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ABSTRACT

The problem of modeling a nonlinear resistor in the
Wave Digital domain can be seen as that of apply-
ing to its nonlinear characteristic the affine transforma-
tion that maps Khirchhoff variables into wave variables.
When dealing with nonlinear elements with memory,
such as nonlinear capacitors and inductors, the above
approach cannot be applied, as affine transformations
are memoryless.

In this paper, a new approach is proposed for modeling
nonlinear elements with memory in the wave domain.
The method we propose defines a more general class
of wave variables and adaptors with memory that, un-
der some conditions, can incorporate the “memory” of
a nonlinear circuit and allow us to treat some nonlinear
elements with memory as if they were instantaneous.

1 Introduction

Wave Digital Filters (WDF’s) [1] are known to possess
several desirable properties not found in other digital fil-
ter implementations. In fact, not only are WDF struc-
tures based on analog circuits, but they tend to preserve
most of the characteristics of their analog counterpart.
For example, passivity and losslessness of analog filters
are preserved by their wave digital implementation. In
addition, the behavior of WDF is little sensitive to co-
efficient quantization, therefore we may have good dy-
namical range performance with modest accuracy re-
quirements. The inner resemblance of WDF’s to their
physical counterpart can also be useful when needing
to reproduce the qualitative behavior of some physical
system without giving up the flexibility of computing
systems.

Modeling nonlinearities in the wave domain is possible
in many cases where the nonlinear element 1s memory-
less [2], in which case its nonlinear characteristic can
be mapped directly into the wave domain through the
affine transformation that defines the wave variables as
a function of the Khirchhoff variables. In order to model
reactive nonlinearities or, more generally, nonlinear el-
ements with memory, classical WDF principles are no
longer adequate. In this paper we propose an exten-
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sion of the classical WDF theory, based on a new class
of wave variables and generalized adaptors that, besides
allowing us to model a variety of nonlinear elements with
memory in the wave domain, gives us a new perspective
on the classical WDF theory as well.

2 Preliminaries

Basic elements of WDF’s are adaptors, which are mem-
oryless devices whose task is to perform transformations
between pairs of wave variables that are referred to dif-
ferent levels of port resistance. In order to avoid non-
computability problems in the interconnection of the
wave models of all circuit elements, wave adaptors can
be made reflection-free at one port by adding a con-
straint to the levels of reference port resistance [1].

Under mild conditions we can simulate the behavior
of a circuit containing a nonlinear resistor by connecting
an appropriate instantaneous map with a reflection-free
port of an adaptor [2]. The characteristic F'(v,4) = 0 (in
the Khirchhoff domain) of a nonlinear resistor, in fact,
can be transformed into the Wave domain through the
change of variables v* = v + Ri, v~ = v — Ri. The
corresponding wave characteristic f(vT,v™) = 0 is thus
given by
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The conditions under which the reflected wave v=(¢)
can be written as a function v~ = g(vt) of the incident
wave vt (t) can be derived from the implicit function
theorem. For example, in the case of the piece-wise con-
tinuous characteristic [2] of a voltage-controlled resistor
i = i(v), the explicitability of v~ is guaranteed if either
one of the following conditions is satisfied
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3 Adaptors with Memory

Instantaneous nonlinearities (nonlinear resistors) can be
mapped onto the wave domain as they are described by
an algebraic equation, therefore it is sufficient to use
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the definition of wave variables as a transformation of
variables in order to obtain the wave counterpart of
such nonlinear elements. This coordinate transforma-
tion warps the nonlinear characteristic through a com-
bination of rotation and shear.

When dealing with nonlinear elements with memory,
l.e. circuit elements that are described by a differen-
tial equation rather than an algebraic one, traditional
tools provided by classical WDF theory are no longer
sufficient. As a matter of fact, even the simplest case
of purely reactive element, such as a nonlinear capacitor
or a nonlinear inductor, cannot be directly mapped onto
the wave domain by using classical WDF principles, as
we would have to cope with non-computable connections
by solving an implicit equation per output sample [3].
In order to be able to deal with nonlinear elements with
memory, we define a new class of wave adaptors with
memory, that can be used for incorporating the mem-
ory of any linear (and, in some case, nonlinear) circuit
that they are connected to.

Let us consider the Laplace-transform (V(s), I(s)) of
a pair of Khirchhoff variables (v(?),i(¢)). Instead of
defining a wave pair with reference to a generic resis-
tance R (see [1]) we define the new pair of wave variables
VT (s) = V(s)+Z(s)I(s), and VT (s) = V(s)—Z(s)I(s),
Z(s) being a reference impedance which, in fact, could
be the transfer function of any linear circuit. By do-
ing so, we incorporate part of the past history of the
Khirchhoff variables into the wave variables vt (¢) and
v (t).

