
Service-Oriented Dynamic Software Product Lines with DyBPEL

Liliana Pasquale∗, Sam Guinea†, Luciano Baresi†,
∗ Lero - the Irish Software Engineering Research Centre, Limerick, Ireland

Email: liliana.pasquale@lero.ie
† Politecnico di Milano, Milano, Italy
Email: {guinea|baresi}@elet.polimi.it

Abstract—Software systems are becoming more and more
dynamic. New requirements, context-awareness, and intrinsic
complexity are demanding for solutions that allow software
systems to change themselves while in operation. This shift has
imposed dynamic software product lines (DSPL) to support
late variability in systems that need to cope with changes
at runtime. Since Service Oriented Architecture (SOA) have
proven to be a cost-effective solution to the development of
flexible and dynamic software systems, this paper discusses the
convergence between SOA and DSPL. The proposed solution is
based on CVL and on DyBPEL, our extended BPEL solution
for managing variability at runtime. The proposal has been
validated through a simple scenario in the context of smart
homes. Obtained results are promising and interesting.

I. INTRODUCTION

Modern software systems are becoming more and more
flexible and dynamic, as they increasingly exploit runtime
adaptations to cope with changes in their context of ex-
ecution and in their requirements. Often times, however,
the sources of change cannot be predicted in advance,
making it impossible to engineer systems that incorporate
all possible variants. Furthermore, managing a huge number
of configurations can be extremely costly.

In the past the alternative features would be identified and
selected before deploying the system; nowadays the actual
features need to be selected, deployed, and operated while
the system is in execution. This shift towards runtime solu-
tions has imposed the advent of dynamic software product
lines (DSPL): they extend software product lines (SPL) to
support late variability. Thanks to DSPL, software product
lines are becoming situational-aware, flexible and capable
of adapting their features.

SPL exploit the fundamental notion of feature model-
ing. Feature modeling is the design-time task in which
the designer analyzes the software family as a whole and
establishes (i) the common and reusable assets that form
its basic platform, and (ii) the application-specific assets
required for its specific customizations. The model shows
the alternative variations that can exist for each feature, and
describes the constraints that exist between them. In DSPL
we need to be able to dynamically switch an executing
system from one variant to another, without stopping its
execution, without violating its feature model’s constraints,

and without degrading its functional and non-functional be-
havior. However, we believe that being able to dynamically
switch between feature sets is still not enough to satisfy
our needs. The feature model itself must become a runtime
entity that can dynamically evolve to satisfy new variability
dimensions in the system.

Since Service Oriented Architecture (SOA) has proven to
be a cost-effective solution to the development of flexible
and dynamic software systems [1], we believe that the
convergence of SOA and DSPL can provide significant
mutual advantages. On the one hand, the loose coupling that
is intrinsic to SOA techniques can provide DSPL with the
technical underpinnings needed to provide flexible feature
management. In this sense DSPL can benefit from the great
body of work achieved in the realm of self-adapting SOA
systems [2], [3], where monitoring and adaptation techniques
have been extensively studied. On the other hand, DSPL can
provide the modeling infrastructure required to understand a
running SOA-based system, by highlighting the relationships
that exist between its various parts. In particular, these mod-
els can be used to understand the implications of modifying
a system’s configuration at runtime.

This paper aims to encourage this convergence by focus-
ing on BPEL compositions, and by enriching them with dy-
namic variability management. Our contribution is therefore
twofold: on the one hand, we present a technical SOA-based
solution for DSPL; on the other hand, we provide BPEL
processes with the modeling support they need to understand
and embrace higher degrees of variability. The approach
defines variabilities for our BPEL processes using CVL
(Common Variability Language) [4]. This choice allows us
to easily generate a dynamic software product line starting
from our models, and then to run and manage it using an
enriched BPEL engine. In this sense we provide DyBPEL,
an open-source BPEL engine augmented with adaptation
capabilities that can be used to dynamically inject variabil-
ity into processes. The framework exploits aspect-oriented
programming [5] to dynamically change the features that are
bound to their variation points, as well as the variation points
themselves. Features consist of fragments of BPEL code that
can access both the process’ internal state and cooperate
with remote partner services. This allows BPEL processes
to cope with unexpected changes in requirements, in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55234909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

availability of resources, and in the execution environment.
Even if the aspect-based solution has been validated on con-
ventional BPEL engines, we claim that proposed concepts
and solutions can be exploited in a wider context.

