the lemma.

Lemma 3. Let Ck, k ∈ N ∪ {0}, be the sequence defined by (3.4), and let K ∈ 0 : n such that

kerCK+1 = kerCK . Then there exists a function v(t) ∈ U such that (3.1) holds where

ẋ(t) = Ax(t) + v(t), x(0) = x0, (3.5)

if and only if LKx0 = 0 with LK defined by (3.4).

P r o o f. It follows from (3.1) that CKx0 = CKx(t) and LKx0 = 0. On the contrary, assume
that LKx0 = 0. We need

CKx0 = CKx(t) ∀t ≥ 0.

After derivation we get

CK ẋ(t) = CK(Ax(t) + v(t)), v(t) ∈ U . (3.6)

If we find v(t) with CK ẋ(t) = 0, then the lemma is proved. We can write

CK ẋ(t) = LKx(t) + (I(K+1)p − PK)CKAx(t) + CKv(t).

Here I(K+1)p−PK is a projector on CKU . Hence, there exists a continuous closed-loop control v(x)
such that

(I(K+1)p − PK)CKAx+ CKv(x) = 0.

Relation (3.6) under such a control reduces to

CK ẋ(t) = LKx(t).

Let us write the orthogonal expansion for x(t):

x(t)− x0 = x0(t) + x1(t), (3.7)

where x0(t) ∈ kerCK and x1(t) ∈ imC ′
K . Then

Ckx(t) = CK(x0 + x1(t))
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and

LKx(t) = LKx1(t)

as

kerCK = kerCK+1 = kerC0 ∩ kerLK .

Thus, we get that

CK ẋ1(t) = LKx1(t).

The matrix CK is invertible on the subspace imC ′
K and x1(0) = 0 from (3.7). Therefore, x1(t) = 0

∀t ≥ 0. The lemma is proved. �

It follows from Lemma 3 that conditions

LKx0 = 0 and
(

I(K+1)p − PK

)

CKAx+ CKv(x) = 0

are necessary and sufficient for the solution x(t) of equation (3.5) to satisfy (3.1). They define the
function v̄(t) = v(x(t)), but for our purposes we need a function u(t) such that

∫ 0

(−h)∨(−t)
dB(s)u(t+ s) = v̄(t), t ≥ 0. (3.8)

This is an integral equation. It can have no solutions. Therefore, in next sections we consider the
approximation scheme to exclude equations like (3.8). Now, we formulate the general result.

Theorem 1. Let be given ȳ ∈ imC. For every x0 ∈ R
n there exists an admissible control for

the system (1.1) such that the solution satisfies Cx(t) = ȳ ∀t ≥ T if and only if

[ȳ; 0] ∈ imCK+1

and system (1.1), (1.2) is CK+1-output controllable in the sense of Remark 1, i.e. the condition

like (2.2) holds for some 0 ≤ a < b ≤ T − h with

B(T, α) = CK+1e
A(T−α)

b(T, α)

and rankCK+1. Here Ck is the sequence defined by (3.4) and the number K is defined by Lemma 2.
Besides, equation (3.8) has to be resolved for the function v̄(t) defined in Lemma 3.

P r o o f. According to the Lemma 3 the control exists iff the system is transferred to the
state x(T ) such that CK+1x(T ) = [ȳ; 0]. This is possible for every ȳ ∈ imC and every x0 ∈ R

n iff
the system is CK+1-output controllable. After that we solve the problem as in Lemma 3 which
does not depend of initial instant T . �

We do not give any sufficient conditions for the existence of a solution of integral equation (3.8).
This is considered in some special cases. For example, in simplest case (2.6) we have the difference
equation

B0u(t) +B1u(t− 1) = v̄(t), u(t) = 0 if t < 0

which can be resolved step-by-step on segments [i− 1, i]:

