
A Model-Driven Approach for Crowdsourcing Search

Alessandro Bozzon, Marco Brambilla, Andrea Mauri
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{name.surname}@polimi.it

ABSTRACT
Even though search systems are very efficient in retrieving
world-wide information, they can not capture some peculiar
aspects and features of user needs, such as subjective opin-
ions and recommendations, or information that require local
or domain specific expertise. In this kind of scenario, the hu-
man opinion provided by an expert or knowledgeable user
can be more useful than any factual information retrieved
by a search engine.

In this paper we propose a model-driven approach for the
specification of crowd-search tasks, i.e. activities where real
people – in real time – take part to the generalized search
process that involve search engines. In particular we define
two models: the“Query Task Model”, representing the meta-
model of the query that is submitted to the crowd and the
associated answers; and the“User Interaction Model”, which
shows how the user can interact with the query model to
fulfill her needs. Our solution allows for a top-down design
approach, from the crowd-search task design, down to the
crowd answering system design. Our approach also grants
automatic code generation thus leading to quick prototyping
of search applications based on human responses collected
over social networking or crowdsourcing platforms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search Retrieval—Search Process

Keywords
crowdsourcing, social network, model driven development.

1. INTRODUCTION
While search systems are superior machines to get world-

wide information, people tend to put more trust in people
than in automated responses. That is why often users seek
for opinions collected within friends and expert/local com-
munities for taking an informed decision about significant

Copyright c©2012 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. This volume is published
and copyrighted by its editors.
CrowdSearch 2012 workshop at WWW 2012, Lyon, France

MacroTask Description (BPMN)

User Interaction Model (WebML)

M2M Transformation

M2T Transformations

Stand-alone
application

Application embedded
in social network or

crowdsourcing platform

MicroTask Description (BPMN)

M2M Transformation

Figure 1: Overview of our approach.

issues. Other users’ opinions can ultimately determine our
decisions. While in the past people could rely on opinions
given by close friends on local or general topics, the change in
the social connections in our society makes users increasingly
rely on online social interaction to complete and validate the
results of their search activities. People often search for hu-
man help in between canonical web search steps: they first
query a search system, then they ask for an opinion on the
result, maybe they also ask suggestion on the query term.
We define this trend as crowd-searching.

In current Web systems, the crowd-search activity, i.e.
looking for opinion from friends or experts, is detached from
the original search process, and is often carried out through
different social networking platforms and technologies. More-
over, people manages different applications, different virtual
identities and maybe also different devices: they send email,
ask on Twitter, Facebook or other social network, or ask to
friend and people they know.

Recent works (see section 4) on crowd-based search fo-
cus on simple and atomic task, while crowd-sourced search
involve a wide range of scenario, from trivial decisions, like
choosing where going to eat at dinner, to more serious things
like organizing a travel or even buying a house. Thus the
user need a way to manage and control the whole process,
from the creation of the query, the selection of the target to
the gathering of the results.

In this paper we propose a model-driven, platform inde-
pendent, approach to design Web applications that support
crowd-sourced search. We define a top-down design ap-
proach, as sketched in Figure 1 which applies model-driven
engineering (MDE) techniques for the specification of the
crowd-sourced information collection task, its splitting and
refinement, and its mapping to the Web user interaction

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55234598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Field

type: String

name: String

Schema

name: String

FieldInstance

value: String

Query

question: String

type: String

open: boolean

User

user: String

password: String

email: String

Asker

Relation

type: String

CrowdObject

Output Input

N 1

N 1

Outgoing From

Incoming To

Answer

1 N

1 1

 idField

N

1

1

N

1

1 1

1

1

N

N

N

N
Responder

N

N

N

1 N

Figure 2: The query task meta-model.

specification. The approach starts from the task description
and applies model-to-model transformations to build the de-
tailed task definitions (described e.g. in BPMN) and then
the platform independent user interaction model (described
in the domain-specific language WebML[3, 9]). Then the
final application is automatically generated by means of a
model-to-text code generation transformation.

The main ingredients that participate to our contribution
are: 1) a metamodel of the crowd-sourced question; and
2) the models of the user interfaces needed for defining the
questions and for responding. In this short paper we focus
on the aspects related to the model-driven design of the
crowd-search user interactions, spanning from the question
definition to the engagement, dissemination, and ending in
the response submission and collection. On the other side,
we consider the task refinement and redesign problem as
outside the scope of this short work.

