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Abstract: Datasets of population dynamics are typically characterized by a short tem-
poral extension. In this condition, several alternative models typically achieve close ac-
curacy, though returning quite different predictions (model uncertainty ). Bayesian model
averaging (BMA) addresses this issue by averaging the prediction of the different mod-
els, using as weights the posterior probability of the models. However, an open problem
of BMA is the choice of the prior probability of the models, which can largely impact on
the inferences, especially when data are scarce. We present Credal Model Averaging
(CMA), which addresses this problem by simultaneously considering a set of prior prob-
ability distributions over the models. This allows to represent very weak prior knowledge
about the appropriateness of the different models and also to easily accommodate expert
judgments, considering that in many cases the expert is not willing to commit himself to
a single prior probability distribution. The predictions generated by CMA are intervals
whose lengths shows the sensitivity of the predictions on the choice of the prior over the
models.

Keywords: Bayesian model averaging. Linear regression. Alpine ibex. Model uncer-
tainty. Credal sets. Imprecise probability.

1 INTRODUCTION

Datasets of population dynamics are usually limited because of the difficulties in the data
collection stage; this emphasizes the need for robust methodologies for data analysis.
Model selection criteria such as akaike information criterion (AIC) or bayesian informa-
tion criterion (BIC) aim at selecting a single model from a set of competing medels [see
Burnham and Anderson, 2002, for a review]. Yet, several alternative models typically
achieve close accuracy, though returning quite different predictions (model uncertainty ).
Ecological models are in particular affected by high model uncertainty [Conroy et al.,
1995], and thus the choice of a single model can be inadequate. The problem is further
emphasized by the small data amount which are generally available. Model averaging
techniques permits to avoid this choice, producing the predictions by averaging the pre-
dictions of many models. BMA uses the posterior probability of the models as model
weights. The method requires to specify two types of prior distributions: on the model
structure and on the parameter values. Dealing with Bayesian models and scarce data,
the choice of the prior can impact on the inferences produced by the models, leading to
fragile prior-dependent conclusions.

The specification of the prior over the models is a serious open problem for Bayesian
ensembles of models. We address this problem by adopting the paradigm of imprecise
probability, namely dropping the unique prior in favor of a set of priors (prior credal set)
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Walley [1991]. While a traditional non-informative priors represents a condition of indif-
ference between the alternative models, a credal set describes a condition of prior igno-
rance, letting thus vary the prior probability of each model over a wide interval, instead
of fixing it to a specific number. We called this novel method Credal model averaging
(CMA), and we implement it here in the case of linear regression . We tested the method
both on generated and real datasets; the real dataset concerns the population of Alpine
ibex (Capra i. ibex ), a long-lived mammal species. We found that the methodology is ro-
bust and permits to deal with model prior uncertainty, giving prediction intervals instead
of prediction points.

The paper is organized as follows: in Section 2 we summarize the main concepts of
BMA methodology; in Section 3 we present the theoretical development of CMA and we
propose a metric to evaluate interval predictors; in Sections 4 and 5 we present the study
cases and the results of the experiments; the main conclusions are reported in Section
6.

2 BAYESIAN MODEL AVERAGING (BMA)

Let us consider a simple linear regression model structure of the type y = β0+
∑

X βjXj+
εt, where X is the set of the covariates {X1, X2, . . . Xk} and ǫ a white noise. Given k
covariates, there are 2k candidate model structures, obtained by combining in all the
possible ways the presence/absence of each covariate. The model size is defined as the
number of covariates included in the model.

Even using a well-established model selection criteria (e.g. AIC or BIC), the choice of
the supposedly “best” model is often uncertain, because many models show a similar
score. However, different models with similar scores can return quite different predictions;
this is the problem of model uncertainty. BMA addresses model uncertainty weighting
the inferences produced by the different models. Given a dataset D, the weights are
constituted by the models’ posterior probabilities P (Mi|D), where by Mi we denote the i-
th model. Inference about the expected value quantity of interests ∆ is therefore obtained
taking into consideration all the different model structures [see Clyde and George, 2004]:

E[∆|D] =

2k
∑

i=1

E[∆|Mi, D]P (Mi|D) (1)

where the obtained distribution is a sum of distributions and thus has generally a multi-
modal shape.The posterior probabilities of the models are calculated using the Bayes
formula, that requires to specify a prior probability P (Mi) for each model: P (Mi|D) =