An immediate consequence of the above definition is
in the structure of the adaptors between wave pairs that
are referred to different reference impedances. Let us
consider, for example, the case of a scattering junction
(see Figure 1) between two wave pairs (V;¥(s), V,”(s))
and (V;'(s),V; (s)), which are referred to Z;(s) and

Za(s), respectively. From the definition of the wave pairs

Vit =Vi+ 211
Vit = Va+ Zo 1o

Vl_ = V1 —_ Zlfl
VZ_ = V2 —_ Zz[z

and the continuity constraints, 1, = V5 and I1 = I, at
the scattering junction, we may quite easily express the
Laplace-transforms of the waves that are entering the
junction as a function of those that are exiting it

Ve = KVit+(1-K)Vy
Vit = (1+ KVt =KV,
where p p
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is the transfer function of the “reflection” filter that
characterizes the scattering junction with memory.
The digital version of the above junction can be ob-
tained through any suitable mapping from the Laplace-
transform plane to the Zeta-transform plane, such as the
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Figure 1: Scattering junction.
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It is important to notice that, when the instantaneous
portions of 7y e Z5 are equal, both ports of the scatter-
ing junction result as having no instantaneous reflection.

Particularly interesting is the case in which Z; is
purely resistive (Z; = R), while 73 is purely reactive.
For example, in the case of ideal inductance Z5(s) = s,
the scattering equations in the Zeta domain are

V() = K@V )+ (1= K@)V (2)
Va'(z) = (14 KA (2) = K(2)Vy (2)
where
o Da(z) - R 20 1—z7t
K(z) = m y Za(z) = T 141"

Notice that we may eliminate the instantaneous reflec-
tions at both ports by letting R = 2L/T', in which case
we have r = —z7 1.

This last result 1s quite interesting as we have just
found that, in order to “adapt” a linear inductor to a
resistor, we may use a scattering cell where the reflection
coefficient is replaced by a pure delay with sign change,
and whose second port is left open. In this particular
case, the whole scattering junction can be replaced with
a pure delay with sign change, which is how the classical
WDF theory [1] deals with linear inductors.

It is also important to notice that the adaptation be-
tween a purely resistive impedance and a purely in-
ductive one can be used for extending the results of
Meerkotter [2] on nonlinear resistors (see Section 2) to
the case of nonlinear inductors. In fact, the output of
an scattering junction that adapts R to sL, L > 0 is
given by the wave pair

Vit(s) = V(s)+ Lsi(s)
Vo (s) = Vi(s)— Lsl(s)

V(s)+ LJ(s)
Vi(s)— LJ(s)

where J(s) is the Laplace-transform of j(t) = di(¢)/dt.
As a consequence, since a nonlinear inductor can be
described by an algebraic relationship of the form



M(v,j) = 0 between the voltage v and the derivative
of the current j, we may use the results of Section 2
on nonlinear resistors [2] by letting L play the role of a
“reference inductance” in the affine transformation that
maps the Khirchhoff characteristic of the nonlinear in-
ductor onto the wave domain.

The case of the nonlinear capacitors is very similar to
that of the nonlinear inductors. In fact, the scattering
junction that adapts a purely capacitive impedance to a
purely resistive one will be the same as the above, with
the only difference in that R(z) = 271, as expected from
the classic WDF theory. Similarly to what we have seen
above, we can use this type of adaptors in the case of
nonlinear capacitors. In fact, the output of an scatter-
ing junction that adapts R to 1/(sC), C' > 0, is given
by the wave pair Vot = V +1/(sC), Vo7 =V — I/(sC),
ie. ®f = ®+41/C, ®; = @ — I/C, where ®(s) is
the Laplace-transform of ¢(2), ¢(t) = v(¢). As a non-
linear capacitor can be described by an algebraic rela-
tionship of the form P(¢,4) = 0 between the integral of
the voltage ¢ and the current j, we can use the results
of Section 2 by letting 1/C play the role of “reference
admittance” in the affine transformation that maps the
Khirchhoff characteristic of the nonlinear inductor onto
the wave domain.