The paper is organized as follows. Section 2 and Section
3 respectively describe our search task meta-model and user
interaction model; Section 4 summarizes the related works
for both the crowd-sourcing and the model-driven fields; and
finally, Section 5 concludes.

2. TASK MODEL
The starting point of our MDE approach is the query task

model. Figure 2 shows the query task meta-model to which
every query task should conform. The main element is the
Query submitted by a User. The Query is defined by a
Question, written in natural language, and a list of Crow-
dObjects, i.e. information structured according to a given
schema.1

A question includes a set of Input CrowdObjects, i.e., a
set of data in the user’s question upon which the responder
can apply his response. For example, if the user wants to
collect opinions about some restaurants in Lyon, the Input
CrowdObject instances comprise the restaurants subject to
the comparison. The input object can be either inserted
manually at query creation time by the user or extracted
from a previous search (both canonical or crowd-based) step.
The model of these objects is defined by the Schema element.
Input objects are not mandatory for the creation of a query,
as a user can create an open question. However, we always
assume the presence of a Schema.

1To ease the discussion, we assume that information is
structured in relations; however, other formats (e.g. semi-
structured, graph, etc.) are also suitable.

The type of the query defines how a user can answer to
the question. These have been classified in a taxonomy [6]
comprising among others the following task types:

• Like: the user answers the query by voting (“liking”)
one or more of the query inputs;

• Comment: the user answers the query by writing a
comment on one or more of the query inputs;

• Add: the user answers the query by adding one or
more new instances of Output CrowdObject.

Finally, the Query is also related with a set of Output
CrowdObjects, representing the answers to the question sub-
mitted by the crowd.

Users of a crowd-search task can be classified into two
categories: askers and responders. The former is the user
using the platform and creating questions to be submitted
to the crowd, while the latter is a user involved in the query
answering process using the social network or crowdsourcing
platform.

Relation represents associations that can exist between
CrowdObjects. These relations can be either an Input-Input
relation or a Output-Input relation. They are created when
a query is split into sub-queries and depend on the kind of
splitting pattern that is applied. Indeed, starting from the
design of the coarse-grained task, one can refine its descrip-
tion by structuring its activities according to known crowd-
interaction patterns (ie.g., find-fix-verify [5], map-reduce [11],
or Turkomatic guidelines [12]).

Input-Input relations occur when the initial set of inputs
is partitioned across different instances of the same query,
to reduce the workload of the responder. For example, if the
original query would ask the responder to order one hundred
restaurants, it can be useful to split the task into subtask
of ten restaurants each, to be assign to different responders.
In this case the task performed by each responder is the
same, but it is applied on different sets of objects. The
initial set can be is therefore partitioned into the different
query instances, according to different strategies (e.g. , in
a uniform way or according some properties of the input
instances). The input of the new query instances are thus
mapped to the inputs of the original query, according e.g.
to a map-reduce pattern [11].

Output-Input relations occurs when the task requested by
the author of the query is complex or difficult, or if the re-
sult require some kind of validation, which therefore requires
organizing the task into a sequence of subtasks [5]. In this
case the query is composed by several heterogeneous tasks,
and each user performs a particular one (e.g., according to
a find-fix-verify or similar pattern [5]). Hence, the output of
the first subtask becomes the input for another query sub-
task, and so on, thus generating an output-input mapping.

3. USER INTERACTION MODEL
The user interaction model describes the interface and

navigation aspects of the crowdsearch application. Start-
ing from the query task model, possibly split in a complex
pattern of microtasks, a model transformation can lead to a
coarse user interaction model, which in turn can be manu-
ally refined by the designer. The user interaction must cover
three fundamental phases of the crowdsearch process:

• the submission of the question (performed by the asker);

Figure 3: User interaction model for creating a query.

• the collection of the responses (performed by the re-
sponder);

• and the analysis of the results (available to the asker
for getting insights).

At the current stage, our research has identified the inter-
action patterns relevant for each phase, considering the var-
ious options of deployment platform, task type, and macro-
task splitting pattern. For space reasons, in this section we
report one possible outcome of the user interaction design,
in case of simple query task and of deployment on the Face-
book social networking platform. We describe the phases
of query creation and of query answering, according to the
WebML notation [3].