P (Mi)P (D|Mi)∑
k∈1...m P (Mk)P (D|Mk)

, where P (D|Mi) =
´

P (D|Mi,βi)P (βi|Mi)dβi is the marginal

likelihood of the model Mi, and βi is the vector of parameters of model Mi. We re-
fer the reader to Raftery and Madigan [1997] for details about the computation of the
marginal likelihood in case of linear regression. Moreover, corresponding to model Mi,
we should specify a prior distribution on the parameters βi, namely P (βi|Mi). In this
work we adopt Zellner’s g-prior on the regression parameters as in Fernandez and Ley
[2001].

The summation of (1) is extensive over 2k models. To keep the computation feasible,
Markov Chain Montecarlo methods (MCMC) are generally adopted to sample the model
space, without thus implementing all the 2k models. Only for small k it is possible to
exhaustively treat the model space.

BMA requires to specify a prior over the models. A simple non-informative prior is the
uniform one. In this case P (Mi) = P (M) = 2−k and the expected model size (i.e., the
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expected number of included covariates) is k/2. A popular alternative is the binomial prior
[Raftery and Madigan, 1997; Fernandez and Ley, 2001], under which the prior probability
of a model is computed on the basis of θj , which represents the probability of inclusion
of each covariate Xj . As shown in Ley and Steel [2009], if the probability of inclusion of
each covariate is independent and constant (θ1 = θ2 = . . . = θk = θ), then the model
size will have a binomial distribution

∑k
j=1 γj ∼ Bin(k, θ), with mean θ · k and variance

θ(1 − θ)k. The prior probability of a model is calculated as

P (Mi) = θki(1− θ)k−ki (2)

where ki is the number of the covariates included by model Mi. If one wants to express
prior knowledge, one should elicit from an expert the value of a single parameter, θ, or
alternatively the model size, which corresponds to θ · k. Under this prior, all the models
with the same size (ki) have the same probability. If θ = 0.5 the binomial prior coincides
with the uniform prior.

The binomial model prior can be extended by adopting a hierarchical prior; treating θ as
a random variable increases the model size variance and makes prior distribution over
the models flatter. The use of a beta-binomial prior is widely discussed in Ley and Steel
[2009].

3 CREDAL MODEL AVERAGING(CMA)

Here we define the CMA, a method which substitutes the single prior over the models
by a set of priors; in this way, it represents a condition of prior ignorance about the
appropriateness of the models, letting their prior probability vary within a large range
This allows eliciting from the decision maker an interval instead of a single value for the
expected model size a priori; an expert is indeed generally more confident in providing a
range rather than a single point estimate, thus being allowed to express the uncertainty
in his prior knowledge. As a result of having a set of priors, CMA produces interval
predictions, rather than point predictions.

More specifically, we developed an imprecise version of the binomial model prior defined
in (2). Thus, we assume that the expert specifies an upper and a lower probability of
inclusion for the covariates, respectively θ and θ. Introducing θ and θ , the expected
model size a priori ranges between θ · k and θ · k. Starting from the prior interval, we find
the expected interval of the prediction for every available instance. To completely define
the prediction interval, it is sufficient to find the prediction bounds. Therefore we have to
solve two optimization problems: finding the maximum and the minimum of the prediction
(1). The minimization is formalized as

min
θ

E[∆|D] = min
θ

∑

i

E[∆|Mi, D]
P (D|Mi)P (Mi)

∑

i P (D|Mi)P (Mi)
=

= min
θ

∑

i E[∆|Mi, D]P (D|Mi)θ
ki(1− θ)k−ki

∑

i P (D|Mi)θki (1− θ)k−ki

subject to: θ ≤ θ ≤ θ

(3)

Note that we have a single unknown, having assumed that the prior probability of in-
clusion is equal for all covariates. Defining the k sets G1 . . . Gk, containing respectively
{1, 2, . . . , k} covariates, for every instance the function to minimize/maximize with respect
to θ become, from (3):

E[∆|D] = h(θ) =

∑k
j=0 θ

j(1 − θ)k−jZj

∑k

j=0 θ
j(1 − θ)k−jLj

(4)
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where Zj =
∑

v∈Gj
E[∆|Mv, D]P (D|Mv) and Lj =

∑

v∈Gj
P (D|Mv). Notice that the

length of this prediction interval changes instance by instance. This interval does not
have the coverage properties of a confidence interval; rather, it shows the sensitivity of
the prediction to the prior over the models. Therefore, the prediction interval represents
how much the BMA prediction varies when the θ used to specify the binomial prior varies
between the assigned θ and θ.

