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Abstract
A continuous indirect electro-oxidation (EO) process was developed using graphite electrode to investigate the treata-
bility of reactive turquoise blue RTB21 dye wastewater under specific operating conditions of initial pH, current density, 
hydraulic retention time (HRT), and electrolyte (NaCl) concentration. The experiments were performed in accordance 
with the central composite design (CCD), and the findings were used to create a model utilizing artificial neural net-
works (ANNs). According to the predicted findings of the ANN model, the MSE values for colour and COD removal ef-
ficiencies were estimated to be 0.748 and 0.870, respectively, while the R2 values were 0.9999 and 0.9998, respectively. The 
Multi-objective optimization using genetic algorithm (MOGA) over the ANN model maximizes the multiple responses: 
colour and COD removal efficiency (%). The MOGA generates a non-dominated Pareto front, which provides an insight 
into the process’s optimum operating conditions. 

Keywords: Multi-objective optimization, Artificial neural network, Genetic algorithm, wastewater, reactive turquoise 
blue 21

1. Introduction
Clean water and sanitation is one of the major agenda 

of the United Nation’s sustainable development initiative. 
According to the UN’s world water development report 
2021, around 2 billion individuals live under water stress 
conditions, and by 2030, the world would face a water defi-
cit of 40%.1 The quantity of wastewater generated world-
wide has increased exponentially due to the rise in popu-
lation and rapid industrial and technological development 
over the last few decades. India generates approximately 
64,000 tonnes of dyes annually, of which 7,040 tonnes are 
dumped directly into the environment. These dyestuffs are 
widely used by textiles, paper and pulp, leather, and many 
other industries, but unfortunately, their impact on health 
and the environment are poorly evaluated.2 Despite nu-
merous Physico-chemical techniques for dye wastewater 
treatment, most of these systems appear to be marred by 
low practical efficiency or an inadequate benefit-cost ratio. 
Several traditional, as well as novel strategies, have been 
proposed in the literature to treat dye wastewater. These 

include adsorption by activated carbon,3 chemical coag-
ulation,4  photodegradation under UV light irradiation,5 
hydrodynamic cavitation,6 sonochemical degradations,7 

ozonation,8 electrocoagulation,9 Fenton like processes,10 
membrane filtration,11  electrochemical methods,12–14 and 
many more.

A primary drawback with many of these dye remov-
al techniques is that they cannot remove all types of dyes 
from the wastewater. Adsorption is a highly successful 
technique for treating dye-containing effluent, but ad-
sorbent regeneration is an expensive process. Prolonged 
treatment time and post-treatment solid disposal are lim-
itations of the adsorption process.15  Chemical coagula-
tion can bring high removal efficiency and a high quan-
tity of wastewater but relatively high processing costs.16 
Fenton-like techniques generate a substantial amount of 
sludge and are thus impractical for completely degrading 
dye molecules. Almost all types of dyes may be separat-
ed from wastewater using the membrane process. There 
is no sludge development, and footprint requirement is 
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also low. However, the cost of the membrane and associ-
ated equipment and the fouling issue during operation are 
drawbacks of the membrane process.17 While biological 
treatment could be cost-competitive, it is less effective to 
deal with refractory organic wastes.16 As a result, finding 
an effective and environmentally acceptable treatment 
technique with high removal efficiency and low cost is 
essential for completely removing dye molecules from in-
dustrial wastewater. 

Electrochemical techniques, such as anodic oxi-
dation or indirect electrochemical oxidation (EO), have 
garnered significant interest in industrial wastewater 
treatment.18Electrochemical techniques offer enormous 
promise for wastewater treatment due to their wide range 
of environmental compatibility, increased process effi-
ciency, and cost-effectiveness. However, several process 
factors, such as initial pH, current density, electrolyte 
concentration, process time, etc., impact electrochemical 
processes. Thus, optimizing process parameters is crucial 
from a process performance, economic, and scale-up per-
spective.19

Typically, modelling and optimization of electro-
chemical processes have been described using the conven-
tional one-variable-at-a-time approach (OVAT). However, 
OVAT ideas suffer from several drawbacks, including the 
inability to show the interactive effect of process factors, 
being time demanding, and economically costly.20 Arti-
ficial intelligence (AI) has gained immense attention to 
overcome such limitations and emerged as an encouraging 
tool for modelling and process optimization. AI tools, such 
as ANN, GA, fuzzy logic, and machine learning have been 
widely considered for modeling and optimizing waste-
water treatment processes.21 ANN, inspired by biological 
neuron phenomena of the human brain, was a computa-
tional modelling technique used for non-linear problems 
and to predict the output values for given input parameters 
from their training values.22 GA optimization tool can be 
used to more precisely optimized the ANN model. GA is 
a search heuristic algorithm inspired by Charles Darwin’s 

principle of natural evolution on the concept of “surviv-
al of the fittest”. The GA approach is used to search for a 
global optimum solution with the ANN model as a fitness 
function.23