A more general case is that in which 73 = R and
Za = Z(z) is a generic impedance of the form

A(z) _ant+ g
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The instantaneous portion of Z;(z) is represented by
the coefficient agp, therefore the absence of instantaneous
reflections at the two ports can be achieved by letting
R = ag. This choice yields

Zy(z) —ao __ 3oi—i(ai — aohi)e”
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R(z) =

Once again, when Z;(s) = 1/(sC), and R = T/(2C),
the “reflection filter” assumes the form K(z) =
2a027 Y /2a0 = 271,

When, as it often happens, Z5(z) is a causal FIR filter,
its transfer function can be written as Z2(z) = Zo[l +
z7YH(2)]. In this case, the adaptation condition Z; =
R = Zj results in a reflection filter of the form

z7YH(z)

K(z) = 24 z71H(z)’

which can be implemented by properly inserting the FIR
filter z=1H(2)/2 in a feedback configuration.

The approach proposed above for deriving scatter-
ing junctions with memory can be readily extended to
multiport parallel or series junctions by combining the
new definitions of wave variables at the various ports,
with the Khirchhoff equations that characterize a par-
allel or a series connection. The multiport adaptors

turn out to be structured in same way as those derived
by Fettweis [1] provided that the reflection coefficients
are replaced by reflection filters. For example, a se-
ries connection of n ports with port impedances Z;(z)
to Zn(z) is characterized by the Khirchhoff equations
Vi(2)+...+Vo(z)=0and I; = ... = I,,(z). The Zeta-
transforms of the m-th output wave, m = 1,...,n, can
thus be written as a function of all input waves as

Vi (2) = VE(2) = T () (Vi (2) + .+ Vi (2))
where
_ 27m(2)
2 (2) 4+ Za(2)
are the reflection filters. In order to make one port of
the junction reflection-free, for example the n-th one, it

is sufficient for the “instantaneous” coefficient of T'(z) to
be equal to one.

I (2)

4 Examples of Applications

Chaotic behavior in electrical circuits is due in most
cases to a nonlinear resistance. There are, however, sev-
eral examples of circuits that contain a nonlinear re-
actance and exhibit, in certain conditions, particularly
interesting phenomena such as period doubling (gener-
ation of subharmonic oscillation) and chaotic dynamics.
The accuracy of the computer simulation of such cir-
cuits 1s usually quite sensitive to the errors caused by
discretization. An example of this type, whose simu-
lation in the wave digital domain has been studied in
depth by Felderhoff [3], is represented by the anhar-
monic oscillator [4] of Fig. 2. This simple RLC circuit is
characterized by a nonlinear voltage-controlled capaci-
tance, whose ¢ — v characteristic

q= Co 70 , V> —g
V14t v/vg

is shown in Fig. 3. The parameters used for the sim-
ulation of such a circuit are vy = 0.6V, R = 1801,
L = 100puH, Cy = 80pF, and the voltage supplied
by the ideal generator is v(t) = epsin(27fot), fo =
1/(27/LCy). For v < wy the nonlinear element be-
haves like an active resistor, but since we are study-
ing the chaotic behavior of the circuit, we can assume
v > vy holds throughout the simulation, provided the
initial conditions are properly chosen. The behavior of
the varactor oscillator 1s studied for different values eg
of the voltage generator amplitude.

By using an adapted scattering junction that trans-
forms a purely resistive port resistance into a purely
capacitive one, as explained in Section 3, we may use
the results of Section 2 for mapping the nonlinear char-
acteristic of the capacitor (Fig. 3) onto the wave domain
(Fig. 4).

Unlike Felderhoff’s implementation [3], the varactor
oscillator can now be implemented in the wave domain
without “computability” problems, therefore there 1s no
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Figure 2: Electrical circuit of the anharmonic oscillator.
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Figure 3: Nonlinear characteristic of the capacitor of the
anharmonic oscillator in the Khirchhoff domain.

need of solving implicit equations for overcoming non-
computability problems. A phase portrait of the varac-
tor’s trajectories in the state space is shown in Fig. b
for T' = 321ﬁ Such a simulation is very little sensitive
to discretization errors, and the complexity associated
to it is now rather modest.

5 Conclusions

In this paper, a generalization of the Wave Digital Filter
theory has been proposed in order to be able to imple-
ment nonlinear elements with memory, such as nonlinear
reactances, in the wave domain. The proposed extension
of WDF theory gives us a new perspective on classi-
cal Wave Digital Filters. In fact, the well-known WDF
structures associated to linear circuits, can be now be
re-obtained in a different way, together with alternative
structures for implementing them.
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Figure 4: Nonlinear characteristic of the capacitor of the
anharmonic oscillator in the wave domain.
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Figure 5: Phase portrait for eg = 3.57V and T' = 321ﬁ
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