In the interval [θ, θ], the maximum (minimum) of the prediction h(θ) corresponds to θ = θ,
θ = θ or to a value of θ for which the first derivative of (4) is zero. The first derivative of (4)
can be identified, setting f(θ) =

∑k

j=0 θ
j(1 − θ)k−jZj and g(θ) =

∑k

j=0 θ
j(1 − θ)k−jLj ,

by

dh(θ)

dθ
=

f ′(θ)g(θ) − f(θ)g′(θ)

g(θ)2
(5)

The value of g(θ) is strictly positive because Lj is a sum of marginal likelihoods, there-

fore we search the solutions looking only at the numerator of
dh(θ)

dθ
, f ′(θ)g(θ)−f(θ)g′(θ),

which is a polynomial of degree 2k and thus it has 2k solutions in the complex plain. We
are interested only in the real solutions that lie in the interval (θ, θ). Such solutions, to-
gether with the boundary solutions θ = θ and θ = θ, constitute the candidate solutions
set. To find the minimum and the maximum predictions, we finally calculated the predic-
tion values in correspondence of each candidate solution. If θ < 0.5 and θ > 0.5, the
prediction of the uniform prior case (θ = 0.5) is always included in the prediction interval,
even though it does not generally constitute the center of the BMA interval. Notice that
CMA requires additional computational complexity compared to BMA, because of the
need for solving two optimizations problems for every prediction point.

3.1 Evaluating CMA performances

Evaluating performances is a challeng-
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Figure 1: Shape of IE, defined in (6), as
function of the distance y − yc and using the
parameters’ setting α = 2/3, β = r = 1. We
also plot the errors made by three different
punctual predictions, positioned at y = yc
(dashed line), y = yc − r (dash-dotted line)
and y = yc + 2r (dotted line).

ing task because we need to com-
pare the single-point predictions of the
BMA and the interval estimates of the
CMA. A possibility is to use the squared
error between the measure (y) and
the central point of the interval (yc):
CMA central error = (y − yc)

2. This per-
mits an easy comparison with the BMA
squared error but does not take into ac-
count the information linked with the ex-
tension of the prediction interval of BMA.
Currently, there are no well-established
metrics to compare a point prediction and
an interval prediction. On one hand, the
metric should penalize large prediction in-
tervals, because they are little informa-
tive; and on the other hand, it should re-
ward the prediction interval when it con-
tains the measured value or when its
boundaries falls close to it. We propose
the following Interval Error (IE) metric:

IE =

{

αr2 if yc − r < y < yc + r
αr2 + βmin[(yc − r − y)2, (yc + r − y)2] otherwise

(6)

where r is defined as half of the length of the prediction interval, α and β are constants
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whose values have to be chosen. If y is in the prediction interval of the CMA, IE measures
a constant error which is quadratic in the length r of the semi-interval. Conversely, when
y is outside the interval, the metric considers both the interval length and the quadratic
distance from the nearest interval bound. This preliminary metric has several limits,
especially the subjective choice of α and β. In Figure 1 we report, as function of y − yc,
the IE error with its parameters fixed to a specific value, and the quadratic errors of three
punctual predictions. In the following we consider a IE defined by β = 1 and α = 2/3 or
β = 1 and α = 1. Notice that, with the chosen value of α = 2/3, if the measured value
is inside the prediction interval, a single-point estimator performs better than CMA only

if it is within a distance of r
√

2
3 ∼ 0.82r from the measured value. More generally, we

can see that, if the punctual prediction is “near” the measured value, it outperforms the
interval prediction.

4 STUDY CASES

We tested CMA both on generated data and on “real” datasets, setting θ = 0.05 and θ =
0.95. In this way, we model a condition of prior ignorance. For BMA we set θBMA = 0.5,
namely a uniform prior on the models. Since θ ≤ θBMA ≤ θ, the predictions of the BMA
are always included in the prediction interval of CMA. For both artificially generated data
or real one, we performed experiments with different size of the training set. For each
size n, we performed 30 different training/test experiments, of which we report the mean.