Single-objective optimization of the electrochemical 
process using the ANN-GA approach has been fairly re-
ported in the literature. However, optimization problems 
involve multiple objectives, which require simultaneously 
to optimize: maximize or minimize. Many attempts have 
so far been made for multi-objective optimization of the 
electrocoagulation process for wastewater. However, to 
the best of our knowledge, the literature has not reported 
ANN modeling accompanied by multi-objective optimi-
zation using GA of continuous EO process for dye waste-
water. In this work, our primary objective of research is 
to develop two distinctive ANN models for the prediction 
of colour removal efficiency and COD removal efficiency 
for continuous EO process to degrade reactive turquoise 
blue 21 (RTB21) dye wastewater. Finally, ANN models are 
simultaneously optimized using the GA approach to max-
imize both the objectives: colour removal efficiency and 
COD removal efficiency.  

2. Materials and Method
2. 1. Chemicals and Materials

M/s Snehal Dye Chem Ltd, Ankleshwar, Gujarat, In-
dia, supplied the model RTB21 dye. All other chemicals 
used during experiments were of analytical grade. De-
ionized water (DI) with 1 μS/cm conductivity was used 
to perform all experiments. Graphite electrode plates 
(10×10×0.2 cm) used in the EO process were procured 
from M/s Prime Industries, Maharashtra, India.

2. 2. Electrochemical experiments
The continuous flow EO rector was constructed from 

an acrylic sheet with three sections, as shown in Fig.1, with 

Fig. 1. (a) A conceptual schematic diagram of Continuous EO experimental setup, (b) Actual Experimental setup of continuous EO process: (1) 
RTB21 Wastewater Reservoir, (2) Peristaltic Pump, (3) DC Power Supply, (4) Electrochemical Cell, (5) Graphite Electrodes, and (6) Receiving cell
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a working volume of 1.5 L. The two graphite electrode 
plates were connected vertically with a gap of 10 mm, con-
nected in monopolar mode to a DC power supply (Make: 
SIGMA, 0–30 V 0-5 A). A mini peristaltic pump (GOSO 
Technology, Model: AB 11, 7.5 W) was used to pump the 
simulated wastewater into the top of the first section of 
the EO rector from the reservoir. The wastewater from the 
first section passed to the second section through holes 
provided at the bottom of the first section, flowed upward 
through the layers of the electrodes, and drained out at the 
third section from the top of the reactor. After experienc-
ing the specified EO process time, the effluent samples of 
the continuous EO process were collected. To change the 
pH of the solution, dilute solutions of H2SO4 and NaOH 
were used. NaCl was added to the solution as an electrolyte 
to adjust the conductivity. 

The colour removal efficiency of the sample collected 
at various time intervals was calculated using Eq. 1.24

	 (1)

Where A0 and A are the light absorbance of a sample 
before and after the electrochemical process, respectively, 
measured using a UV/VIS spectrophotometer (Model CL 
335).

(2)

Where C0 and C are the COD of a sample before and 
after the electrochemical process, respectively, measured 
using the open reflux method following standard meth-

odologies (APHA. American Public Health Association 
2005).

2. 3. Experimental design
Central composite design (CCD) was used for the 

design of experiments (DOE). Four process variables: ini-

Table 1. Experiment range and levels of Independent variable used 
as per CCD.

Variables 	 Levels				  
	 –2(α)	 –1	 0	 +1	 +2(α)

Initial pH	 3	 5	 7	 9	 11
CD (A/m2)	 100	 150	 200	 250	 300
HRT (min)	 50	 75	 100	 125	 150
NaCl Conc. (g/L)	 1	 1.5	 2	 2.5	 3

Fig. 2. Optimized architecture of ANN network for EO process.

tial pH (3-11), Current density (100-300 A/m2), Hydraulic 
retention time (HRT) (50-150 min), Electrolyte NaCl con-
centration (1-3 g/L), with five levels used for the design of 
experiments as shown in Table 1. 

A total of 31 experiments as per Table 2 design were 
performed, and colour removal efficiency and COD re-
moval efficiency were calculated. To avoid systemic bias, 
the runs were carried out in a randomized manner. Colour 
removal and COD removal efficiencies were considered to 
be response 1 and response 2, respectively. These were ob-
tained for the experiments performed and are presented 
in Table 2. 
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2. 4. ANN Model

ANN models were created for both the responses to 
measure the performance of the EO reactor to treat the 
RTB21 model dye wastewater. The artificial neural net-
work (ANN) is a soft computation tool inspired by bio-
logical neurons in the brain.25 In recent years, the ANN 
has been employed as an efficient and versatile approach 
in various applications.26 In ANN, there are three layers: 
the input layer, one or more hidden layers, and the output 
layer shown in Fig. 2.