The proposal is validated on a simple example in the
context of smart homes in which we automate the control of
domestic systems (e.g., heating, lighting, presence detection)
to save energy. For example, we may want to activate au-
tomatic lighting to limit energy consumption. The obtained
results are interesting and promising.

II. SERVICE ORIENTED ARCHITECTURES (SIDEBAR)

A Service Oriented Architecture (SOA) defines an archi-
tectural pattern that allows one to garner beneficial qualities
in complex systems that require intra- and inter-enterprise
integration and collaboration [6]. SOA systems build upon
the notion of services, that is, of self-describing coarse-
grained components that are accessed over the Internet using
well-defined standards, such as WSDL (Web Service De-
scription Language [7]) and SOAP [8]. Services are loosely
coupled, independent entities that can be implemented using
heterogenous technologies. They simplify cross-enterprise
integration, and allow complex service-based systems to
become more flexible with respect to change.

Integration is simplified because a service provider only
needs to publish a service (description) once. There is no
need to download and deploy the services one wants to use;
they can simply be accessed remotely through the Internet.
This also means that the providers are the ones responsible
for their management. This, in turn, has profound implica-
tions on the adopted business model: services can be charged
on a per-interaction basis, using a flat rate, or be provided
freely and supported through advertising.

Modern software systems also become more flexible with
respect to the changes that can occur in their context of
execution, or in the requirements that their stakeholders
impose. This is crucial for emerging domains such as ambi-
ent intelligence, context-aware applications, and pervasive
computing, and has been an important research problem
within the SOA community for some time. One identified
solution is to take advantage of loose-coupling, and to use
dynamic- or late-binding techniques to exploit the most
appropriate services available at runtime during any given
situation.

The main development task in SOA systems is com-
position. Although many composition models have been
proposed, most of the them are choreographies implemented
in BPEL (Business Process Execution Language) [9]. A
BPEL process establishes the order in which message ex-
changes are performed between a centralized entity, called
the BPEL engine, and its external partner services. Although
initial traction has been high, time has shown that the
BPEL standard is fundamentally flawed in its capability to
support change. Theoretically, one could support dynamic

endpoint selection, but this would require that the endpoint
management be intertwined with the process’ main business
logic. However, this is often times unfeasible, especially
when the change-space is large, or partially unknown at
design time. BPEL engine vendors have provided alternative
solutions under the guise of BPEL extensions, yet this
defeats one of the standard’s most important goals, which
is to have portable business processes that can be run on
diverse engines. Finally, as we show in this article, being
able to support change may require capabilities that go
beyond simple service rebinding. For example, a process
may need to substitute entire streams of operation; the BPEL
specification currently has no solution for such scenarios.

Although the main ideas behind SOA systems are not
new, the focus on well-defined standards, a simplified devel-
opment process, and a clearer understanding of distributed
applications, has allowed them to flourish. Nevertheless,
some of the initial promises, and in particular its ability to
easily support change, have not yet been entirely met.

III. DYBPEL

DyBPEL extends ActiveBPEL [10], an open-source BPEL
engine, with adaptation capabilities that can be used to
dynamically inject variability into processes. DyBPEL’s
architecture is shown in Figure 1. It includes three main
components: the Coordinator, the Runtime Modifier, and
the BPEL Modifier. The Coordinator is a web service that
exposes administrative operations that can be used to migrate
running and future process instances to new process ver-
sions, and to coordinate the modifications that the Runtime
Modifier and the BPEL Modifier need to perform. The
former handles the migration of a running process instance,
while the latter manages future process instances.

DyBPEL also includes a fourth component, which we
refer to as DB (MySQL). It contains all the data structures
required to effectively operate the Runtime Modifier and
the BPEL Modifier. This component traces the processes
that are deployed on the engine, the versions associated
with each process, and the number of running instances that
comply with each version (see record T1 in Figure 1). It
also stores the changes that will be applied on the executing
instances of the process, in case they need to be migrated
to a new version (see record T2 in Figure 1). Each change
record specifies the type of change (i.e., add/remove
an activity, a variable, or a partner link), and the point
in the process in which execution should be temporarily
blocked for the change to be applied (block activity).
If the change consists in the addition or removal of a
BPEL activity, the record must also contain the target
activity, that is the activity to be removed, or the activity
after which a new activity will be added; and finally, if the
change consists in the addition of a variable, a partner link,
or an activity, the record must also contain the corresponding
XML definition.