3.1 Query creation
Figure 3 shows the user interaction model for creating and

submitting a query, according to the WebML notation. In
the Create Query page, the user specifies the textual ques-
tion (e.g., “What’s the best museum to visit in Milan?”) and
sets the query type (e.g., “Like”, “Add”, and so on). The user
can also choose the type“open question”, thus assuming that
no items are needed in input for the responder to select/like
and so on. In both cases, an Query instance is created, and
its type is set. If the query does not have inputs, then the
user is directly brought to the Responder Selection page.

If, on the other hand, the user chooses to build a struc-
tured question with inputs, then he is redirected to the “De-
fine schema” page, where the asker can create a schema for
inputs by assigning a general name to the input type and
by defining its attributes in terms of name and type. By
submitting the form, the application creates a new instance
for the Schema entity and its associated Fields. The asker is
brought to the Add Instance page, where he can add input
objects following the schema previously defined. The spec-
ified instances of the Input are created and linked to the

query.
Finally, in the Responder Selection page the asker can se-

lect the responders to the query: the list of possible respon-
ders is retrieved from the social network or crowdsourcing
platform (in this example, the GetFriend component col-
lects the friends from the Facebook platform). The user can
select the responders through the “Friends” multi-selection
list in the page. Eventually, after viewing a preview of the
created question, the user can post the query on the social
platform.

Figure 4 shows a compressed view of the web pages that
are produced starting from the user interaction models de-
scribed in Figure 3, thanks to the code generation facilities
of WebRatio. The structure and content of the pages can be
easily recognized and mapped to the corresponding model
elements. In this particular example the user wants to know
some good restaurants in Milan. Hence she defines the ques-
tion “Can you suggest me some good restaurants in Milan?”
and selects the “Add” query type. Then she creates the
schema the input instances of the question must conform to.
In the instance list she adds a restaurant she already knows.
Finally she selects the recipients of the question from the
list of her friends extracted from Facebook

3.2 Answering to a query
Figure 5 depicts the WebML model for the query answer-

ing activity, performed by a responder based on the query
structure defined by the asker. When accessing the applica-
tion through the Responder Dashboard page, the responder
is presented with a list of questions to answer. By clicking
on a question, he is brought to the Details page, where he
can provide his answer. The page shows the question text,
plus the set of defined input instances (Input component in
the Details page).

Depending on the type of the question (defined by the
asker defined during the query creation phase), different

Figure 4: Rendering of the Web pages implementing the query creation phase, as generated by WebRatio.

Figure 5: Hypertext model for answering to a query.

concrete user interfaces can be shown: in the case of a
“Like” question, the responder simply selects the preferred
instances in the Input list; as a consequence, a set of Output
objects are created corresponding to the “likes” of the user.

In the case of “Comment” or “Add” question, the user is
shown a form to respectively write a comment or add a new
instance to the list. In the case of “Comment” questions,
an Output object with the comment schema (i.e. a single
textual field) is created. The“Add”case is more noteworthy,
as the Output objects will present a schema equivalent to the
Input ones, so to add the new object instances to the list of
input object of the query.

Figure 6 shows the compressed view of the “Details” page
built from the user interaction model described in Figure 5.
Continuing the previous example, in this page the responder
of the question can add additional restaurants he knows.

4. RELATED WORKS
This work falls into the broad field of human computa-

tion, i.e., the discipline that aims to use human knowledge
to fulfill tasks that are difficult or even impossible for a ma-
chine. For example, human computation studies have been
done about using crowd’s knowledge for image recognition
[15], to answer ambiguous queries[6] or to refine incomplete
data [10, 14]. The platforms most adopted for exploiting hu-
man knowledge and skills are based on crowdsourcing (the
most prominent example being Amazon Mechanical Turk
[1]). However, other ways of collecting human intelligence
can be exploited, such as social networks.

A very important aspect of a crowd-based search is the
quality of the results and the response time, therefore sev-
eral works have addressed the problem of understanding how
design features (for example the cost of the task) impacts
on these results metrics [13, 4].

The novelty aspects of our approach with respect to the
existing works include: independence with respect to the
crowdsourcing platform (in particular, we allow to exploit in-
differently a social network or a crowdsourcing marketplace

Figure 6: Rendering of the query answering Web
page, as generated by WebRatio.

of choice); model-driven design of tasks and user interac-
tions; model-transformation based approach that partly au-
tomates the generation of some models, thus reducing the
cost of designing new applications; and possibility of man-
ually or automatically choosing the responders to a query
task. Our work can be seen as an extended social ques-
tion answering approach (as applied in Quora and other
well known platforms), where the asker has greater flexibility
in defining and sharing his questions. Our work addresses
the problem of defining crowdsourcing tasks at the modeling
level, while existing approaches and tools typically allow for
a programming approach to the problem (e.g., see TurkIt
[2]).