An ANN’s structure is made of processing compo-
nents referred to as neurons (nodes). Weights and biases 
are used to connect each layer of neurons.27 The weighted 
sum of each neuron’s inputs are passed through the activa-
tion function to produce the output.28 Feed-forward Lev-
enberg-Marquardt Back-Propagation (LM-BP) algorithms 
were used for learning. ANN models were developed for 
both responses to evaluate the EO reactor’s performance 
in treating the RTB21 model dye wastewater. The mean 
square error (MSE) was utilized for training the ANN. 

70% of the data were used to train the neural network. Af-
ter training, the remaining data were used in an equiva-
lent proportion for validation and testing. More data were 
allocated for the training, which resulted in an improved 
model with a shorter processing time. 

The testing offered an unbiased evaluation of the 
network’s performance, whereas the validation evaluated 
the network’s generalization, which was terminated when 
no further progress was detected.29 The ANN models can 
be used as a fitness function for a GA used for multi-objec-
tive EO process optimization. 

2. .5 GA Model
GA is a well-known robust AI technique for solv-

ing global search optimization problems.30 The GA al-
gorithm is based on Darwin’s evolutionary theory. The 
‘gamultiobj’ function in MATLAB (R2020b) was used 
to generate the Pareto front of colour removal efficien-
cy and COD removal efficiency using GA and the direct 
search toolbox. The ‘gamultiobj’ function in MATLAB 

Table 2. CCD design with observed and predicted responses.

Exp. 	 Parameters	 Response 1	 Response 2
Run	 (Actual value)	 Colour removal (%)	 COD removal (%)
	 pH	 Current density	 HRT	 NaCl Conc.	 Expt.	 ANN Predicted	 Expt.	 ANN Predicted

  1	 3	 200	 100	 2.0	 21.12	 21.12	 12.78	 11.99
 w`2	 5	 150	   75	 1.5	 14.20	 14.25334	 9.60	   9.69
  3	 5	 150	   75	 2.5	 45.02	 45.02	 21.21	 21.53
  4	 5	 150	 125	 1.5	 33.89	 33.89	 25.55	 26.33
  5	 5	 150	 125	 2.5	 65.32	 65.31208	 40.22	 39.71
  6	 5	 250	   75	 1.5	 24.79	 24.79	 15.50	 16.24
  7	 5	 250	   75	 2.5	 48.22	 48.22	 32.30	 32.41
  8	 5	 250	 125	 1.5	 77.01	 76.86996	 44.50	 44.24
  9	 5	 250	 125	 2.5	 99.20	 99.2	 60.12	 61.95
10	 7	 100	 100	 2.0	 44.32	 44.32	 21.30	 20.75
11	 7	 200	   50	 2.0	   8.26	 8.26	   6.40	   5.75
12	 7	 200	 100	 1.0	 43.43	 43.43	 32.23	 31.58
13	 7	 200	 100	 2.0	 96.11	 95.64333	 58.23	 58.65
14	 7	 200	 100	 2.0	 95.15	 95.64333	 59.03	 58.65
15	 7	 200	 100	 2.0	 96.28	 95.64333	 59.34	 58.65
16	 7	 200	 100	 2.0	 95.92	 95.64333	 58.51	 58.65
17	 7	 200	 100	 2.0	 95.10	 95.64333	 58.11	 58.65
18	 7	 200	 100	 2.0	 95.50	 95.64333	 59.20	 58.65
19	 7	 200	 100	 2.0	 95.00	 95.64333	 58.11	 58.65
20	 7	 200	 100	 3.0	 97.00	 97	 62.00	 61.13
21	 7	 200	 150	 2.0	 78.12	 78.12	 52.80	 51.93
22	 7	 300	 100	 2.0	 89.22	 89.22	 50.50	 49.54
23	 9	 150	   75	 1.5	   9.40	 9.4	   5.90	   5.97
24	 9	 150	   75	 2.5	 38.88	 38.88	 17.10	 17.82
25	 9	 150	 125	 1.5	 28.23	 28.23	 22.34	 22.61
26	 9	 150	 125	 2.5	 56.20	 56.2	 35.11	 36.00
27	 9	 250	   75	 1.5	 19.99	 19.25079	 12.12	 12.52
28	 9	 250	   75	 2.5	 40.87	 40.64716	 28.33	 28.69
29	 9	 250	 125	 1.5	 70.05	 70.05	 39.80	 40.53
30	 9	 250	 125	 2.5	 91.10	 90.93601	 58.70	 58.23
31	 11	 200	 100	 2.0	   8.10	 8.1	   5.30	   4.57
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employs a controlled elitist GA, which is a variation of 
NSGA-II.31