As real study case, we investigated the population dynamic of Alpine ibex of the Gran
Paradiso National Park, Italian Alps (45◦ 25’ N, 7◦ 34’ E). The counts, performed from
1956 until nowadays, represent the longer continuous existing data series of Alpine un-
gulates abundance. The set of available covariates are presented in the Appendix A of
Jacobson et al. [2004]. The covariates contain the population abundance (Nt) and ten
meteorological variables, such as: the average snow depth (cm), the number of days of
snow depth above the mean, the number of days of snow depth above the mean plus
one standard deviation, the average daily maximum temperature in winter (◦C), the aver-
age daily minimum temperature in winter (◦C), the average daily maximum temperature
in summer (◦C), the average daily minimum temperature in summer (◦C), the total pre-
cipitation in spring (mm), the total precipitation in winter (mm) and the total precipitation
in summer (mm). Starting from these covariates, the authors select only the two most
correlated with the logarithm of the growth rate: Nt and the mean winter snow depth,
St. Finally they select as best, using AIC, a linear model for the logarithm of the growth
rate (Log[Nt+1/Nt]) that includes Nt, St and the interaction term NtSt. Here we adopt the
BMA and the CMA methodology for the same dataset considering all the eleven avail-
able covariates for the model, avoiding the step of covariate selection. The general model
structure is Log (Nt+1/Nt) = β0 +

∑

Xi
βjXj,t + εt; the dataset contains 38 instances.

The setting to generate a synthetic dataset is defined as S = {θ̃, k, n, snr}, were k is the
number of covariates, θ̃ is the probability of inclusion of the covariates, n is the dataset
length and snr is the ratio between the output noise and the input variance, as we formu-
late below. A dataset was generated, using a specific S, as follows: we extracted n values
for each covariate from a standard Gaussian; then we randomly included each covariate
in the model with probability θ̃; for each covariate Xj in the set of the included (Xi), we
randomly extracted the coefficient of regression βj from a standard Gaussian; the model
output was finally calculated as y =

∑

Xi
βjXj + ε, where ε ∼ N

(

0, snr
∑

Xi
β2
j

)

. Even-
tually, we validated the model on other 100 generated points. We generated the datasets
using two different values for snr (0.05 and 0.15), two different values for k (10 and 30),
nine values for θ̃ (0.1, 0.2 . . . , 0.9) and ten values for n (k, 2k, . . . , 10k). Notice that the
value θ̃ = 0.5 is the value we set also for the BMA predictions, and that corresponds to a
uniform prior above all the models.
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5 RESULTS

We use the BMA implementation from the R package BMS [Feldkircher and Zeugner,
2009], that we have extended to carry out the CMA methodology; we adopt Zellner’s g
prior with zero-mean priors for the coefficients.

As an example, we show the results of the following setting with generated data: snr =
0.15, k = 10, θ = {0.5, 0.9} and n = {k, 2k . . . 10k}. These settings produce almost the
same results, as you can see comparing the first (θ = 0.5) and the second (θ = 0.9)
row of Figure 2. The experiments made under other experimental settings produce quite
similar results. As expected, the length of the prediction interval decreases with the
training set dimension (Figure 2.[a,d]). Notice that both the median and the variance
of the prediction interval length decrease with the training set dimension. There is a
positive correlation between the squared error of BMA and the interval length (Figure
2.[b,e]). This correlation tends to vanish with the increase of n. This means that when
the CMA prediction interval increases, the BMA error tends to increase too, especially if
the dataset available for the model identification is small (say n < 4k). This correlation is
not large; still it is significant. The interval length reflects the prior uncertainty, but there
are many other sources that contribute to the prediction error, such as the uncertainty
linked with the parameter estimation and the noise. Therefore we could not expect a very
large correlation between the length of the CMA prediction interval and the BMA error.
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Figure 2: Results of the experiments on randomly generated datasets, as function of the
training set dimension, for k = 10 and snr = 0.15. The θ used to generate data is 0.5 for
the first row of plots and 0.9 for the second. Sub-figures (a) and (d) show the boxplots
of the mean interval length of the CMA predictions, divided by the standard deviation of
the output. Sub-figures (b) and (e) show the mean Spearman correlation between the
CMA interval length and the BMA prediction error. Finally, Sub-figures (c) and (f) show
the squared predictions errors of the BMA and CMA, using both the CMA central error
and the IE defined in (6). The black dots represent the mean CMA central errors, the
red diamonds the mean BMA squared errors, the green squares the IE with β = 1 and
α = 2/3 and the green triangles the IE with β = 1 and α = 1.
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The square loss of BMA has similar value, across the various experiments, to the square
loss obtained by using the central point of the CMA interval as prediction (CMA central
error), as shown in Figure 2[c, f]. In fact, the BMA prediction position seems to fluctuate
uniformly at random in the prediction interval of the CMA. The mean distance between
the CMA central prediction and the BMA prediction is indeed ∼ 0 and its absolute value
is about a quarter of the CMA interval length ( 12r). The IE defined in (6) with β = 1 and
2/3 ≤ α ≤ 1 is always smaller than the CMA central prediction error and than the BMA
prediction error (see Figure 2.[c, f]). These metrics indicate an encouraging performance
for CMA, although the IE is only a preliminary metric for scoring interval predictions.