Our work is based on general purpose model-driven tech-
niques and on our previous work on Web application design
[9], on mapping business processes to user interaction mod-
els [8], as well as on the preliminary results presented in
the CrowdSearcher approach [6]. From the implementation
perspective, we rely on the WebRatio toolsuite [7], which
provides code generation facilities for WebML models.

5. CONCLUSIONS AND FUTURE WORKS
In this paper we presented a model-driven approach for

crowdsourcing responses to questions. We defined a meta-
model of the query taks and a user interaction model for
building and answering to a query. We apply model-driven
techniques to the design of the various aspects of the query
tasks and to the transformations among them.

Ongoing activities are addressing the problems of task
splitting and automatic model transformations, so as to im-
plement a model-driven approach to the design of the tasks,
considering the structured crowdsourcing patterns identified
in literature. For the future we plan to extend the coverage
of the deployment to several social and crowdsourcing plat-
forms and integration of the potential responders base from
several platforms at a time.

ACKNOWLEDGMENTS
This research is partially supported by the Search Comput-
ing (SeCo) project, funded by European Research Coun-
cil, under the IDEAS Advanced Grants program; by the
Cubrik Project, an IP funded within the EC 7FP; and by
the BPM4People SME Capacities project. We thank all the
projects’ contributors.

6. REFERENCES
[1] Amazon mechanical turk https://www.mturk.com.

[2] Turkit http://groups.csail.mit.edu/uid/turkit/.

[3] Webml http://www.webml.org.

[4] D. Ariely, U. Gneezy, G. Loewenstein, and N. Mazar.
Large Stakes and Big Mistakes. Review of Economic
Studies, 75:1–19, 2009.

[5] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann,
M. S. Ackerman, D. R. Karger, D. Crowell, and
K. Panovich. Soylent: a word processor with a crowd
inside. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology,
UIST ’10, pages 313–322, New York, NY, USA, 2010.
ACM.

[6] A. Bozzon, M. Brambilla, and S. Ceri. Answering
search queries with crowdsearcher. In Proceedings of
the World Wide Web conference (WWW 2012), page
in print, 2012.

[7] M. Brambilla, S. Butti, and P. Fraternali. Webratio
bpm: A tool for designing and deploying business
processes on the web. In B. Benatallah, F. Casati,
G. Kappel, and G. Rossi, editors, ICWE, volume 6189
of Lecture Notes in Computer Science, pages 415–429.
Springer, 2010.

[8] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu.
Process modeling in web applications. ACM Trans.
Softw. Eng. Methodol., 15(4):360–409, 2006.

[9] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing data-intensive
Web applications. Morgan Kaufmann, USA, 2003.

[10] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. CrowdDB: answering queries with
crowdsourcing. In Proceedings of the 2011
international conference on Management of data,
SIGMOD ’11, pages 61–72, New York, NY, USA, June
2011. ACM.

[11] A. Kittur, B. Smus, and R. Kraut. CrowdForge:
crowdsourcing complex work. In Proceedings of the
2011 annual conference extended abstracts on Human
factors in computing systems, CHI EA ’11, pages
1801–1806, New York, NY, USA, 2011. ACM.

[12] A. P. Kulkarni, M. Can, and B. Hartmann.
Turkomatic: automatic recursive task and workflow
design for mechanical turk. In Proceedings of the 2011
annual conference extended abstracts on Human
factors in computing systems, CHI EA ’11, pages
2053–2058, New York, NY, USA, 2011. ACM.

[13] W. Mason and D. J. Watts. Financial incentives and
the ”performance of crowds”. In Proceedings of the
ACM SIGKDD Workshop on Human Computation,
HCOMP ’09, pages 77–85, New York, NY, USA, 2009.
ACM.

[14] A. Parameswaran and N. Polyzotis. Answering queries
using humans, algorithms and databases. In
Conference on Inovative Data Systems Research
(CIDR 2011). Stanford InfoLab, January 2011.

[15] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch:
exploiting crowds for accurate real-time image search
on mobile phones. In Proceedings of the 8th
international conference on Mobile systems,
applications, and services, MobiSys ’10, pages 77–90,
New York, NY, USA, 2010. ACM.