Initially, a random population of individuals called 
chromosomes is randomly generated within the lower and 
upper limits of decision variables, and the optimization 
process starts. Three genetic algorithm rules are used to 
produce the populations of the future generation: selec-
tion, crossover, and mutation. To generate the next gen-
eration, the best population was chosen based on fitness 
level function. The fitness value indicates an individual’s 
merits for evaluation.28 Crossover, also known as recombi-
nation, is the process through which two populations’ ge-
netic information is combined to generate new offspring. 
Then, random changes in the individual population are 
performed during the mutation process to preserve and 
add diversity. When the fitness value of a population does 
not improve over subsequent generations, the population 
eventually achieves the optimal solution.32

2. 6. ANN-GA
Typically, when we deal with more than one objec-

tive, they are often conflicting with each other. Therefore, 
objectives are simultaneously optimized using a multi-ob-
jective optimization algorithm; mathematically equally 
good solutions known as non-dominated or Pareto fron-
tier are selected as the optimum designs.33 ANN-MOGA 
has been applied for predicting optimum conditions of co-
lour removal efficiency and COD removal efficiency. The 
ANN models were used as a fitness function for MOGA. 
An ANN function named myANN1 and myANN2 was 
trained using the experimental data for Colour remov-
al efficiency and COD removal efficiency, respectively. 

Then, using MATLAB (R2020b) and the myANN1 and 
myANN2 function, a multi-objective function code was 
developed. Finally, the MOGA program was run to gener-
ate Pareto optimal solutions by setting all input variables’ 
upper and lower limits. 

3. Results and Discussion
3. 1. Experimental Results

In a batch electrochemical cell, the indirect electro-
chemical oxidation method was carried out to treat the 
RTB21 wastewater. The experimental results obtained 
from the batch process were then used to build a con-
tinuous process, and colour removal efficiency and COD 
removal efficiency were measured. Based on the batch 
process results, the initial pH, current density, and NaCl 
concentration range were fixed for the continuous process. 
It was possible to determine the influence of hydraulic re-
tention time (HRT) on the colour removal and COD re-
moval efficiency by altering the HRT values from 25 to 200 
min, as shown in Fig. 3.

The other parameters, such as pH, current density, 
and NaCl concentration, were kept constant at 7, 200 A/
m2, and 2 g/L, respectively. HRT was found to have a ben-
eficial influence on the EO process by increasing the re-
sponse time. As per the DOE set, continuous EO process 
experiments were performed, and colour removal efficien-
cy and COD removal efficiency were calculated, as shown 
in Table 2. By raising the HRT, adequate time for process 
reaction could be provided; hence, the colour removal effi-
ciency (%) and the COD removal efficiency (%) improved. 
The synergistic effect of increased HRT can be attributed 

Fig. 3. Effect of HRT (min) on Colour removal efficiency (%) and COD removal efficiency (%) at 7 pH, 200 A/m2CD, and 2 g/L NaCl concentration.
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to the generation of more oxidants for pollutant degrada-
tion.34 With the enhancement of HRT more than 100 min, 
degradation efficiency declines because of unsuitable side 
reactions.35 The highest colour removal efficiency (%) and 
COD removal efficiency (%) achieved were 96.11% and 
58.23% at 100 HRT (min), pH of 7, 200 A/m2, and 2 g/L 
NaCl concentration. 

3. 2. Prediction with ANN
The primary objective of the ANN is to predict the 

colour removal efficiency and COD removal efficiency 
for DOE data sets. The present research used a feed-for-

ward LM-BP ANN with a tangent sigmoid transfer func-
tion (tansig) at a hidden layer. At each iteration, the ANN 
learns by testing and validating the predictability against 
the remaining data and deciding its absolute accuracy 
based on the overall correlation coefficient. It is always 
critical to pick a sufficient number of neurons in the hid-
den layer to properly well train the network. However, the 
larger the hidden layer’s number of neurons, the longer it 
takes to process the data and learn the noise.36 Therefore, 
a solid network is required to determine an accurate ANN 
architecture to obtain accurate predictions, and this step 
was developed through trial and error.37 This was done to 
achieve the minimum possible deviation between predic-

Fig. 4. Performance of ANN for colour removal efficiency

Fig. 5. Error histogram with 20 bins for the training, validation, and testing of ANN for colour removal efficiency prediction.
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tions and experimental results and limit the potential of 
over-fitting the model to the data. Numerous topologies 
were tested to obtain the optimal ANNs network based 
on the most miniature Mean Square Error (MSE) and 
largest Correlation coefficient (R) values. The best ANN 
network was a back-propagation with 4-9-6-3-1 neurons. 
The inputs consist of pH, CD, HRT, NaCl concentration, 
and output consists of colour removal efficiency and COD 
removal efficiency. 