B0ui(t) = v̄(t)−B1ui−1(t− 1), t ∈ [i− 1, i], i ∈ N, (3.9)

where u0(t) = 0.
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Example 1. Consider the flock of two systems of the form:

ẋ11 = −x21 +
∑2

i,j=1 b1ijui(t− j + 1), ẋ21 = x11; first system,

ẋ12 = x12 + 2x22 +
∑2

i,j=1 b2ijui(t− j + 1), ẋ22 = x22; second system,

where we have the case with p1 = p2 = 1/2 and C = [I2, I2]/2. Condition (3.1) reduces to the
requirement: Cx0 = 0 implies Cx(t) = 0 if t ≥ 0. Here x(t) ∈ R

4 is the composed vector. Below
we study the example in detail for various coefficients blij .

4. The system in the infinite-dimensional space

Let us now rewrite the system (1.1)–(1.2) in the infinite-dimensional space following [1]. We
can write

∫ 0

−h

dB(s)u(s) = B0u(0) + Bu, where B0 = −B(0), Bu =

∫

[−h,0)
dB(s)u(s). (4.1)

Formula (4.1) is true for continuous vector-functions u, but we want to use functions {u ∈ H =
Lm
2 [−h, 0]}. In this case we consider the operator B as unbounded with dense domain b(B) = W =

Wm
1,2[−h, 0] (the Sobolev space). If u ∈ W , the function φ(t, s) = u(t+ s) satisfies the equation in

partial derivatives:

φ̇(t, s) = Dφ(t, s), φ(0, s) = u0(s), φ(t, 0) = u(t), (4.2)

with the operator D = d/ds. Equation (4.2) is considered in H with unbounded D. The left-shift
C0-semigroup St on H is defined by

(Stu)(s) =

{

u(t+ s), s ∈ [−h,−t]

0, s ∈ (−t, 0]
if t ≤ h, and (Stu)(s) = 0 if t > h.

The infinitesimal generator for St is D with dense domain

b(D) = W 0 = {u ∈ W : u(0) = 0} ⊂ H.

As shown in [1, Lemma 1.1], the solution

φ(t, s) =

{

u0(t+ s), s ∈ [−h,−t]

u(t+ s), s ∈ (−t, 0]
if t ≤ h, and φ(t, s) = u(t+ s) if t > h,

of equation (4.2), φ(t, ·) ∈ H, can be represented by

φ(t) = Stφ0 +

∫ t

0
St−r∆u(r)dr, (4.3)

where the operator ∆ ∈ L(Rm,W ∗) (the space of linear operators) is given by the relation
(∆u,w) = u′w(0) for all w ∈ W . So, in spite of the fact that equality (4.3) is considered
in W ∗ ⊃ H ⊃ W and the integration is also fulfilled in W ∗, we have φ(t, ·) ∈ H for every
u ∈ Lm

2,loc[0,∞).
Introducing the operators A = [A,B; 0,D], B = [B0;∆], and C0-semigroup T by

Tt−rz =

[

eA(t−r)x+

∫ t

r

eA(t−α)
BSα−rφdα;Sα−rφ

]

,
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where z = [x;φ] ∈ Z = R
n ×H, we can write the mild solution

z(t) = Ttz0 +

∫ t

0
Tt−rBu(r)dr, for the equation (4.4)

ż(t) = Az(t) +Bu(r), z(0) = z0. (4.5)

Here the operator A is unbounded on Z with domains b(A) = R
n ×W 0. For the operator B we

have B ∈ L(Rm,Rn ×W ∗).
Equation (4.5) has no delays in control, but a recurrent procedure like in (3.4) is, unfortunately,

impossible for infinite-dimensional system (4.5) to find a C-LTOC control. Therefore, we pass to
finite-dimensional approximations of the obtained system.