2

 DyBPEL
DB (MySQL)

Runtime Modifier

Coordinator
BPEL

Modifier
Active
BPEL

process
name

version
number

process
definition

num of
instancesT1

type of
change

block
activity

target
activity

XML
definitionT2

process name,
substitutions

Migrate running
instances

process name
new process definition

Migrate future
instances

Figure 1. The Architecture of DyBPEL.

When the Coordinator receives a request to migrate a
running process instance to a new version, it receives the
process name, and the substitutions that the requestor wants
to apply. For each substitution, the Coordinator generates a
set of entries in the DB that specify the changes and the
block activities in which they should be applied. Note that
the block activities should guarantee that no conversation
with partner services is interrupted, and that all internal state
variables are in a consistent state. In other words, migrations
cannot be performed while the process is executing activities
in a transactional scope. For example, we can only add or
remove partner links when scopes that incapsulate them have
yet to be activated. If we want to add or remove an activity,
the execution point should be immediately before the target
activity and should not be contained in any transactional
scope. If a process instance already passes the execution
point where the first modification should be applied, it
cannot be migrated anymore and it will continue to comply
with the same version.

The Runtime Modifier is the component in charge of
intercepting a running process to apply the changes stored in
the DB. This is achieved exploiting AOP techniques (Aspect
Oriented Programming [5]), and, in particular, AspectJ [11].
The process is stopped after each BPEL activity is executed.
At this point the DB is checked to see whether it is necessary
to perform changes in that point of execution. If it is the
Runtime Modifier starts by retrieving the runtime object that
is created by ActiveBPEL to represent the execution state
and the activities of the intercepted process, i.e., the Ae-
BusinessProcess. It then applies the requested modifications
by adding and removing activities, partner links or variables.

The BPEL Modifier is the component in charge of mi-
grating future instances to a new process version. It starts by
extracting from the DB the id of the process’ latest version.
Then it creates a new endpoint that will be associated with
the new version of the process, and modifies ActiveBPEL’s

deployment descriptor file for that process. Finally, the
BPEL Modifier deploys the new version of the process in
a way that is transparent to the users. It also creates a new
record in the DB which contains the newest version’s id and
its definition.

IV. DSPL WITH DYBPEL

This Section describes how DyBPEL can dynamically
support the deployment of new product lines associated
with executing BPEL processes. Our approach to defining
software variabilities and to generating a dynamic software
product line is based on CVL. CVL is a technology in-
dependent language that proposes metamodels, semantics,
and a concrete syntax for specifying variability. To illustrate
DyBPEL and its interplay with CVL, this section provides
a simplified example in which we illustrate a system that
automates the control of the domestic appliances in a smart
home (e.g., heating and lighting). The CVL representation
of the software variabilities associated with this example is
shown in Figure 2.

To express variabilities in CVL the variability designer
needs to define what a Base Model, a Feature Model,
and a Product Realization Model. In our approach
the base model is provided in BPEL, and it contains the
mandatory features of our application. However, we enrich
it with Fragments and Substitutions. The former specify
additional pieces for the base model (i.e., BPEL fragments),
ranging from additional variables and partner links, to
groups of activities of any given complexity. The latter define
how pieces of the base model can be replaced by specific
fragments. The feature model is provided in a technology
independent language, and it contains the possible feature
choices and relationships that exist between them. Finally,
the realization model associates each choice in the feature
model with the substitutions that have to be performed on
the base model. Note that after a set of features is chosen, the

3

New Process Definition (Product line)

while
[!terminate]

pick

onMessage
(pt, Low temp)

invoke
[ph, On]

onMessage
(pe, Energy peak)

invoke
[ph, Off]

invoke
[ph, Temp]

onMessage
[po, Occupancy]

invoke
[pl, Switch on]