MSE is a statistic that represents the average of the 
squares of the errors, the magnitude by which the value 
indicated by the model varies from the quantity to be ob-
served; when MSE reaches zero, it indicates that our mod-
el’s error reduces. The R is calculated by dividing the coef-
ficient of determination (R2) by its square root function, 
which determines the relationship between outputs and 
targets. The R-value of 0 and 1 indicates a random rela-
tionship and close relationship, respectively.

For the colour removal efficiency, the optimum net-
work performance was reached at an epoch of 3. Fig. 4 
shows the performance of the ANN for colour removal ef-
ficiency prediction during training, validation, and testing 
and the mean squared error (MSE) of the network. 

As shown in Fig. 4, the error started at a high val-
ue during training, validation, and testing but gradually 
reduced as the number of epochs increased. The training 
was terminated at epoch 3 to prevent overfitting the data 
sets, and the best validation performance was achieved at 
epoch 3, with a mean square error of 0.025191. 

As the error histogram of the colour removal efficien-
cy (Fig. 5) shows, most of the errors fall between –0.6066 
and 0.7046. The zero error is in a vertical line parallel to 
the ordinate with 19 instances during training.

The values of regression coefficient of correlation be-
tween the experimentally obtained colour removal and the 
ANN predicted colour removal during training, validation, 
and testing  are 0.99998, 1, and 0.999993 (Fig. 6 (a,b,c)), re-
spectively. The regression coefficient of the network (train-
ing, testing, and validation) was 0.99996 (Fig. 6 (d)).

For the COD removal efficiency, the optimum net-
work performance was reached at an epoch of 2. Fig. 7 
shows the performance of the ANN for COD removal ef-
ficiency prediction during training, validation, and testing 
and the mean squared error (MSE) of the network. As Fig. 
7 shows, the best validation performance occurred at ep-
och 2, with a 0.01971 MSE value.

Fig. 6. ANN predictions of colour removal efficiency versus experimental data
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Fig. 8 shows the error histogram of the ANN for 
COD removal efficiency. As the error histogram shows, 
most of the errors fall between -0.8647 and 0.6529. The 
zero error is in a vertical line parallel to the ordinate with 
19 instances during training.

The regression coefficient of correlation between the 
experimentally obtained COD removal efficiency and the 
ANN predicted COD removal efficiency during training, 
validation, and testing is shown in Fig. 9 (a,b,c) with values 
of 0.9999, 0.99987, and 1, respectively. The regression co-
efficient of the network (training, testing, and validation) 
was 0.99989, as shown in Fig. 9 (d).

3. 3. ANN-GA Process Result

The well-trained ANNs MATLAB functions were 
used as the fitness function, and the MOGA function is 
used to optimize all responses simultaneously using the 
“gamultiobj” algorithm. Fig. 10 depicts the conceptual 
model of the technique designed for multi-objective opti-
mization of a continuous EO process for RTB21 dye waste-
water treatment using ANN and MOGA.

The upper and lower bounds are set in accordance 
with DOE data. To generate the Pareto front, the popu-
lation size, and scattered crossover rate was set to 50 and 

Fig. 7. Performance of ANN for COD removal efficiency.

Fig. 8. Error histogram with 20 bins for the training, validation, and testing of ANN for COD removal efficiency prediction.
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Fig. 9. ANN predictions of colour removal efficiency versus experimental data.

Fig. 10. Conceptual model of ANN-MOGA.
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0.8, respectively. The Pareto front, as a result of MOO, is 
depicted in Fig. 11. Table 3 contains the input values for 
both responses in accordance with Pareto solutions. 

The multi-objective optimization solution of co-
lour removal efficiency and COD removal efficiency has 
no unique solution but a mathematically equally good 
solution known as non-dominated or Pareto optimal 
solutions. As can be observed colour removal efficiency 
increases from 85.10% to 99.62% at the cost of decreas-

ing COD removal efficiency from 79.17% to 72.40%. As 
shown from this Fig. 10, the Pareto front provides all 
possible Colour removal efficiency and COD removal ef-
ficiency choices. The utopia point C (99.05, 77.75) is se-
lected such that it has the minimum Euclidean distance 
from the reference point R. The reference point is a point 
corresponding to maximum values of colour removal effi-
ciency point B (99.62, 72.40) and COD removal efficiency 
point A (85.10, 79.17).

Fig. 11. Pareto front of solutions obtained from multi-objective optimization of colour removal efficiency and COD removal efficiency.

Table 3. Pareto front results.

