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ABSTRACT

Signal decimation aimed at optimal spectral packing has
a variety of applications in areas ranging from array pro-
cessing to image processing. In this article we propose
and discuss a new method for determining decimation
grid and prefilter that best fit the spectral extension of
any 2D signal defined on an arbitrary sampling lattice.
The method has been implemented and tested on digital
images in order to evaluate quality degradation due to
optimal spectral truncation.

1 Introduction

Sampling multidimensional analog signals causes their
spectrum to replicate over a regular point structure
whose density is inversely proportional to the sampling
density. Minimizing the gap among spectral replicas is
well-known to reduce information redundancy [1]. This
fact could be useful in a variety of applications that
range from from array processing [2] to Image Process-
ing [1, 3, 4].

Spectral packing through decimation is not an easy
task as it consists not just of a rational selection of data
samples, but it also needs a careful spectral truncation
for avoiding aliasing. In order to perform anti-aliasing
prefiltering, in fact, knowing the area of the spectral ex-
tension (spectral occupancy) is not sufficient: we also
need to consider its shape. The spectral energy of non-
synthetic images, however, usually occupies regions with
quite irregular and complex shape [4], which makes the
optimal design of a prefilter very difficult. On the other
hand, the spectral extension may be defined and esti-
mated according to the class of prefilter we adopt for
decimation purposes. More specifically, if we restrict
the class of prefilters we are interested in to those having
an arbitrary compact and convex passband, all we need
about spectral extension shape is the direction around
which the spectral energy is maximally concentrated
(principal axis) and a measure of the energy dispersion
about this axis. This way of quantifying the anisotropy
of the spectral distribution corresponds to approximat-
ing the spectral extension with an ellipse whose shape
is decided by the ratio between the inertia moments of

the power spectrum, while its size is chosen according
to the severity of the spectral truncation we are willing
to apply.

In this paper we propose and test a method, based
on the above convexity assumption, for jointly and au-
tomatically determining decimation grid and prefilter
for two-dimensional discrete signals defined on arbitrary
lattices. The method has been implemented in a fully
automatic computer procedure and tested on several im-
ages.

2 Mathematical preliminaries

Given a non-singular matrix A € R™  the M-
dimensional lattice A generated by A is defined as:

A=LAT(A)={xeRM| x=An ne 7"}

which is the set of all possible linear combinations with
integer coefficients, of the M linearly independent vec-
tors (basis of the lattice) that are given by the columns
of A.

Given a basis A, it is possible to derive any other basis
A’ of A= LAT(A), as A’ = AU, U being a unimodular
matrix (| det(A)| = 1).

A fundamental cell & of an M-dimensional lattice
A is a closed region of RM such that the collection
Sp = {S+a,a € A} of all shifted version of S on the
points of A tiles RM without overlapping. Notice that
there exist infinite fundamental cells for a single lattice,
but their hypervolume is always the same and is given
by d(A) = |det(A)| (a measure of the lattice density is
thus 1/d(A)). Notice also that there exist no general ge-
ometric classifications of all possible fundamental cells
of a given lattice. The only results that are available
in the literature concern convex cells [5] and are partic-
ularly simple in the 2D case. In fact, the only convex
regions that tile R? are parallelograms and hexagons
with central symmetry.

I' = LAT(B) is a sublattice of A = LAT(A) (ie. a
subset of A with lattice structure) if and only if there ex-
ists a non-singular integer matrix H such that B = AH.
The integer number |det(H)| = | det(B)|/| det(A)| cor-
responds to the decimation ratio. All k-th order sub-
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lattices of A = LAT(A) can be obtained as T; =
LAT(WZ), where W,; = AH; H,; € HM,k, where HM,k
is the set of integer matrices in Hermite normal form
whose determinant is equal to k [4].

The Fourier transform U(f) of a discrete signal u(x),
defined on the lattice A, 1s periodic and its periodic-
ity centers are specified by A* = LAT (A_T), which is
called “reciprocal lattice” of A [3]. The Fourier trans-
form U(f) is thus completely specified by its values
in any fundamental cell P of A*. Decimating u from
A =LAT(A) to T = LAT(B), T being an n-th order
sublattice of A, returns the signal v(x) = u(x), x € T,
and the relationship between Fourier transforms [3] re-
sults as )

V(f)_nZU(f—l—a) (1)

ael

Z being any A*-period of I'*. In order to be able to
perfectly reconstruct a signal u defined on A from its
decimated version v on I', it is thus necessary for the
support of U(f) to be confined inside some fundamental
cell P of T'*. In this case the reconstruction can be
done by using an interpolating filter from I' to A, having
frequency response H(f) = n in P, and zero elsewhere.