Process Name
+

Migrate running instances

Product Realization
Model

Control heating +
control light

[Base Model, S1, S2, S3]

Base Model (BPEL)

Substitutions

S3

Placement: /process/while/pick/onMessage
Replacement: F1

Feature Model

Appliances
Control

Heating
Control

On Off Set
temperature

On
if present

Light
Control

onMessage
[po, Occupancy]

invoke
[pl, Switch on]

Fragments

F1while
[!terminate]

pick

onMessage
(pe, Energy peak)

onMessage
(pt, Low temp)

invoke
[ph, On] invoke

[ph, Off]
invoke

[ph, Temp]

S1
Replacement: pl, po

S2
Replacement:

occupancy,
Switch On

CVL

onMessage
[po, Occupancy]

invoke
[pl, Switch on]

Fragments

F1

Substitutions

S3

Placement: /process/while/pick/onMessage
Replacement: F1

S1
Replacement: pl, po

S2
Replacement:

occupancy,
Switch On

Process Name
+

+

Migrate future instances

Figure 2. An example product line expressed in CVL.

generation of the new product line is automatically supported
by CVL.

As described in the Feature Model of Figure 2, our exam-
ple system is characterized by mandatory features (Heating
control) and optional features (Light control). When pro-
viding heating control the system can switch the heater on
(On) if the temperature is too low, or switch it off (Off) if
it is too high. It can also reduce its target temperature (Set
temperature) if the energy consumption is peaking. When
providing light control the system can switch the light on
(On if present) if a person is detected on premise.

In our example the base model only includes the process
variables, activities and partner links necessary to support
the mandatory features of the system. The process has three
partner services to monitor the temperature (pt), control
the energy consumption (pe), and manage the heater (ph).
When the temperature is too low, the process receives
message Low temp from pt, and consequently invokes ph
to switch the heater on. When an energy peak is detected,
the process receives message Energy peak from pe, and
evaluates how near the temperature is to its target. If it is
the process invokes pt to reduce the target temperature to
Temp; alternatively, it invokes ph to switch the heater off.

The light control feature is implemented through fragment
(F1). This fragment includes two new partner services. The
first one (pl) is in charge of controlling the lighting, while

the second one (po) represents a sensor capable of detecting
human presence. Every time po discovers that a person is
in the room it sends a message (Occupancy) to the process.
Subsequently, the process invokes pl to switch the light on.
To apply the light control feature, a set of substitutions (S1,
S2, and S3) is specified. S1 adds partner services po and pl,
while S2 adds variables Occupancy and Switch on needed to
represent the messages exchanged between the process and
its partner services within fragment F1. Since the locations
in which the partner services and variables are added are
fixed, it is not necessary to specify a placement in S1 and S2.
S3 specifies that F1 can be inserted right after the onMessage
definition associated with the pick activity.

When we need to migrate a running process instance,
the approach automatically generates the input that needs to
be sent to DyBPEL’s Coordinator component. It sends the
name of the process, as well as the substitutions identified
using the product realization model. In our example, the
Coordinator reacts by creating a new record in DyBPEL’s
database for each variable and partner link that needs to
be added. The modifications need to be applied before the
pick activity. The Coordinator also creates a new record for
adding fragment F1. The target activity, in this case, is one
of the onMessage definitions defined in the context of the
pick activity. The execution point where the process should
be blocked is after the execution og the pick activity.

4

When we need to migrate future process instances, a
new product line is generated directly through the CVL-
based approach. A request containing the process name and
its modified definition is subsequently sent to DyBPEL’s
Coordinator, the new version is deployed, and new process
requests are transparently redirected to the newest version
of the process.

V. EVALUATION

This section briefly discusses the performance of our
solution and its limitations. Table I provides data describing
the time needed to migrate a running process instance. This
includes the time needed to execute the (Pick) activity where
the migration is performed. It includes the delay introduced
when we retrieve a modification from the DB (DB Check)
and when we apply the changes (Changes). The time needed
to dynamically modify the process is very low (∼ 11%
of the execution time of the pick activity); while the time
needed to interact with the DB is higher (∼ 25% of the
execution time of the pick activity).