Sr No.	 pH	 CD	 HRT	 NaCl Conc.	 Colour removal	 COD removal
					     efficiency	  efficiency

  1	 8.787827	 299.5076	 138.5276	 2.996047	 99.61891	 73.9798
  2	 6.363786	 298.0398	 140.3197	 2.081875	 85.10173	 79.17201
  3	 6.449391	 298.1739	 140.1821	 2.235604	 91.86767	 78.88044
  4	 6.974005	 299.1398	 138.9455	 2.56925	 99.39556	 77.10913
  5	 9.185247	 299.9831	 138.2816	 2.999956	 99.62148	 71.86423
  6	 6.363786	 298.0085	 140.3197	 2.107265	 86.02775	 79.16041
  7	 6.428636	 299.3274	 140.3134	 2.171365	 88.94894	 79.08443
  8	 6.711324	 298.9897	 139.8307	 2.345993	 96.60149	 78.53708
  9	 7.927858	 298.8051	 138.4173	 2.989545	 99.61496	 74.53391
10	 8.10627	 299.6478	 139.1243	 2.908942	 99.60828	 75.46253
11	 6.847544	 298.2432	 140.1611	 2.494421	 99.04663	 77.75342
12	 6.579091	 298.9179	 139.9584	 2.312797	 95.42957	 78.61332
13	 6.45257	 298.1872	 140.203	 2.146821	 87.71312	 79.09912
14	 6.79187	 298.932	 139.2222	 2.43517	 98.55288	 77.99996
15	 6.92752	 298.8918	 139.8317	 2.372651	 97.32729	 78.46639
16	 6.593751	 298.7015	 140.2943	 2.202841	 90.35593	 79.00198
17	 9.091421	 299.5083	 138.4265	 2.996635	 99.62033	 72.40382
18	 6.534363	 298.0117	 140.3169	 2.274754	 93.64972	 78.79096
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3. 4. Confirmatory Experiments
The results of the well-trained ANNs model were 

checked with their predicted capability in terms of stan-
dard statistical performance parameters such as mean 
square error (MSE), root mean square error (RMSE), mean 
absolute error (MAE), model predictive error (MPE) (%), 
Chi-Square statistics (χ2), and R2. A chi-square test is a 
statistical test used to compare experimental results with 
predicted results. The value of χ2 is close to zero, and the R2 

value close to one displays the well-trained ANN models. 
Statistical parameters of well-trained ANN models for col-
or and COD removal efficiencies are presented in Table 4.

Optimized parameters (pH: 6.85, CD: 298.24 A/m2, 
HRT: 140.16 min, NaCl concentration:  2.49 g/L) generat-
ed by the ANN-MOGA model for achieving maximizing 
Colour removal efficiency (%) and COD removal efficiency 
(%) simultaneously were validated by performing confirma-
tory experiments. The confirmatory experiment was carried 
out at the predicted optimal condition for model validation 
in triplicate, and average values are shown in Table 5.

with an input parameter such as pH, current density, hy-
draulic retention time, and NaCl concentration. To build 
ANN models, the feed-forward LM-BP training algorithm 
was used. The well-trained ANN models had three hidden 
layers with 9-6-3 neurons in the hidden layers. For colour 
removal efficiency and COD removal efficiency, the MSE 
values were 0.748, 0.870, and the R2 values were 0.9999, 
0.9998, respectively. The ANN modelling technique could 
offer several advantages, including speed, dependability, 
fault tolerance, resilience, universal application, and us-
ability, making it an intriguing choice for modelling com-
plicated systems such as wastewater treatment. 

The use of a genetic algorithm to perform multi-ob-
jective optimization of the ANN model resulted in a set of 
Pareto optimum points. The solutions to the Pareto front 
points could be utilised as a guideline for designing a con-
tinuous EO for the RTB21 dye wastewater process. The 
ANN-MOGA approach was utilised to estimate the best 
process variable values for maximum colour removal effi-
ciency and COD removal efficiency, which resulted in the 
generation of the Convex nature Pareto front.  The utopia 
point (99.05, 77.75) was selected such that it had the min-
imum euclidean distance from the reference point R. In 
essence, data obtained in the present study could be useful 
for possible scale-up of the electro-oxidation process for 
similar types of reactive dyes.

5. Reference
 1. �United Nations, VALUING WATER (2021): The United Na-

tions World Water Development Report 2021. Vol 9781849773.; 
2021.   DOI:10.4324/9781849773355

  2. �P. V. Nidheesh, M. Zhou, M. A. Oturan, Chemosphere, 2018, 
197, 210–227. 