5. Finite-dimensional approximation

We use the averaging approximation of the delayed system following [3]. For every positive
integer N , we define the finite-dimensional linear subspace HN of H by

HN =
{

u ∈ H : u =
N
∑

i=1

viχi, vi ∈ R
m
}

,

where χi denote the characteristic function of [ti, ti−1) for i ∈ 1 : N and ti = −ih/N , i ∈ 0 : N .
The subspace HN is isometrically isomorphic to R

mN by means of the embedding γN : RmN → HN

such that (γNg)(s) = vi, s ∈ [ti, ti−1), i ∈ 1 : N , where g = [v1; . . . ; vN ]. On R
mN , we define the

induced inner product
〈f, g〉N = f ′QNg, f, g ∈ R

mN ,

where
QN = diag [Im, . . . , Im]h/N ∈ R

mN×mN .

The corresponding vector and matrix norms will be denoted by ‖ · ‖N . The dual mapping γN∗ :
HN → R

mN has the natural extension πN : H → R
mN defined by

πNu = [v1; . . . ; vN ], vi =

∫ ti−1

ti

u(s)dsN/h, i ∈ 1 : N.

We have that PN = γNπN is an self-adjoint orthogonal projector onto HN and πNγN = ImN .
Introduce the the following matrices:

BN
i = lim

s↑ti
(B(s+ h/N)−B(s)) = B(ti−1)−B(ti), i ∈ 1 : N.

Note that the matrix B(s) is left-continuous. For φ ∈ H, let πNφ = g = [v1; . . . ; vN ] ∈ R
mN . Then

we can approximate the infinite-dimensional operators as follows:

Bφ ≈ BPNφ =

N
∑

i=1

BN
i vi; Dφ ≈ ∇PNφ =

N
∑

i=1

N(vi−1 − vi)χi/h, v0 = 0;

Bu ≈ [B0u;Nχ1u/h].

Denote by ZN the space Rn×HN . Introduce the approximating operatorsAN = [A,BPN ; 0,∇PN ] :
ZN → ZN and BN = [B0;Nχ1/h] : R

m → ZN . Let T
N
t denote the C0-semigroup generated by

AN on ZN and let π̄N = [In, 0; 0, π
N ], γ̄N = [In, 0; 0, γ

N ] be the operators on Z and on R
n+mN ,

respectively. The following theorem is true.
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Theorem 2 [3, Theorem 3.1]. Let the matrix B(s) have the form

B(s) = −
∑q

i=0 Biχ(−∞,−hi](s)−

∫ 0

s

B01(r)dr, 0 = h0 < · · · < hq = h, (5.1)

where B01(·) ∈ Ln×m
2 [−h, 0]. Then there exist constants M and ω independent of N such that

‖eπ̄
NAN γ̄N t‖N ≤ Meωt.

It follows from definitions of operators that

π̄NAN γ̄N = [A,BγN ; 0, πN∇γN ] ∈ R
(n+mN)×(n+mN).

Therefore, the finite-dimensional approximation for (4.4), (4.5) is written as

ẋ(t) = Ax(t) + BγNg(t) +B0u(t),

ġ(t) = πN∇γNg(t) +N [u(t); 0; . . . ; 0]/h.
(5.2)

Since g(t) = [v1(t); . . . ; vN (t)] we can write the matrices of system (5.2), where the state vector is
[x(t); g(t)], in the following form

AN =
[

A,BN
1 , . . . , BN

N ; 0mN×n, (Q
N )−1V

]

,

V =
[

−Im, 0, . . . , 0, 0;
Im, −Im, . . . , 0, 0;
...

...
...

...
...

0, 0, . . . , Im, −Im
]

,

BN = [B0; ImN/h; . . . ; 0; 0] .

(5.3)

By Trotter–Kato theorem and Theorem 2 the following estimates are true [3, Theorems 4.4 and
4.10].

(i) If z ∈ b(A), then

∥

∥[In;P
N ]Ttz − T

N
t [In;P

N ]z
∥

∥ ≤ α1e
αt(h/N)‖z‖Rn×W , ∀N ∈ N, t > 4h.