Average Time [s] Median [s] Variance
DB Check 0.0463 0.045 0.00002

Change 0.0198 0.019 0.00001
Pick 0.2472 0.2485 0.0001

Table I
PERFORMANCE TO MIGRATE THE RUNNING PROCESS INSTANCES.

Our approach has the drawback of being intrusive, since it
needs to interrupt the process’ execution at the end of each
activity. This means that when we need to decide whether to
migrate a running process or not, there is a tradeoff between
the process delay and the criticality of the updates. Another
limitation is that in some cases not all of the running process
instances can be migrated to a new version. As a matter
of fact, once a process instance has passed the execution
point in which the changes need to be applied, it cannot be
migrated anymore. For this reason, it would be beneficial to
trigger suitable rollback activities to restore the execution to
a previous state in which the changes can still be applied.
However, this is a complex problem that involves distributed
rollbacks, since we also need to compensate actions that have
already been performed by the process’ partner services.
This will be part of our future work in this area.

Table II provides data describing the time needed by the
Coordinator and the BPEL Modifier to migrate future pro-
cess instances. Note that the time needed by the Coordinator
also includes the time needed by the BPEL Modifier. The
main overhead is generated by the BPEL Modifier which
needs to deploy a new version of the process and create
a corresponding entry in the DB. Note that this overhead
is independent from the complexity of the process being
deployed.

Average Time [s] Median [s] Variance
Coordinator 0.1515 0.141 0.0035

BPEL Modifier 0.1302 0.115 0.0043

Table II
PERFORMANCE TO MIGRATE THE FUTURE PROCESS INSTANCES.

VI. RELATED WORK (SIDEBAR)

In [12], Gomaa and Hussein established that the advent
of new and emerging domains, such as ubiquitous com-
puting, house automation, and ambient intelligence would
require higher degrees of adaptability not often provided by
traditional SPLs. This same stance was further backed by
Hallsteinsen et al. in their well-known paper on DSPL [13].
In this paper, they highlighted the need to support variations
in requirements and in resource constraints, and discussed
the properties a DSLP needs to possess to tackle these
issues, such as dynamic variability, and support for dynamic
variation points. They also stressed that DSPL could benefit
from research being achieved in other related ares, yet they
did not make a strong case for its convergence with Service-
oriented technology.

The convergence with Service-based technology was em-
phasized by Krut and Cohen [14] and by Istoan et al. [15].
These works advocate that both DSPL and Service tech-
nology encourage the reuse of software assets, and that
they both fostered productivity gains, decreased development
costs, and competitive advantage. An example is given by
Gomaa and Hashimoto [16]. They developed an extension
to SASSY, a model-driven framework for Self-Architecting
Software Systems. In their work, they create a mapping
between features and services at design time, and use it
to choose service substitutions at runtime. The approach
is dynamic because the feature model and its mapping to
services can change while the system is executing. Research
on the convergence between DSPLs and SOA typically
revolves around the idea that features should be mapped
to atomic services. This is a simplistic approach, and in this
paper we have shown that system designers can benefit from
richer kinds of mappings.

Two further lines of DSPL research have emerged in the
last few years: DSPL solutions that exploit Aspect-Oriented
Programming techniques, and context-aware DSPL. Morin
et al. [17] have developed K@RT, an aspect-oriented and
model-driven DSPL framework. K@RT uses a reference
model at runtime to navigate the system architecture using
model-oriented languages, and then invoke the services in
the running system. The model can be modified during
execution, and checked against constraints to be sure that the
reconfiguration is safe. Dinkelaker et al. [18] use a dynamic
feature model to describe late variability in the DSPL. The
approach uses dynamic aspects, runtime models of aspects,
and detection and resolution of aspects interactions. The

5

result is a solution in which the designer does not need
to create reconfigurations for every possible feature com-
bination. Instead, the designer can focus on modeling the
reconfigurations of interacting features. The runtime support
then ensures that the DSPL is delivered appropriately.

Regarding context-aware solutions, Parra et al. [19] pro-
posed CAPucine, a Context-Aware Service-Oriented Prod-
uct Line. Using CAPucine designers can produce product
derivations that monitor their context of execution and react
by including appropriate software assets into the system.
Their work exploits SCA (Service Component Architecture)
models, and the dynamic binding and unbinding of refer-
enced services provided by the FraSCAti runtime environ-
ment. In order to obtain information from the environment,
the authors use COSMOS, a context-aware framework con-
nected to the environment through appropriate sensors.