	 DOI:10.1016/j.chemosphere.2017.12.195
  3. �J. Saini, V. K. Garg, R. K. Gupta, N. Kataria, J Environ Chem 

Eng, 2017, 5(1), 884–892.   DOI:10.1016/j.jece.2017.01.012
  4. �E. Yuksel, E. Gurbulak, E. Murat, Environ Sci Technol, 2014, 

33(2), 482–489.   DOI:10.1002/ep
  5. �Q. Wang, G. Yun, Y. Bai, et al., Appl Surf Sci, 2014, 313, 537–

544.   DOI:10.1016/j.apsusc.2014.06.018
  6. �M. Sivakumar, A. B. Pandit, Ultrason Sonochem, 2002, 9(3), 

123–131.   DOI:10.1016/S1350-4177(01)00122-5
  7. �Y. L. Pang, S. Bhatia, A. Z. Abdullah, Sep Purif Technol, 2011, 

77(3), 331–338.   DOI:10.1016/j.seppur.2010.12.023
  8. �HJ Hsing, P. C. Chiang, E. E. Chang, M. Y. Chen, J Hazard Ma-

ter, 2007, 141(1), 8–16.   DOI:10.1016/j.jhazmat.2006.05.122

Table 4. Statistical Parameters of well-trained ANN models for colour removal efficiency and COD removal efficiency.

Statistical Parameters	 MSE	 RMSE	 MAE	 MPE (%)	 Chi Square statistics (χ2)	 R2

Colour removal efficiency	 0.0748	 0.2735	 0.1462	 0.2737	 0.0478	 0.9999
COD removal efficiency	 0.0870	 0.2949	 0.1569	 0.1398	 0.0919	 0.9998

Table 5. Comparative results of optimized and confirmatory exper-
iments for model validation.

Process Parameters	                                ANN-MOGA
	 Optimized 	 Experimental
	 Value	 Value

pH	 6.85	 6.9
CD	 298.24	 299
HRT	 140.16	 141
NaCl Conc.	 2.49	 2.5
Colour removal efficiency (%)	 99.05	 98.82
COD removal efficiency (%)	 77.75	 77.60

A perusal of Table 5 indicates close agreements be-
tween optimized and experimental values. The percentage 
variation between experimental and simulated results was 
determined in the ~±1% error range. This suggested that 
the models’ prediction capacity was satisfactory. Hence, 
the adequacy of ANN-MOGA models on predicting the 
Colour removal efficiency (%) and COD removal efficien-
cy (%) was validated.

4. Conclusion
The ANN approach was successfully used to forecast 

all responses for continuous EO processes in accordance 

https://doi.org/10.4324/9781849773355
https://doi.org/10.1016/j.chemosphere.2017.12.195
https://doi.org/10.1016/j.jece.2017.01.012
https://doi.org/10.1016/j.apsusc.2014.06.018
https://doi.org/10.1016/S1350-4177(01)00122-5
https://doi.org/10.1016/j.seppur.2010.12.023
https://doi.org/10.1016/j.jhazmat.2006.05.122


315Acta Chim. Slov. 2022, 69, 304–315

Vaghela and Nath:   Modelling and Multi-Objective Optimization   ...

  9. �A. I. Adeogun, R. B. Balakrishnan, Appl Water Sci, 2017, 7(4), 
1711–1723.   DOI:10.1007/s13201-015-0337-4

10. �X. Xue, K. Hanna, N. Deng, J Hazard Mater, 2009, 166(1), 
407-414.   DOI:10.1016/j.jhazmat.2008.11.089

11. �S. Sachdeva, A. Kumar, J Memb Sci, 2009, 329(1-2), 2–10.
	 DOI:10.1016/j.memsci.2008.10.050
12. �P. V. Nidheesh, R. Gandhimathi, Clean – Soil, Air, Water, 

2014, 42(6), 779–784.   DOI:10.1002/clen.201300093
13. �H. Xu, S. Qi, Y. Li, Y. Zhao, Environ Sci Pollut Res, 2013, 20, 

5764–5772.   DOI:10.1007/s11356-013-1578-0
14. �N. R. Vaghela, K. Nath, J Sci Ind Res, 2019, 78(09), 624–628.
15. �N. Daneshvar, M. A. Behnajady, M. K. A. Mohammadi, M.S.S. 

Dorraji, Desalination, 2008, 230(1-3), 16–26. 
	 DOI:10.1016/j.desal.2007.11.012
16. �S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal, M. 

Alizadeh Fard, J Hazard Mater, 2012, 219-220, 35–42. 
	 DOI:10.1016/j.jhazmat.2012.03.013
17. �V. Khandegar, A. K. Saroha, J Environ Manage, 2013, 128(Sep-

tember), 949–963.   DOI:10.1016/j.jenvman.2013.06.043
18. �N. Nordin, S. F. M. Amir, M. R. Yusop, M.R. Othman, Acta 