(ii) For t > 5h and ∀N > N0,

∥

∥[In;P
N ]Tt − T

N
t [In;P

N ]
∥

∥ ≤ α2e
αt(h/N).

(iii) There exists a positive constant α3, dependent on t but independent on N , such that for
every u(·) ∈ Lm

2 [0, t] and all N ∈ N, we have

∥

∥

∥

∥

∫ t

0
T
N (t− r)BNu(r)dr

∥

∥

∥

∥

ZN

≤ α3‖u‖Lm

2
[0,t].

From (iii) it follows that

lim
N→∞

∫ t

0
T
N (t− r)BNu(r)dr =

∫ t

0
T(t− r)Bu(r)dr.

It is unknown whether estimates in Theorem 2 and in (i)–(iii) without an assumption (5.1) are
true.



Output Controllability of Delayed Control Systems 23

6. Application to averaged controllability and examples

For the flock (1.3), Lemma 1 can be reformulated in the following way.

Lemma 4. The flock of systems (1.3) is controllable in average for the weights pi > 0 iff there

is a segment [a, b], −h ≤ a < b ≤ T , such that

rank

(
∫ b

a

B(T, α)B′(T, α)dα

)

= n, (6.1)

where

B(T, α) =

d
∑

i=1

pi

∫ (α+h)∧T

α∨0
eAi(T−θ)dBi(α− θ).

Of course, the condition (6.1) holds iff the equality

l′B(T, α) = 0 a.e. on [a, b] implies that l = 0. (6.2)

Corollary 2 has the form.

Corollary 3. The function B(T, α) from (6.1) can be expressed in the form

B(T, α) =
d

∑

i=1

pie
Ai(T−α)

bi(T, α), where bi(T, α) =

∫ α∧0

(α−T )∨(−h)
eAisdBi(s).

If T > h and a = 0, b = T − h, then

bi(T, α) =

∫ 0

−h

eAisdBi(s) = const

on [a, b]. Hence, the implication (6.2) is equivalent to the rank condition

rank
[

d
∑

i=1

pi

∫ 0

−h

eAi(s+h)dBi(s),
d

∑

i=1

piAi

∫ 0

−h

eAi(s+h)dBi(s),

. . . ,
d

∑

i=1

piA
nd−1
i

∫ 0

−h

eAi(s+h)dBi(s)
]

= n.

(6.3)

Let us pass to the property of LTAC. For the sake of example, we restrict the analysis to the
case of the null control, i.e. the goal is to steer and keep the average equal to zero. We also consider
the case with d = 2 components, and we chose p1 = p2 = 1/2, and B1(s) = B2(s) = B(s). We do
the remark.

Remark 2. All the statements in Section 3 are still valid, if at step k + 1 in (3.4) we consider
any matrix Ck+1 = [RC; L̃k], with R ∈ R

p×p, detR 6= 0, and L̃k is a matrix of n columns such that
kerC ∩ kerLk = kerC ∩ ker L̃k, where Lk is defined by (3.4). With this modification, ȳ has to be
modified in Rȳ.

Let U be the subspace defined by (3.3). In what follows, P denotes the orthogonal projector
of Rn on U⊥, and we set E = (A1 −A2)/2, F = (A1 +A2)/2.
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Instead of the sequence Ck introduced in (3.4), we use the sequence Ξk defined by

Ξk =
[

In, In;
PE, −PE;
PEF, −PEF ;

...
...

PEF k−1, −PEF k−1
]

∈ R
(k+1)n×2n.

(6.4)

We can note the following.

• For k = 0 Ξ0 = 2C = [In, In].

• For k = 1, let P0 be the orthogonal projector of Rn on Ξ0[U ;U ]
⊥ = U⊥. We see P0 = P .

Then we set L̃1 = [Ξ0;PΞ0A] = [In, In;PA1, PA2]. Since ker L̃1 = kerΞ1, matrix Ξ1 is
suitable, according to Remark 2.

