
Modeling response times in the Google ROADEF/EURO
Challenge

Paolo Cremonesi and Andrea Sansottera
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio 34/5, 20133, Milan, Italy
paolo.cremonesi@polimi.it, sansottera@elet.polimi.it

ABSTRACT
In this paper, we extend the machine reassignment model
proposed by Google for the ROADEF/EURO Challenge.
The aim of the challenge is to develop algorithms for the ef-
ficient solutions of data-center consolidation problems. The
problem stated in the challenge mainly focus on dependabil-
ity requirements and does not take into account performance
requirements (end-to-end response times). We extend the
Google problem definition by modeling and constraining
end-to-end response times. We provide experimental results
to show the effectiveness of this extension.

1. INTRODUCTION
The aim of the Google ROADEF/EURO Challenge1 is to

improve the usage of a set of servers in a geographically dis-
tributed data-center.2 Servers are arranged in local tightly
coupled clusters (neighborhoods) and distributed over dif-
ferent sites (locations). A server has several resources (e.g.,
RAM and CPU), and runs processes which consume these
resources. Processes are organized into single-tier services
(e.g., mail service, data-base service) which are integrated
into multi-tier applications. The allocation of processes to
servers is constraint by three types of requirement: (i) capac-
ity constraints: resource utilization cannot exceed maximum
server capacity; (ii) dependency constraints: closed-coupled
services must have processes running on the same server or
in a cluster of tightly connected servers; (iii) availability con-
straints: conflicting or mutually fail–over processes cannot
run on the same server; and (iv) continuity constraints: pro-
cesses of mission critical services must be spread across dif-
ferent sites. The objective function is composed of multiple
terms: (i) load costs, (ii) balance costs and (iii) movement
costs. The problem described in the Google challenge has
been partially addressed by other works in th past. Many
works [1] [2] [3] do not consider response times and depend-
ability constraints. Some works use optimization algorithms
at run-time to optimize the actions taken by adaptive sys-
tems [4] [5]. Other works [6] [7] introduce response time

1http://challenge.roadef.org/2012/files/problem_
definition_v1.pdf
2The challenge is still in progress. Only 30 out of 81 teams
successfully passed the first qualifications. The Politecnico
di Milano team currently holds the 16-th place in the leader-
board, ranking 3-rd in its category (junior open–source).

Copyright is held by author/owner(s).

constraints, assuming single tier-applications.
The problem described in the Google challenge has two

limitations: (i) the problem does not take into account end-
to-end response times, and (ii) when moving a process be-
tween servers, its resources consumption does not change.
The implications of the first point are easy to understand: a
solution to the optimization problem could lead to unaccept-
able increases in response times. Even if load costs penalizes
high utilization of resources and hence high response times,
response times are neither modeled nor constrained explic-
itly. The second point assumes that the number of visits to a
process does not depend on the process allocation. This as-
sumption is in conflict with the “dependency constraints”,
which bind the routing of request between closed–coupled
services to processes running on the same cluster (i.e., neigh-
borhood) of servers. This is better explain with Figure 1.
Front-end service s1 (composed of three load-balanced pro-
cesses p1 . . . p3) processes and dispatches class 1 requests to
back-end service s2 (composed of two load-balanced pro-
cesses p4 and p5). Because of a dependability constraint on
class 1 requests, all these processes are required to run on
the same cluster of servers (neighborhood 1 ). The two back-
end processes manage also class 2 requests, which are not
binded by any dependability constraints. If we move pro-
cess p4 to a different cluster of servers (neighborhood 2 ), that
process cannot handle class 1 request any more, because of
the dependability constraints. Therefore, all class 1 requests
will be handled by back-end process p5. This change of al-
location has the effect of changing the routing of requests
between processes and, in turns, their loads.

In this paper, we extend the machine reassignment model
proposed by Google trying to address and solve the two
above issues. To this purpose, we modify the definition of
services by introducing routing probabilities and number of
visits, and we develop a parametric queuing network model
for the service response time estimation. Model parameters
allow for the evaluation of response times as a function of
the mapping between processes and machines.

2. PERFORMANCE MODEL
Let S be the set of services, P the set of processes, M

the set of machines, R the set of resources, N the set of
neighborhoods. We partition the set of resources R into
two subsets, RS and RT. Examples of resources in RT are
processors. Examples of resources in RS are main memory
and storage space. We model each pair (m, r) ∈ M × RT

as a queueing station. Each service s ∈ S represents the
entry point of a different workload class, which needs to be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55235385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: Example of possible routing probabilities
with 3 services, 10 processes and 2 neighborhoods.
Service s1 depends on service s2, which depends on
service s3.

processed by all the services on which s depends on, directly
or indirectly. Any process p that belongs to s is functionally
equivalent (this is implied by the dependency constraints).
However, as in Google’s proposal, processes of the same ser-
vice might have different service times, even if running on
the same server. Let (S,D) be the directed graph repre-
senting the dependency relation D on the set of services S.
Moreover, let D+ denote the transitive closure of D. A job
submitted to service s ∈ S visits all services j ∈ S such that
(s, j) ∈ D+. We denote this set of services Ds. We require
that a job is serviced by processes assigned to machines that
reside in the same neighborhood, since they have high-speed
interconnections and shared storage.