Chim Slov, 2015, 62(3), 642–651.   
	 DOI:10.17344/acsi.2014.1264
19. �Y. Sewsynker-Sukai, F. Faloye, E. B. G. Kana, Biotechnol Bio-

technol Equip, 2017, 31(2), 221–235. 
	 DOI:10.1080/13102818.2016.1269616
20. �H. S. M. Yahya, T. Abbas, N. A. S. Amin, Int J Hydrogen Ener-

gy, 2020.   DOI:10.1016/j.ijhydene.2020.05.033
21. �M. Bayat Varkeshi, K. Godini, M. ParsiMehr, M. Vafaee, Avi-

cenna J Environ Heal Eng, 2019, 6(2), 92–99. 
	 DOI:10.34172/ajehe.2019.12
22. �M. Fan, T. Li, J. Hu, et al., Materials (Basel), 2017, 10(5).
	 DOI:10.3390/ma10050544
23. �	M. R. Samarghandi, A. Dargahi, A. Shabanloo, H. Z. Nasab, 

Y. Vaziri, A. Ansari, Arab J Chem, 2020, 13(8), 6847–6864.

	 DOI:10.1016/j.arabjc.2020.06.038
24. �N. R. Vaghela, K. Nath, SN Appl Sci, 2020, 2(11). 
	 DOI:10.1007/s42452-020-03719-6
25. �SN Sahu, Published online 2012.
26. �N. Semache, F. Benamia, B. Kerouaz, et al., Acta Chim Slov, 

2021, 68(3), 575–586.   DOI:10.17344/acsi.2020.6401
27. �S. Podunavac-Kuzmanović, L. Jevrić, J. Švarc-Gajić, et al., 

Acta Chim Slov, 2015, 62(1), 190–195. 
	 DOI:10.17344/acsi.2014.888
28. �	S. Azadi, A. Karimi-Jashni, S. Javadpour, Process Saf Environ 

Prot, 2018, 117, 267–277.   DOI:10.1016/j.psep.2018.03.038
29. �CE Onu, J. T. Nwabanne, P. E. Ohale, C. O. Asadu, South Afri-

can J Chem Eng, 2021, 36(January 2021), 24–42. 
	 DOI:10.1016/j.sajce.2020.12.003
30. �H. Kumar, V. Kumar, Chem Eng Process – Process Intensif, 

2019, 144, 107649.   DOI:10.1016/j.cep.2019.107649
31. �K. Deb, In: Multi-Objective Evolutionary Optimisation for 

Product Design and Manufacturing, 2011. 
	 DOI:10.1007/978-0-85729-652-8
32. �F. Mohammadi, M. R. Samaei, A. Azhdarpoor, H. Teiri, A. 

Badeenezhad, S. Rostami, Chemosphere, 2019, 237, 124486.
	 DOI:10.1016/j.chemosphere.2019.124486
33. �	QQ. Feng, L. Liu, X. Zhou, Int J Adv Manuf Technol, 2020, 

106(1-2), 559–575.   DOI:10.1007/s00170-019-04488-2
34. �	M. Gotsi, N. Kalogerakis, E. Psillakis, P. Samaras, D. Mantza-

vinos, Water Res, 2005, 39(17), 4177–4187. 
	 DOI:10.1016/j.watres.2005.07.037
35. �A. R. Rahmani, K. Godini, D. Nematollahi, G. Azarian, S. 

Maleki, Korean J Chem Eng, 2016, 33(2), 532–538. 
	 DOI:10.1007/s11814-015-0175-y
36. �M. Rakshit, P. P. Srivastav, J Food Process Preserv, 2021, 45(1), 

1-14.   DOI:10.1111/jfpp.15078
37. �	A. Picos, J. M. Peralta-Hernández, Water Sci Technol, 2018, 

78(4), 925–935.   DOI:10.2166/wst.2018.370

Povzetek
Razvili smo kontinuirni posredni proces elektrooksidacije (EO) z uporabo grafitne electrode, s katerim smo preučili 
možnosti odstranjevanja barvila turkizno modro RTB21 in odpadnih voda: Pri tem smo optimirali začeno pH vrednost, 
gostoto električnega toka, zadrževalni čas (HRT) in koncentracijo elektrolita (NaCl). Poskusi so bili izvedeni v skladu 
s središčnim sestavljenim načrtom (ang. CCD), rezultati pa so bili uporabljeni za učenje modela na osnovi umetnih 
nevronskih mrež (ang. ANN). Glede na predvidene ugotovitve modela ANN so bile MSE vrednosti za učinkovitost od-
stranjevanja barve in KPK ocenjene na 0.748 oziroma 0.870, vrednosti R2 pa na 0.9999 oziroma 0.9998. Večkriterijska 
optimizacija z genetskimi algoritmi (MOGA) uporabljena po ANN modelu je odatno optimizirala učinkovitost odstran-
jevanja barvo in zmanjševanja KPK. MOGA poda nedominantno (Pareto) fronto, ki omogočajo vpogled v optimalne 
pogoje delovanja procesa.
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