• Assume that at step k the matrix Ξk given by (6.4) is suitable. We define Pk, the orthogonal
projector of R(k+1)n on Ξk[U ;U ]

⊥ = diag [P, In, . . . , In]. Then we set

L̃k+1 = [Ξ0;PkΞkA] =

[

In, In;
PA1, PA2;
PEA1, −PEA2;

...
...

PEF k−1A1, −PEF k−1A2

]

.

It is obvious that ker L̃k+1 = ker Ξk+1. So, Ξk+1 is suitable.

As in Lemma 2, we have ker Ξk+1 ⊂ ker Ξk ⊂ ker Ξ0 ⊂ R
2n. Since dim (ker Ξ0) = n there exists

K ∈ 0 : n such that ker ΞK+1 = ker ΞK, and we have ker ΞK = ker Ξn (see Lemma 2).
As a consequence of Theorem 1 and the above considerations, we obtain the following result.

Corollary 4. Let d = 2 and let A1, A2 ∈ R
n×n, and B1(s) = B2(s). Then for every

x10, x20 ∈ R
n the flock of systems (1.3) is LTAC to 0 for p1 = p2 = 1/2 if and only if the condition

like (2.2) holds for some 0 ≤ a < b ≤ T − h with

B(T, α) = Ξn diag

[

∫ (α+h)∧T

α∨0
eA1(T−θ)dB(α− θ),

∫ (α+h)∧T

α∨0
eA2(T−θ)dB(α− θ)

]

and rankΞn, where the matrix Ξn is given by (6.4) for k = n.

Remark 3. The Corollary 4 ensures that the solutions x1(t) and x2(t) of (1.3) (with d = 2 and
B1(s) = B2(s) = B(s)) can be steered to some [x1(T );x2(T )] ∈ ker Ξn. This condition can be
equivalently rewritten as

x1(T ) + x2(T ) = 0,

x1(T )− x2(T ) ∈
{

g ∈ R
N : EF kg = 0 ∀k ∈ 0 : n− 1

}

.

Let g = (x1 − x2)/2 and f = (x1 + x2)/2. Then for every control v(t) ∈ U we have

{

ḟ = Ff +Eg + v(t),

ġ = Ef + Fg,
⇔

{

ẋ1 = A1x1 + v(t),

ẋ2 = A2x2 + v(t).
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Now it becomes obvious that f(t) = 0 for t ≥ T if and only if v(t) = −Eg(t) and g(t)=eF (t−T )g(T )
such that Eg(t) = 0 for t ≥ T . Note that v(t) ∈ U .

Of course, we need a control u(t), t ≥ T , such that

∫ 0

(−h)∨(T−t)
dB(s)u(t+ s) = v(t), t ≥ T, (6.5)

similarly to (3.8).

Example 2. Let us return to the flock in the Example 1. We have A1 = [0,−1; 1, 0],
A2 = [1, 2; 0, 1]. The system has 8 parameters. Let b111 = b112 = b211 = b212 = 1. Other parameters
are equal to zero. It corresponds to one control with one delay in the form [u(t) + u(t− 1); 0]. The
flock is controllable in average for every T > 1 in the sense of the Remark 1, as condition (6.3) is
fulfilled. Here we have the projector P = [0, 0; 0, 1]. It was shown in [2] that the systems with one
scalar ordinary control:

ẋ1 = A1x1 + [v(t); 0], ẋ2 = A2x2 + [v(t); 0],

are controllable in average, but not simultaneously controllable. Moreover, this system has the
long-time averaged controllability property. Hence, there is a control v(t), t ≥ T , owing to the
Remark 3. We can find a control u(t), t ∈ [0, T − 1], such that x1(T ) + x2(T ) = 0 due to
controllability. Equation (6.5) is u(t) + u(t − 1) = v(t), t ≥ T . As in (3.9), it can be resolved
step-by-step on segments [T + i− 1, T + i]:

ui(t) = v(t)− ui−1(t− 1), t ∈ [T + i− 1, T + i], i ∈ N,

where u0(t) = 0.