In the Alpine ibex case, BMA identifies the following covariates as those with bigger
posterior probability of inclusion (sum of the posterior probability of the models that con-
tain the specific covariate): Nt (0.988), St (0.871) and the total precipitation in summer
(0.673), while the other covariates have a probability of inclusion that is less than 0.23.
Notice that, while Nt and St are included in the model of Jacobson et al. [2004], the
summer precipitation is excluded by the authors but has a large probability of inclusion
using BMA. As in the generated datasets, both the median and the variance of the inter-
val length tend to decrease with the training set dimension (see Figure 3.[a]). As partial
exception, we can see that small training sets are characterized by small interval lengths.
This behavior is due to the fact that, when the training set dimension n is less then k,
the method implemented in the BMS package takes by default only models with no more
than n− 3 covariates. The correlations of the squared error made by the BMA prediction
with the CMA interval length are significant and positive (see Figure 3.[b]). Moreover
they are larger in this real case than in the generated datasets. The errors made by the
BMA and the CMA central errors have similar values for n >> k (see Figure 3.[c]), with
a slightly bigger error for the CMA central point prediction. For smaller n, BMA error is
smaller or larger than CMA central error depending on the study case, without showing a
clear pattern. Even in this case the BMA prediction position can be considered randomly
and uniformly distributed in the prediction interval of the CMA. Using IE defined in (6)
with β = 1 and 2/3 ≤ α ≤ 1, CMA always outperforms BMA to make predictions.
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Figure 3: Results of the experiments made on the Alpine ibex dataset, as a function of the
training set dimension. The sub-figures have the same meaning of their corresponding
sub-figures of Figure 2.

6 CONCLUSIONS

In the BMA methodology, the prior model probability has to be given as a precise value.
Often, the prior knowledge on the system is instead not so precise. Our method, CMA,
expands the BMA methodology considering the uncertainty in the model prior probability.
It in fact allows to specify a set of priors, instead of a single value, for the probability of
inclusion of the covariates in a linear regression problem. Given a set for the probability
of inclusion of the covariates, we found a solution that analytically generates prediction
intervals. The length of the interval represents the effects of the prior of the models and,



Mignatti et al. / Credal Model Averaging

therefore, decreases with the dimension of the training set. Moreover, the length of the
interval is significantly correlated with the error made by BMA; namely, larger intervals of
CMA tend to correspond to larger errors for BMA. This is noteworthy, since BMA has no
natural tool for evaluating the sensitivity of the prediction on the specification of the prior.
The obtained results are consistent for both real and generated datasets. A new metric
called Internal Error (IE), has been defined to assess the goodness of the prediction
interval in comparison with the punctual prediction. Using this metric, the performances
of CMA seems encouraging. Nevertheless, currently the IE can only be considered a
preliminary metric to evaluate an interval prediction against a punctual one.

As future extensions, to make the methodology more elastic, we will allow the prior prob-
ability of inclusion θi to be different for each covariate. This allows the expert to precisely
express his/her prior knowledge on the probability of inclusion for each covariate. In this
case an analytical solution cannot be found, and solve the optimization problem becomes
much more complicated.

The performance of CMA with small training set dimensions makes the method particu-
larly suitable to address ecological problems, especially population dynamics problems.
These are, in fact, usually characterized by small datasets and by many environmen-
tal characteristics that can be defined as covariates, as in the Alpine ibex study case
presented here.
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