We consider only transactional workloads. The arrival
rate of class s workload is denoted as Λs. We denote the
average number of visits performed by a job of class s to
a service j ∈ Ds as vsj . Once a job of class s enters the
system, a neighborhood n must be selected. We assume
the neighborhood choice is performed by an external load
balancer and we denote the probability that a job of class s
is routed to neighborhood n as αsn > 0.

Each tier (i.e., service) contains one or more processes
running in parallel in the same neighborhood. For each tier,
requests are dispatched to process p with probability βp > 0
by means of a local load balancer.

We represent the assignment of processes to machines with
a set of binary variables xpm, which are equal to one if and
only if process p is assigned to machine m. Moreover, the
continuous variables αsn ∈ [0, 1] and βp ∈ [0, 1] represent
the routing probabilities defined above. We now describe
how to compute the end-to-end response time τs for class s
workload, i.e., the workload entering the system at tier s.
The arrival rate at process p, which belongs to service s, is:

λp = βp
∑
n∈N

(∑
m∈n

xpm

)Λsαsn +
∑

(s,j)∈D+

Λjαjnvjs

 .

(1)
Let µpr be the service rate of process p at the resource

r ∈ RT of a reference machine. Moreover, let fmr be the
speedup factor of the resource r of machine m with respect
to the reference machine. According to the utilization law,

the utilization of the resource r of machine m is

umr =
∑
p∈P

xpm
λp

µprfmr
, (2)

where the binary variable xpm is used to account only for
the processes that are assigned to machine m. We model
the resources in RT as M/M/1 queues and compute the
expected response time of a process p executed at machine
m as follows:

tpm =
∑

r∈RT

1

(1− umr) (µprfmr)
. (3)

The expected response time of a request for service s routed
to neighborhood n is computed considering the routing prob-
abilities βp:

Tsn =
∑
p∈s

βp
∑
m∈n

xpmtpm, (4)

where the binary variable xpm selects only the processes
p ∈ s assigned to a machine m ∈ n. The end-to-end response
time of service s is determined by the routing probabilities
αsn and the visit counts vsj for all services j which service
s depends on:

τs =
∑
n∈N

αsn

Tsn +
∑

j∈S:(s,j)∈D+

vsjTjn

 . (5)

An example with 3 services, 10 processes and 2 neighbor-
hoods is shown in Figure 1. The dependency relation is D =
{(s1, s2), (s2, s3)}. The expected response times for service
s2 are Ts2,n1 = 0.4tp4,m1 + 0.6tp5,m7 and Ts2,n2 = tp6,m8 ,
where m1, m7 and m8 are the machines to which p4, p5 and
p6 are assigned, respectively. The end-to-end response time
is τs2 = 0.5(Ts2,n1 +vs2,s3Ts3,n1)+0.5(Ts2,n2 +vs2,s3Ts3,n2).
The objective function is the same of the Google’s ROAD-
EF/Euro Challenge. Moreover, we consider spread, conflict,
dependency, capacity and transient capacity constraints, which
we do not report for the sake of brevity. Of course, a set of
constraints ensures that each process is assigned to one and
only one machine: ∑

m∈M

xpm = 1 . (6)

We impose constraints on the end-to-end response times
τs ≤ τ∗s , where τ∗s is a user defined threshold for service
s. Finally, we need some constraints for the routing proba-
bilities: ∑

n∈N

αsn = 1 (7)

αsn ≤
∑
p∈s

∑
m∈n

xpm (8)

∑
p∈s

βp
∑
m∈n

xpm = min

(
1,
∑
p∈s

∑
m∈n

xpm

)
(9)

Constraint (7) is a normalization condition. Constraint (8)
ensures that αsn = 0 if there are no processes of s in neigh-
borhood n. According to constraint (9), the routing proba-
bilities for the processes of s located in n must sum to 1 if
there is at least one process and to 0 otherwise. Some of the
parameters in our model are not available in the data sets
provided by Google. In particular, the external arrival rates



Instance Initial Best Challenge Our Best Initial resp. time Final resp. time
min avg max min avg max

A1-1 49,528,750 44,306,501 46,837,191 6e-4 1.81 26.14 4e-4 1.59 23.49
A1-2 1,061,649,570 777,532,896 963,060,081 2e-3 12.14 1879.79 2e-3 9.47 1051.33
A1-3 583,662,270 583,005,717 543,401,234 4e-3 19.20 1079.41 3e-3 18.33 1235.23
A1-4 632,499,600 252,728,589 378,911,830 3e-4 4.81 204.38 3e-4 3.75 176.73
A1-5 782,189,690 727,578,309 734,170,638 4e-4 1.23 287.74 4e-4 1.12 241.36
A2-1 391,189,190 198 243,956,086 1e-3 6.31 359.99 6e-4 4.83 282.23
A2-2 1,876,768,120 816,523,983 1,421,701,784 0.03 184.68 20998.3 0.02 147.47 16611.2
A2-3 2,272,487,840 1,306,868,761 1,804,099,143 0.11 99.74 1988.74 0.12 74.13 1308.66
A2-4 3,223,516,130 1,681,353,943 2,277,732,762 0.02 65.84 2446.17 0.01 57.63 2400.46
A2-5 787,355,300 336,170,182 473,741,548 0.04 130.34 12132.8 0.04 116.91 10429.5

Table 1: Objectives obtained by our heuristic compared with the initial objectives and the best know objec-
tives for Google’s Challenge model. Statistics on the end-to-end response times are also reported.