3 Decimation approach

The first step of the procedure we propose consists of
estimating the spectral extension of the signal. From
such information we determine an upper bound for the
index of the sublattices to choose among, by simply com-
puting the spectral occupancy of the estimated spectral
extension. The maximum index of decimation kg repre-
sents the order from which to start looking for suitable
decimation grids.

Once the maximum decimation ratio ky is avail-
able, we generate all distinct kg-th order sublattices
and, among them, we discard all those that are non-
compatible with the spectral extension. If no compati-
ble subgrids of order ky can be found, we decrease the
order and repeat the search until some compatible ones
are found. For each one of them, we generate the funda-
mental cell that best fits the elliptical spectral extension,
by using a geometrical approach. A selection of the best
sublattice-cell pair can finally be performed among the
remaining candidates, according to some specific crite-
rion.

As already mentioned in the Introduction, the class
of prefilters we are considering has a convez passband
region. As the only convex regions that tile R? are par-
allelograms and hexagons with central symmetry, the
only shape information on the spectral extension we
need is given by the direction around which the spec-
tral energy is maximally concentrated and a measure
of the energy dispersion about that axis. Quantifying
the spectral anisotropy through the second-order energy
distribution corresponds to approximating the spectral

extension with an ellipse whose shape is decided by the
ratio between the inertia moments of the power spec-
trum, while its size is chosen according to the severity
of the spectral truncation we are willing to apply. Spec-
tral extension estimation, as a consequence, consists of
finding the inertia ellipse of the power spectrum:

pidi + pyds = r* (2)

whose coordinates (dy,da) are referred to the principal
axes of the power spectral distribution, while p; and ps
are the radii of gyration (which, in turn, are a function
of the inertia moments). The parameter r can be chosen
in such a way for the ellipse to enclose a specified portion
of the signal energy.

The area A = wpyps of the spectral ellipse can be
used as an estimate of the spectral occupancy of the
signal. As a consequence, the largest integer kg below
area(P)/A, P being a fundamental cell of the sampling
grid, can be used as an upper bound for the index of the
sublattices that could be used for decimation.

Once the maximum decimation ratio kg is available,
we can generate all k-th order sublattices, with & < kg,
by determining all matrices in Hermite normal form,
with determinant & .

The spectral extension can now be used for deciding
whether the sublattice I' of the original signal support
A 1s suitable for decimation. More precisely, we need
to check its compatibility by verifying that the elliptical
spectral replicas, generated by I'-decimation, does not
overlap. In order to do so, we first need to determine the
k points of the reciprocal lattice I'* that fall inside one
A*-period of R? (centers of replication of the original
spectrum). We then should test whether overlappings
between any two replicas of the spectral extension occur,
which can be done by checking for overlappings between
the replica about the origin and the others.

The fact that the spectral extension model is elliptical
makes the compatibility check particularly simple. In
fact, the limit-region for the replication centers beyond
which no overlapping occurs is itself an ellipse (threshold
ellipse) whose radii of gyration are twice the spectral
ellipse’s radii, as shown in Fig. 1.

A sublattice T' is compatible with the signal spectral
extension if none of the replicas overlap with the original
extension, i.e. if all points of I'* lie outside the thresh-
old ellipse. All compatible subgrids are good candidates
for decimation, therefore we need a criterion for decid-
ing among them. As the choice of decimation grid is
strongly influenced by the shape of the passband region
of the prefilter (fundamental cell of the reciprocal of the
sublattice), in order to be able to decide among the com-
patible subgrids we need a fast method for generating
a fundamental cell that well fits the spectral extension,
for each compatible sublattice.