We can also analyze the property of LTAC for the case B1(s) 6= B2(s) when d = 2. Then
we use the general considerations of Section 3. Note that equation (3.9) can be easily resolved
only if the matrix B0 is square and detB0 6= 0. For our examples, it corresponds to the condition
det [b111, b121; b211, b221] 6= 0. This determinant equals zero in Example 2, but, nevertheless, we
found the u(t).

Example 3. Let b112 = b211 = 1 and others parameters equal zero. It corresponds to one
control with one delay in the forms [u(t − 1); 0] for the first system and [u(t); 0] for the second
one. The average controllability for every T > 1 is easily verified due to condition (6.3). Introduce
B1 = [0, 1; 0, 0], B2 = [1, 0; 0, 0], and v(t) = [v1(t); v2(t)]. The corresponding systems with ordinary
controls have the form:

ẋ1 = A1x1 +B1v(t), ẋ2 = A2x2 +B2v(t).

This system has the LTAC property with v1(t) 6= v2(t). We cannot solve the equation
u(t− 1) = v2(t), u(t) = v1(t). It may be solved only if v1(t − 1) = v2(t). Let us pass to the
approximation from Section 5. Let b=[1; 0], then our flock of systems is written as

ẋ1(t) = A1x1(t) + bu(t− 1), ẋ2(t) = A2x2(t) + bu(t),

y(t) = (x1(t) + x2(t)) /2.

We need to approximate only the first system. Here m = 1 and ti = −i/N , i ∈ 0 : N . As
B(s) = −bχ(−∞,−1](s), the matrix BN

N = b and BN
i = 0, i ∈ 1 : N − 1. Therefore, matrices (5.3)
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have the form

AN
1 =

[

A1, 02×(N−1), b; 0N×2, (Q
N )−1V

]

,

V =
[

−1, 0, . . . , 0, 0;
1, −1, . . . , 0, 0;
...

...
...

...
...

0, 0, . . . , 1, −1
]

,

bN = [02×1;N ; . . . ; 0; 0] ,

where AN
1 ∈ R

(2+N)×(2+N), V ∈ R
N×N , and bN ∈ R

2+N . We compose the matrices
A =diag

[[

AN
1

]

, A2

]

, B =
[[

bN
]

; b
]

, and C = [I2, 02×N , I2]/2. For the obtained system
ẋ = Ax + Bu, we verify the property of C-LTOC. It does not hold for any N . The flock has
not the property of LTAC for the case b112 = b211 = 1 and others equal zero.

It can be verified that the approximating system in Example 2 has the LTAC property.

7. Conclusion and open problems

In this paper, we considered the notion of output controllability for ordinary systems with
retarded controls and gave the necessary and sufficient condition for that. For the notion of long-
time output controllability, we obtained only sufficient conditions. This notions were applied for
the investigation of averaged controllability of mentioned systems. The general approach for that
is to approximate the systems by the ordinary ones. In connection with the results obtained, a
number of interesting open questions arise.

• Assume that there exists a number N0 ∈ N such that for every N ≥ N0 the approximating
system has the C-LTOC property. Is it sufficient for C-LTOC property of the original
system? And vice versa, if the original system has C-LTOC property, whether it is sufficient
for C-LTOC of the approximating system?

• How to obtain any rank conditions for output controllability of systems with delays in the
state and control? The same question about the C-LTOC property of such a systems.

• We considered the LTAC property for flocks with finite number of members. Can the results
be extended for flocks with infinite members?

• Does output controllability imply output feedback stabilisation? Suppose that the system is
output controllable, does it exist a feedback control u(t) = Ky(t) such that y(t) goes to zero
as t goes to ∞?
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