Λs, the service rates µpr, the speedup factors fmr, the visit
counts vsj and the response time thresholds τ∗s are unknown.
We generate the external arrival rates and the visit counts
according to the exponential distribution. Moreover, the
speedup factor can be determined as the ratio of the capac-
ities, i.e. fmr = Cmr/Cm̃r, where m̃ is an arbitrarily chosen
reference machine. Given these parameters, if we fix the
routing probabilities of the initial solution, the service rates
µpr are uniquely determined by (1) and (2). Hence, we ran-
domly generate αsn for the initial solution and determine the
initial βp making the assumption that the response times of
each service are balanced within neighborhoods. Determin-
ing the initial βp requires the solution of linear systems. The
end-to-end response time thresholds τ∗s are set 20% higher
than the end-to-end response times of the initial solution.

3. RESULTS
We solved problems based on the first ten instances pro-

vided by Google for the ROADEF/Euro challenge. These
instances have from 4 to 100 machines, 100 to 1000 pro-
cesses, 79 to 1000 services and up 12 different resources. To
solve the proposed optimization model, we implemented a
Variable Neighborhood Search heuristic. Our heuristic was
run with a time limit of 15 minutes on a computer with a
Core i7 640M processor. Results are reported in Table 1.
For each instance, we detail the initial objective value, the
best known objective value for the original Google’s model
and the best objective value found for the model proposed in
this paper. The table also reports the minimum, average and
maximum response times for the initial configuration (i.e.,
the initial mapping between processes and servers) and for
the best configuration found from the consolidation model
proposed in this paper.

3.1 Discussion
Before discussing the results, we should remember that

our machine reassignment model differs from the Google
model for two aspects: (i) our model allows for the rerouting
(i.e., balancing) of requests between processes handling the
same workload; and (ii) our model requires the end-to-end
response time to increase of no more than 20% after relo-
cation. We can generally observe that our model is able to
significantly reduce the objective cost function for all of the
instances, without affecting response times. The only excep-
tions to this behavior are for instances A1-3 and A2-1. With
instance A1-3, we observe (i) a cost function lower than the

best optimum known for the Google model, and (ii) an incre-
ment of the maximum response time. Both aspects are due
to the rerouting of requests, that allows for the creation of
“thin” processes (e.g., processes with little load) which can
be fine-allocated in order to better saturate servers, with
the risk of larger response times and the benefit of a better
allocation of processes. In instance A2-1, the result found
for our model has a much higher cost than the best solution
for the Google’s model. This result is not surprising since
the presence of response time constraints severely limits the
space of feasible solutions.

4. REFERENCES
[1] B. Speitkamp and M. Bichler, “A mathematical

programming approach for server consolidation
problems in virtualized data centers,” IEEE Trans. on
Services Computing, vol. 3, no. 4, pp. 266–278, 2010.

[2] F. Hermenier, S. Demassey, and X. Lorca, “Bin
repacking scheduling in virtualized datacenters,” in
Proc. of the 17th int. conf. on Principles and practice
of constraint programming, ser. CP’11, 2011, pp. 27–41.

[3] J. Anselmi, E. Amaldi, and P. Cremonesi, “Service
consolidation with end-to-end response time
constraints,” in Software Engineering and Advanced
Applications, 2008. SEAA’08. 34th Euromicro
Conference. IEEE, 2008, pp. 345–352.

[4] T. Nowicki, M. Squillante, and C. Wu, “Fundamentals
of dynamic decentralized optimization in autonomic
computing systems,” Self-star Properties in Complex
Information Systems, pp. 366–366, 2005.

[5] J. Rolia, A. Andrzejak, and M. F. Arlitt, “Automating
enterprise application placement in resource utilities,”
in DSOM, ser. LNCS, M. Brunner and A. Keller, Eds.,
vol. 2867. Springer, 2003, pp. 118–129.

[6] J. Anselmi, P. Cremonesi, and E. Amaldi, “On the
consolidation of data-centers with performance
constraints,” Architectures for Adaptive Software
Systems, pp. 163–176, 2009.

[7] K. Dhyani, S. Gualandi, and P. Cremonesi, “A
constraint programming approach for the service
consolidation problem,” Integration of AI and OR
Techniques in Constraint Programming for
Combinatorial Optimization Problems, pp. 97–101,
2010.