VII. CONCLUSIONS

We have presented a solution that encourages the con-
vergence between DSPL and SOA technologies with a
focus on BPEL processes. The solution uses CVL as a
mechanism to define a BPEL process’ base model, its feature
variabilities and the constraints that exist between them, and
the models needed for automatic product realization. The
produced DSPL is then run and managed through DyBPEL,
an open-source BPEL solution that exploits AOP techniques
to provide dynamic addition and removal of features and
variation points. The proposed solution was exemplified in
the context of a simple home automation example, and has
shown to provide interesting results. As already said, the
aspect-based solution presented in the paper is not limited
to SOA, and BPEL in particular, but we think it could be
exploited within many different service- and component-
based solutions. The analysis of different infrastructures and
the customization of our solution for their particular needs
is one of our main goals for the future.

REFERENCES

[1] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: service-
oriented architecture best practices. Prentice Hall PTR,
2005.

[2] H. Giese and B. H. C. Cheng, Eds., Proceedings of the 6th
Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2011.

[3] L. Baresi and S. Guinea, “Self-supervising bpel processes,”
IEEE Transactions on Software Engineering, vol. 37, pp. 247–
263, 2011.

[4] O. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and
A. Svendsen, “Adding Standardized Variability to Domain
Specific Languages,” in Proceedings of the 2008 12th Inter-
national Software Product Line Conference, ser. SPLC ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp.
139–148.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
gramming,” in Proceedings of the 11th European Conference
on Object-Oriented Programming. Springer, 1997, pp. 220–
242.

[6] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service Oriented
Design and Development Methodology,” International Jour-
nal of Web Engineering and Technologies, vol. 2, no. 4, pp.
412–442, 2006.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web Service Description Language (WSDL) 1.1,” http://
www.w3.org/TR/wsdl, 2001.

[8] D. Box et al., “Simple Object Access Protocol (SOAP) 1.1,”
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, 2000.

[9] A. Alves et al., “Web Services Business Process Execution
Language Version 2.0,” http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf, 2007.

[10] Active Endpoints, “Activebpel engine,” http://www.
activebpel.org.

[11] “The AspectJ Project,” http://www.eclipse.org/aspectj/.

[12] H. Gomaa and M. Hussein, “Dynamic software reconfigura-
tion in software product families,” Software Product-Family
Engineering, pp. 435–444, 2004.

[13] S. O. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid,
“Dynamic software product lines,” IEEE Computer, vol. 41,
no. 4, pp. 93–95, 2008.

[14] R. Krut and S. Cohen, “Service-Oriented Architectures and
Software Product Lines - Putting Both Together,” in Proceed-
ings of the 12th International Conference on Software Product
Lines. IEEE Computer Society, 2008, p. 383.

[15] P. Istoan, G. Nain, G. Perrouin, and J.-M. Jézéquel, “Dynamic
Software Product Lines for Service-Based Systems,” in Pro-
ceedings of the 9th International Conference on Computer
and Information Technology. IEEE Computer Society, 2009,
pp. 193–198.

[16] H. Gomaa and K. Hashimoto, “Dynamic Software Adaptation
for Service-Oriented Product Lines,” in Workshop Proceed-
ings of the 15th International Conference on Software Product
Lines. ACM, 2011, p. 35.

[17] B. Morin, O. Barais, and J. marc Jzquel, “K@RT: An Aspect-
Oriented and Model-Oriented Framework for Dynamic Soft-
ware Product Lines,” in Proceedings of the 3rd International
Workshop on Models@Runtime, colocated with MODELS’08,
2008.

[18] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini, “A
Dynamic Software Product Line Approach Using Aspect
Models at Runtime,” in Proceedings of the 1st Workshop on
Composition and Variability, colocated with AOSD’10, 2010.

[19] C. Parra, X. Blanc, and L. Duchien, “Context Awareness
for Dynamic Service-Oriented Product Lines,” in Proceedings
of the 13th International Software Product Line Conference.
ACM, 2009, pp. 131–140.

6