In general, there exists a non-numerable multitude of
fundamental cells for a sublattice, and the degrees of
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Figure 1: Threshold ellipse for checking the compatibil-
ity of a sublattice I' C A.

freedom in their shape are enough to make the search
extremely difficult. Restricting the class of fundamental
cells to the convex ones, however, greatly simplifies the
situation as, according to the results of Section 2, all
convex fundamental cells of a two-dimensional lattice
are hexagons with central symmetry.

A method for determining a hexagonal fundamental
cell of a given compatible sublattice which entirely en-
circles the elliptical spectral extension, is described in
Fig. 2. The method consists of determining the 6 points
of I'* that are closest to the threshold ellipse, building
two triangles by using two triplets of alternate points,
and determining the hexagonal cell as the intersection
of the two triangles. Notice that, when all six points
used for constructing the hexagon lie on the threshold
ellipse, the above method generates the tangent hexagon
of Fig. 1. The fundamental cell we obtain can be used for
constructing both the anti-aliasing and the reconstruc-
tion filters. In fact, both of them will have a pass-band
region that resembles the fundamental cell determined
above.

Last step of the decimation procedure consists of
choosing the best decimation setup among the compat-
ible subgrid/prefilter pairs. Notice that all the available
candidates are acceptably good, therefore the choice
must be made according to some criterion of optimality
that takes into account some measure of the fitness be-
tween fundamental cell and spectral extension. In prac-
tice, we select the sublattice whose prefilter has mini-
mum impact on the principal axis of the power spectral

Figure 2: Construction of the prefilter: the hexagon
is given by the intersection between the two triangles
{P1, Ps, Ps} and {Ps, Pa, Ps} built on the six closest
points of the lattice.

distribution. More precisely, we can choose the prefilter
that minimizes the angle between the principal axis of
the non-prefiltered spectrum and that of the prefiltered
spectrum.

4 Examples of application

The method proposed in this article has been 1mple-
mented into a completely automatic computer proce-
dure and tested over a series of real images.

An example of application is shown in in Fig. 3a.
The spectrum of this image (Fig. 3b), exhibits a certain
anisotropy. The principal axes of the elliptical spectral
extension have been chosen to be 3.5 times the inertia
axes of the power spectrum samples. The maximum
order of decimation in which some compatible sublat-
tices can be found is k¥ = 15. Among the hexagonal
fundamental cells that are associated to all compatible
15-th order sublattices, the one whose principal axes are
closest to those of the elliptical spectral extension is cho-
sen to define the passband region of the image prefilter
(see Fig. 3b), while the relative sublattice is the corre-
sponding decimation grid. At this point the image can
be prefiltered through spectral windowing, by using a
smoothened version (in order to prevent ringing from
occurring) of the ideal prefiltered obtained above. Dec-
imating the image over the selected subgrid causes the
truncated power spectrum to replicate like in Fig. 3¢
where it 1s quite apparent how the elongation of the
power spectrum due to the prevalence of some edges
along a specific direction, causes subgrid and prefilter



to preserve the spectrum in that direction.

The same filter used for avoiding aliasing is now used
for reconstructing the original image from the decimated
one. The reconstruction results of the test image are re-
ported in Fig. 3d, where a comparison is made between
corresponding zoomed-in details of original (left) and re-
constructed (right) images. As we can see, the blurring
due to the low-pass anti-aliasing filtering is still accept-
able despite a reduction of 15 times in the amount of
samples that are actually being used for describing the
image itself. This result would not be possible with more
traditional decimation methods.

5 Conclusions

In this paper we presented a new technique for decimat-
ing discrete 2D signals, which is capable of considerably
reducing the spectral redundancy while suppressing the
least amount of spectral energy. Spectral characteristics
of the signal are taken into account for determining both
decimation grid and anti-alias filter.

We have implemented our decimation technique into
a fully-automatic computer procedure and tested it over
a series of images. The quality of the reconstruction re-
sults have proven the effectiveness of the method, show-
ing that decimation factors between 10 and 20 can be
reached with acceptable blurring, in spite of the fact
that the resulting sampling grids are uniform.
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Figure 3: Decimation of the image “Lenna” with the
15*-order decimation basis vi = [5 0]%, vo = [23]7: )
original image, b) power spectrum of the original image
(log scale), elliptical extension and optimal prefilter, ¢)
spectrum of the decimated image, zoomed-in details of
the original (d) and the reconstructed (e)images.



